Custom Search

Microwave Hall of Fame
Part III

Updated February 18, 2014

In the second half of the twentieth century, microwave innovators kept busy inventing. If you've been involved in microwaves for a few years, you might have had lunch with some of these people!

Go back to the first page of the Microwave Hall of Fame.

Go back to the second page of the Microwave Hall of Fame.

Go to our main microwave history page.

In 1939 Bill Hewlett and Dave Packard started a business in Dave's garage using $538. After fooling with inventions such as a bowling alley foul-line-roll indicator, their first successful product was an audio oscillator. Another California entrepreneur, Walt Disney, was one of their first big contracts when his company ordered a few oscillators for use in creating the film "Fantasia". Now known as Agilent, HP products have been used by generations of microwave engineers and have always presented a problem during capital equipment requests, because this is equipment that never dies, so why would you ever need to replace it?

HP alumni (and alumnae) have put together an excellent web site with history of the company and other reminiscences, check it out!



After the war, Navy veteran William (Bill) Taft Slayton, Jr. (1914-2000) joined Naval Research Labs (NRL) where among other things he studied horn antennas. His research was published and remains the gold standard for horn antenna gain data to this day. Working for the Navy, Slayton never profitted from his discoveries, but soon there were many suppliers of his microwave horn antenna. Thanks to his daughter Charlotte, Microwaves101 now has an improved copy of Slayton's report (and other Slayton artifacts including a speech he gave in 1980) in our download area! Charlotte also contributed the photo to the right... thanks! Born in Vermont, Slayton studied electrical engineering at the University of Florida in Gainesville, FL, and at George Washington University in Washington, D.C. and eventually worked for NASA on unmanned space programs. Note the lightning bolts on his insignia, indicating that he was in the radio electronics division. We have additional information on Slayton on our horn antenna page. William Slayton was nominated to the Hall of Fame by Chris.

Radio Technician First Class Bill Slayton

Ed Purcell, Taffy Bowen, and Doc Ewen

The first radio astronomy horn

Edward Mills Purcell ("Eddie P", 1912-1997) and Harold Irving Ewen (born 1922) gave birth to the field of radio astronomy in 1952 when they were the first to detect the elusive 21 cm (1420 MHz) hydrogen line. This feat allowed for the first time a mapping of the spiral structure of our Milky Way galaxy, including the relative velocities of the "arms", determined by Doppler shift. Purcell and Ewen performed this research at Harvard University, using a $500 grant and working on weekends for a year.

Purcell was previously a Nobel prize winner for discovering Nuclear Magnetic Resonance (a shared prize with Felix Bloch), and he worked on the development of radar at the MIT Rad Lab during WWII.

Check out the historical pictures at:

Nominated by Randall!




Seymour B. Cohn was born in Stanford Connecticut in 1920, and earned his PhD in applied science at Harvard in 1948. During the war he was employed as a scientist/observer on the Mediterranean front. During his long career he worked at Sperry, Stanford Research and later Rantec. Cohn published dozens of papers in the IEEE (or we should say IRE?), on a diverse set of topics including stripline, isolators, waveguide to coax transitions, power dividers, ridged waveguide, filter theory, and much, much more. His writings are in depth, easy to understand, and above all still relevant today. In case you haven't noticed, some of the best reference material on the topic of microwave engineering was created in the 1950's. He was also a major contributor to the book Microwave Filters, Impedance-Matching Networks, and Coupling Structures by Matthaei, Young and Jones.

Repeat after us, Dr. Cohn we're not worthy! In 1964 Seymour Cohn won the IEEE Microwave prize. Nominated by Jack K!

Leo Esaki (born in 1925), researched heavily doped silicon and germanium while working for Sony Corporation in Japan, and invented the Esaki tunnel diode during the 1950s. This device constitutes the first quantum electron device, and today it is used in many microwave detectors and oscillators (due to its negative resistance region). Later as an IBM employee, Esaki pioneered other semiconductor quantum structures such as man-made superlattices. He won the Nobel Prize for Physics in 1973. Read the fascinating history of the Sony company here. Did you know that the word "Sony" is a mixture of "sonic" and "sunny"?

