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Abstract

e The purpose of this presentation is to show a
method of determining the stability (or instability)
of linear, passively terminated, multiport networks
from the normalized network determinant function
(NDF).

* This method Is rigorous and can be calculated
within commercially available steady-state circuit
simulators.
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Background

 Most GaAs MMIC designers use the well known
Linvill or Rollett stabllity criteria (C or K) to
determine the stability of linear two-port networks.
This procedure Is not rigorous!

« Platzker et al. have shown that a separate test Is
required to determine the stability of the network;
l.e. test for the existence of any zeroes of the
network determinant in the right half plane (RHP),
before the Linvill or Rollett stability criteria can be
applied.




Background

 The network Is stable If and only if no zeroes of
the full network determinant exist in the RHP. If
any zeroes do exist in the RHP, the network is
unstable. This is RIGOROUS!

o Platzker’s test applies the Principle of the
Argument theorem to a normalized network
determinant function (NDF) to determine the
number of zeroes in the RHP of the full network
determinant (and thus poles of the network).




WHAT IS THE NDF?




What is the NDF

e Platzker’'s normalized network determinant
function NDF is simply the full network
determinant, including all port terminations,
divided by the resulting passive network
determinant when all dependent sources (i.e. N
voltage controlled or current controlled sources)
contained within the network are set equal to zero.

NDF = 2

AoN




What is the NDF

« Note that any linear network parameters such as
Y, Z, H etc. can be used to calculate the above
determinants.

* Ay represents the determinant of a passive
network and cannot contain any zeroes in the
RHP. Therefore, zeroes in the RHP of the NDF
correspond to zeroes in the RHP of the full
network determinant.




HOW IS THE NDF
USED TO DETERMINE
STABILITY?




Using the NDF

e To determine stability, the complex quantity NDF
IS calculated for a given network along the
frequency axis o from -oo to +oo and its locus Is
plotted in the complex plane.

 |f the locus of the NDF encircles the origin (0,0) In
a clockwise direction, the network determinant
contains zeroes in the RHP. The number of
encirclements is equal to the number of zeroes In
the RHP.
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Using the NDF

« A counterclockwise encirclement of the origin (®

from -oo0 t0 +o0 ) IS NOt possible by construction of
the NDF.

e This NDF test can be used on any physically

realizable, passively terminated, linear multi-port
network.
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HOW IS THE NDF
CALCULATED?




Calculating the NDF

e Using the brute force approach, the NDF can be
found by calculating the full network determinants
A and A, at each frequency o.

o A faster approach to calculating the NDF is to first
reduce the network to a parallel connection of two
networks, one totally passive and one totally
active.
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Calculating the NDF

Passive Active
Components Components
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Calculating the NDF

 This reduces the number of nodes in the network,
and thus the sizes of the relevant matrices, to
between two and four times the number of
dependent sources contained in the network (2N-
4N) depending on connectivity.

 The network cannot be reduced any further than
this due to the possibility of introducing poles in A.
This will result in pole-zero cancellation in the
NDF.
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Calculating the NDF

* |In networks containing more than five dependent
sources, direct calculation of the NDF becomes
difficult using commercially available circuit
simulators.

e This Is due to the limitation in the sizes of matrices
that can be saved by the simulators for external
calculations.

e Also, calculation of the NDF inside a circuit
simulator Is desirable since it allows for sensitivity
analysis or optimization.
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Calculating the NDF

« To this end, we have derived an alternative way of
easily calculating the NDF within commercial
circuit simulators using the concept of Return
Ratios.
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A METHOD OF
CALCULATING THE NDF
USING RETURN RATIOS




NDF from Return Ratios

 The Return Ratio (RR) of a dependent source was
first presented by Bode and is defined as the
Return Difference minus one or,

RR=—2-1

 Where A is the full network determinant and A,
represents the full network determinant where the
dependent source Is set equal to zero.
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NDF from Return Ratios

e For networks containing a single dependent
source, the Return Ratio is equivalent to the NDF
and can be used as a rigorous check for stability.

NDF = 2 —RR, +1

Aoz
 |f the network contains more than one dependent
source, Ay; may contain zeroes in the RHP due to
other dependent sources, and a single Return
Ratio calculation is not sufficient for a rigorous

assessment of stability.
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NDF from Return Ratios

 However, the concept can be extended to
networks with N dependent sources by
rearranging the previous equation into the form,

A = (RR1+1)°A01

e and realizing that,
Agp = (RRy+1)- A,
 Where RR, Is the Return Ratio of a second

dependent source in the network with the first
dependent source set to zero.
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NDF from Return Ratios

e By substituting Ay, into the previous equation,

A01=(RR2+1)°A02 A=(RR1+1)(RR2+1)-A02
e By continuous substitution,

A=(RR;{+1(RR,+1)(RR3+1)...(RRy+1)-Aqgy
e Or,

NDF = (RR; + 1)(RR, + 1)(RR3 + 1)...(RRy + 1)
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NDF from Return Ratios

* For each successive Return Ratio calculation RR;
(1 = 2-N), the network is physically changed by
setting all previous dependent sources to zero.
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HOW IS THE
RETURN RATIO OF A
DEPENDENT SOURCE

CALCULATED?




Return Ratio of a Dependent Source

 The Return Ratio of a dependent source
embedded within a network is calculated by
replacing the dependent source, which is
controlled by an internal voltage or current, with
an identical source that is controlled by an
external voltage or current.

e The stimulus from this new source will result in
some amount of feedback to the controlling
voltage or current of the original dependent
source.
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Return Ratio of a Dependent Source

e The negative ratio of the voltage or current
returned, to the external voltage or current
stimulus, Is the Return Ratio of the dependent
source.
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Return Ratios of Dependent Sources

VCCS
O —O
+
Vi <> 0 Vin => 0eVixq RR = —Vin
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O— —O

28



Return Ratios of Dependent Sources

VCVS
O
+ Vi
Vin V., =>yoV,, RR=_YIn
- x T Vext
O
CCVS
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Return Ratio of a Dependent Source
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RING OSCILLATOR
EXAMPLE




Ring Oscillator Example

 The following example Is a ring oscillator
containing two dependent sources.

 The NDF of the oscillator is calculated from two
Return Ratios (one Return Ratio for each
dependent source in the network).

 The order of the Return Ratio calculations Is
unimportant as long as after calculating the
Return Ratio of any given dependent source, It IS
set to zero In the Return Ratio calculations of all
following dependent sources.

32



Ring Oscillator Schematic
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Ring Oscillator k-factor and |S]
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Ring Oscillator k-factor