Need picture

Bernard Schiffman's 1958 paper titled A New Class of Broadband Microwave 90 Degree Phase Shifters described a simple device that bears his name today. Schiffman's idea was that the phase difference between a quarterwave coupled section, compared to a 3/4 wave straight section, would provide a nearly flat 90 degree phase differential. Schiffman went on to publish a second article extending the analysis to multi-section coupled lines. Check out our page on Schiffman's phase shifter!

Jack Kilby (born in 1923), working for Texas Instruments, is credited with the invention of the integrated circuit, which ranks up there with "fire" and "wheel" as an invention that changed the world. The first public announcement of a "solid circuit" was made at the IRE conference in 1959. Not three months later, Robert Noyce independently came up with the same idea at Fairchild, and the patent feud brought corporate lawyers for all the way to the supreme court. Jack's insistence that he was a "co-inventor" with Noyce speaks volumes about the man, and later the two shared the Nobel Prize in Physics in year 2000. An engineer's engineer, Jack Kilby stayed technical throughout his long career (60 patents!) , never got rich from his invention, and was by all accounts a humble man. Jack died on June 20, 2005, at 81 years young.

Frederick W. Kulicke and Albert Soffa form an equipment manufacturing corporation in 1951 with $500 and an old Plymouth. Shown to the right they stand next to an early K&S offering, a machine that cleans returnable beer cases. Soon the semiconductor industry was getting off the ground, and here is where K&S focussed their company. Known for innovative solutions to a variety of semiconductor manufacturing problems, perhaps their greatest contribution to the industry is the commercialization of the wirebonder. Soffa passed away on April 10, 2005, here's a link to his obit.

Ralph Walter Klopfenstein

While working at Sarnoff Labs, in 1956 Ralph Walter Klopfenstein published an IRE paper on an electrical taper, titled A Transmission Line Taper of Improved Design. This design has been known ever since as the Klopfenstein taper. Klopfenstein employed some elegant mathematics to derive the conditions for a high-pass element that provides an equal-ripple response out to infinite frequency, realized at first in coax. This paper is just as relevant today as the day he wrote it.

Klopfenstein sponsored an annual math prize through his estate with the Mathematical Association of America. It's been awarded annually for over 15 years now. It's called the Merten Hasse Prize for Best Expository Work of a Mathematical Topic. It was named after a high school math teacher he had, who greatly influenced his career choices. What will be your legacy to math, science or engineering?

John Daniel Kraus was born in 1910 in Ann Arbor Michigan; UMichigan is where he earned his doctorate in physics. Dr. Kraus had many contributions to the field of microwaves. He first demonstrated the corner reflector (see photo), and invented the helical and other types of antennas. He was a lifetime Ham operator (W8JK) and was involved in the early days of radio astronomy, designing Ohio State's Big Ear radio telescope. He published some great books on antennas, electromagnetics and radio astronomy. Kraus died in 2004. Thanks to Pedro for nominating him!

Kraus with 6M corner reflector. The original of this and many more images of him can be fiound on the NRAO site.


Ernest J. Wilkinson Jr.'s paper in the 1960 IRE Transactions on Microwave Theory and Techniques entitled simply "An N-way Hybrid Power Divider" sealed his fate of entering the microwave Hall of Fame, for who hasn't heard of a Wilkinson power divider? Mr. Wilkinson's demonstration of the technique consisted of a circular 8-way coaxial divider with center frequency of about 500 MHz. For this development he was awarded U. S. patent number 3,091,743. He was born in Fall River, Massachusetts (home of Lizzy Borden!) in 1927, and was employed at Sylvania's Missile Systems Laboratory during his career. You might find artifacts from this building if you excavated under Waltham's charming Home Depot.

Update March 2012: Ernest J. Wilkinson, Jr. passed away on March 10, 2012. We were informed of his passing by his proud granddaughter Lissa, who began her message appropriately with "what a smart man he was"... If you read his obituary you will also notice how humble he was toward his contributions to the microwave industry. Perhaps no name is spoken more often in microwave engineering that that of "Wilkinson".

Using 4000 Hewlett Packard Schottky diodes and a drill motor borrowed from his home shop, Brown kept this helicopter aloft for 10 hours, powered by microwaves!

William Cyrus Brown was born in 1916 and earned his degree at Iowa State University. Initially working at RCA in Camden NJ on high-power tubes, he took an opportunity to go back to school (MIT) in 1939. Later he moved on to the Raytheon Company and soon was in charge of the magnetron product line. He invented a cousin to the magnetron, the amplitron, another version of a crossed-field amplifier. Seeing a new possibility enabled high-power microwave energy, Brown investigated wireless power transmission for the rest of his career. In 1964 his microwave powered helicopter was featured on Walter Cronkite's newscast. He studied the concept of space-based power generation, beamed to earth using WPT, an idea that has been attractive to energy-staved countries such as Japan ever since. Brown set efficiency records that to this day remain unbroken: 92% RF-DC efficiency, DC-RF-DC efficiency of 54% at 1 KW, and later 34 kW transferred at one mile with collection efficiency of 82.5%! He died in 1999. Thanks to his daughter Barbara for reminding us that Bill Brown belongs in the Microwave Hall of Fame! Learn more about his life from this IEEE talk on youtube.

John Rollett's 1962 IRE paper entitled "Stability and Power-Gain Invariants of Linear Twoports" forever links his name with the stability factor K, and puts him into our Hall of Fame. Dr. Rollett (rhymes with wallet) was working for Marconi's Wireless Telegraph Company when he performed this work. His derivation built upon previous work by Sam Mason of MIT. Update March, 2006! We have been in contact with Mr. Rollett, and he's provided us with some historical perspective on his work! He modestly admits that K-factor was purely a theoretical exercise, and he has been pleasantly surprised that it has had such widespread practical application all these years! Here's the photo he sent us - this was taken in the early 1960s. Thanks, Mr. Rollett!

Walter Rotman (1922 -2007) had a long and distinguished career at Air Force Research Labs and MIT Lincoln Labs. His 1962 showed a new type of beamformer that allows multiple simultaneous beams to be formed, which is known as the Rotman Lens. A large number of US patents and IEEE papers reference Rotman for this work. In addition he was known for early investigations into metamaterials, surface wave antennas and trough waveguide. His patents were assigned to the United States of America because of his affiliation with the Air Force. According to Google, "Walter Kotman" and "Walter Rotnian" each own US patent 3,170,158. "R" and "K" are often confused by optical character recognition as are "m" and "ni", but let's get these fixed, OK? Rotman served in WWII as a radar technician, and according to Wikipedia was of Jewish faith.

John Battiscombe Gunn (1928-2008) was known to his associates & friends as J. B. Gunn, or Ian Gunn. He is recognized for inventing the negative-resistance Gunn "diode" in 1963; the effect he proved had been predicted by the theoretical work of Watkins and Hillsum. Gunn diodes have been used to build cheap oscillators up to 100 GHz. Next time you get a speeding ticket measured by radar, remember to thank Mr. Gunn for his contribution!

In recognition of his distinguished career at IBM, Gunn was made an IBM Fellow in 1971 and retired from IBM in 1990. In addition to his scientific expertise, Ian Gunn had a great interest in mechanical things, especially vintage autos and motorcycles.


J. B. (Ian) Gunn

Nominated by Murat from MITEQ, with additional info from Kerry from Down Under, and more info and corrections from Janet Gunn!

The following additional information on Ian Gunn was submitted by Janet, Ian's daughter. Thanks!

Although sometimes referred to as Dr. Gunn (Microwaves101 was guilty of this, but we copied the mistake from the IEEE!) Gunn was not a "Dr." His only academic degree was a BS from Cambridge in 1948. (He was actually the third member of his family to be mistakenly called "Dr. Gunn". His father, Battiscombe Gunn, was professor of Egyptology at Oxford, but had no formal post-secondary education. Oxford gave him an honorary MA so they could hire him. His mother "Meena" trained with Freud, and was a practicing psychoanalyst from the 20s to the late 60s, but had no academic degree. Both were commonly called "Dr. Gunn".)

During his professional career he was known formally as "J. B. Gunn" and informally as "Ian Gunn" or "Iain Gunn". No one outside the family was allowed to know what the J. B. stood for, and his full name appeared only on legal documents such as his passport and his driver's license.

He was a Permanent Resident Alien in the US for almost 50 years (1959 to 2008), and was born in Egypt. He remained a British subject.

He did have ONE tractor which he used for earthmoving, etc., but his primary mechanical outlet was vintage cars and racing motorcycles (of which he had eight and 40 respectively at the time of his death). He raced for another 10 years after he retired from IBM.

Here is a link to his obituary in Road Racing World, a monthly motorcycle racing magazine, which contains more information about his racing career.

In 1964 Bell Labs researchers Arno Allan Penzias (born 1933 in Munich) and Robert Woodrow Wilson (born 1936 in Texas) detected the cosmic microwave background of the Big Bang. You are free to believe anything you want about the age of the universe, but this discovery proved that it is 15 billion years old; cosmology is a scientific discipline. Penzias' family fled Germany in the 1930s, and he earned his doctorate at Columbia University in New York, while Wilson did his graduate work at Cal Tech. Penzias and Wilson shared the 1978 Nobel prize in Physics with a third researcher who did unrelated work. Read more about their discovery here. Penzias and Wilson were nominated by Carlos, muchas gracias!

Wilson (left) and Penzias


In 1964, George Matthaei, Leo Young, and EMT Jones published a 4.5 lbs. (2 kg) book called Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Most often referred to as simply "Matthaei, Young and Jones" or even "MYJ", the book is also known as the "Black Bible" because its original cover was black. The best filter designers still refer to this masterpiece, five decades later. Look for it on our book page, go to our download area and grab a free copy of this 1,000 page book, which lately sells for $114 on Amazon. These three researchers worked together at Stanford Research Institute in Menlo Park, California, when the book was written and published by McGraw Hill. Seymour Cohn was also a major contributor to this effort. Dr. Leo Young was born in Austria but came to America to get his Ph.D. at JHU. Matthaei and Jones were both born in the USA. Dr. Matthaei (rhymes with paté) served in the military in WWII, then earned his Ph.D. from Stanford, and later spent the better part of three decades as a Professor at UC Santa Barbara teaching and doing research. Thanks to Richard the lawyer and former microwave guy, with further inputs from Shashank!

We are sad to report that Leo Young died September 14, 2006, click here to view his obit.

Someone please help us out... what does EMT Jones' initials stand for???

Dr. Kaneyuki Kurokawa was born in Japan in 1928. While on leave of absence from from his position at University of Tokyo, he worked during the early 1960s at Bell Labs in New Jersey. His March 1965 IEEE paper entitled Power Waves and the Scattering Matrix, makes Kurokawa the first to popularize the concept of S-parameters. This profound yet simple idea is one of the concepts that sets microwave engineers apart from other "normal" electrical engineers. Note: we have found references to S-parameters in microwave engineering as far back as 1957, by Collin, Bolinder and others, but these earlier authors casually mentioned the scattering matrix and did not follow up with the analysis and depth of understanding that Kurokawa provided. Thanks for the tip, Ingemar!

Julius Lange invented the microstrip interdigitated quadrature coupler at Texas Instruments in 1969. The name "Lange" is probably second only to "Smith" in terms of its widespread usage in the microwave community. Please visit our page on Lange couplers, which is just getting started! He got the idea for the famous coupler from the interdigitated emitter/base junction of a power transistor, thus making the proverbial lemon into lemonade. He holds ten patents on microwave components and subsystems. Dr. Lange turned 72 on December 14, 2006, and we wish him many happy more!

Cheng P. Wen is the inventor of coplanar waveguide. Working at RCA's Sarnoff Laboratories in Princeton NJ, his 1969 IEEE paper titled "Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications" is proof enough to us that the concept belongs to him alone. After publishing this paper he continued to develop all the bits and piece for CPW circuits, such as lumped element inductors and bumped flip-chip interfaces. One thing we've always wanted to ask Dr. Wen... did he make up the name "coplanar waveguide" so that the acronym CPW is the same as his initials? Here's a note from the handsome doctor himself, from June 9, 2005:

"I have been keeping active, helping young engineers since my retirement seven years ago. Currently, I am with the Peking University in Beijing, China, sharing with the students some of my experience. Attached please find a picture taken while I was at the RCA Laboratories, where the Coplanar Waveguide was invented. As to the origin of (the name) CPW, it was suggested by Lou Napoli, who pioneered the development of power microwave MESFET at RCA in the late 1960s."

C.P. later told us that he originally wanted to call the structure "planar strip line".

Robert (Bob) Eugene Munson is regarded as the father of practical microwave patch antennas. Ubiquitous today (entire books are published on this subject!), the patch antenna was first theorized by G. A. Deschamps in 1953, but it was not put to use for many years (by Munson), first on a datalink for Sidewinder missile, then on Sprint missile's semi-active seeker.

Munson's success could be partially chalked up to being in the right place at the right time. The 1960s and 1970s witnessed (1) the move to higher frequencies and solid state devices, (2) the move away from chassis and terminal wiring to printed circuits, and (3) a demanding need for conformal arrays (the Sprint missile array was on the curved surface of the nose cone). Being a defense worker at Ball Aerospace probably provided a pretty healthy charge number for this Cold War research! But let's remember that there was little analytic capability at the time, so Munson must have also (1) been an innovative genius and (2) spent considerable time in the lab to find designs that worked. Munson's name appears on many U.S patents, we counted 29 of them limiting the search to just antennas! Today he's retired and living on a 160 acre vegetable farm outside Boulder.

Munson was nominated to the Microwave Hall of Fame by Chris from LockMart!

Sprint missile

Les Besser started the microwave computer-aided design industry in 1973 when he created COMPACT software (Computerized Optimization of Microwave Passive and Active CircuiTs). Amazingly, his original submission to the IEEE of a paper describing COMPACT was turned down. Today Besser is a familiar name to all in the microwave industry, not only because Les co-wrote some great textbooks and a ton of technical articles, but because of Besser Associates, a company he founded in 1985 that offers continuing education courses in all microwave topics, way beyond the scope of Microwaves101. Les is Hungarian-Canadian-American, and we thank the American Hungarian Federation for permission to use their logo for the flag above. You can learn more about Les and the history of microwave CAD on our Microwaves101 History of CAD page!

In 1975, a paper published by Ray Pengelly and James Turner entitled "Monolithic Broadband GaAs F.E.T. Amplifiers" sealed their fate as the inventors of the MMIC. Working at Plessey, their little single-stage amplifier provided 5 dB of gain at X-band using 1 micron optically-written gates. They used computer optimization to design their lumped element matching structures, which included capacitors and inductors, but no DC blocking on the input/output. Backside processing had not yet been worked out, so the FET's source was grounded externally. Nice effort, guys! Ray P. now works at Cree, James passed on to the great clean room in the sky a few years ago.


Ray Pengelly

Peter Gibson in 1983, celebrating 25 years at Philips

While working at Philips Research Laboratories in the UK, Peter J. Gibson invented a unique antenna that is sometimes called a tapered notch, sometimes called a flared notch radiator, but most often called the "Vivaldi antenna". Peter published his results at the Ninth European Microwave Conference (IEEE) in 1979 in a paper entitled The Vivaldi Aerial. In the abstract he describes it as "a new member of the class of aperiodic continuously scaled antenna structures, as such, it has theoretically unlimited instantaneous bandwidth." It is not often that an engineer invents something that receives such widespread usage and perhaps a singular event when he humbly suggests such an interesting name for it that sticks. Learn why he named his antenna element "Vivaldi" here (and see another photo of him). Peter Gibson died in 2010. Thanks to Peter's wife Pat and friend Peter for helping us out with his photo and history.


Eric W. Strid and K. Reed Gleason were Tektronix employees when they began fooling around with methods of RF probing circuits. By 1983 they'd invented the RF probe and started a new company, Cascade Microtech, which now employs almost 300 people and does close to $100M in business each year. This single innovation changed the industry forever, helping pave the way for cheap wireless products that we can't live without today. Before 1983, MMIC devices could not be delivered to assembly as known-good parts, the true electrical performance of these tiny microwave circuits was impossible to measure at the wafer level.


US Patent 4,827,320 on May 2, 1989 is titled "Semiconductor with Strained InGaAs Layer". Five names from the University of Illinois appear on the patent, Hadis Morkoc, John Klem, William T. Masselink, Timothy S. Henderson, and Andrew A. Ketterson all share the distinction of inventing the pHEMT transistor. In the patent they discuss their method to improve the "MODFET" transistor, the name pHEMT didn't come about until later. This technology was just what the doctor ordered to extend the performance of MMICs in gain, bandwidth, noise and power.

David M. Pozar

David Pozar wrote the book on Microwaves, literally. Pozar earned his doctorate at Ohio State, and became a professor at University of Massachusetts at Amherst starting in 1980. During 1988 to 1990 he had produced a draft text book that he used on his microwaves classes, which was published in 1990 under the title Microwave Engineering, To quote Dr. Pozar from the preface, Education should be an accumulation of understanding, not just an accumulation of facts. Right on! If you are only allowed one college graduate-level reference book on microwaves, this is the one. It provides the best reference on network theory, Maxwell's equations, wave propagation, S-parameters and everything else you need to know. The Unknown Editor wants you all to know that he does not consider himself in the same league when it comes to writing about the topic of Microwave Engineering, but he will keep at it. Pozar is also a renowned expert on antennas and phased arrays, and is hereby invited to write about any topic he likes on Microwaves101.com!

Raymond W. Waugh was an engineer at Hewlett Packard, when he came up with a huge improvement for voltage-variable attenuators using PIN diodes, first published in 1992. His configuration has become the de-facto industry standard for multi-octave, compact, high linearity attenuators. This invention solved the asymmetrical drive requirement of the previous three-diode PI attenuator design and also improved linearity by distortion self-cancelling in the anti-series PIN diode arm. He also served the society in the Editorial board of MTT Transactions 1999-2000. He has written or co-written over 20 papers.

Because Waigh was "anti-patent", his practical idea became widely used across the industry. You can learn more about Waugh's attenuator on this page.

Nominated by Chin-Leong, from Malaysia!

Raymond W. Waugh

In the late 1980s Michael Ury and colleagues experiment with new ways to create light. By 1989 Ury's sulfur lamp earns US patent 4,859,906, and represents an illumination revolution. (Try to say that fast five times...) It uses a magnetron to excite sulfur atoms in a small bulb. It's more efficient and environmentally friendly that other industrial light sources, contains an eye-pleasing full color spectrum, lasts longer than fluorescent bulbs, and contains less harmful UV rays than sunlight; seemingly the perfect light bulb. However, issues with interference with other users in the ISM band (in particular, satellite radio) have stymied the adoption of this cool technology at least for now. Welcome to the Microwave Hall of Fame, Mike! We're working on a page on RF lighting to discuss this topic further.

Herb Kroemer's semiconductor work from the 1950s proposed what are now called hetero-structures, but it took several decades to realize the technology to build them. He was one of the pioneers of molecular beam epitaxy, in part, to realize some of his invented structures. One outcome of his work known to all microwave engineers is the hetero-junction bipolar transistor (HBT), which has given the microwave field-effect transistor a run for its money in recent years. Dr. Kroemer won the Nobel Prize in 2000 for his work, and currently is a professor at UCSB. His picture appears to the right, in which the King of Sweden is awarding the Nobel prize. We can't resist, any reference to the "K of S" always reminds us of Cab Calloway's Minnie the Moocher:

"She had a dream about the King of Sweden
he gave her things that she was needin'
gave her a home built of gold and steel
a diamond car, with the pulatinum wheels!
Hidey hidey hidey hi!!!"

(Herb K. was nominated by Prof. X. of U of A!)


Want more microwave history? Return to our main history page!

Want to nominate someone for the Microwave Hall of Fame? Drop us a line!

everything RF

RF & MW Components

40,000+ Components
100+ Companies
Search by specification


You are visitor number 4940657 to this page.

All content copyright P-N Designs, Inc.

Home | Virtual Lobby | Microwave Encyclopedia | Microwave Calculators | Unknown Editor | Acronym Dictionary
Message Boards | Cool Links | Microwave Mortuary | What's New? | Search Our Site | Download Area |Contact

P-N Design Services, Inc. - Tucson, Arizona
Webs with MOJO by PC Mojo - Cave Creek, AZ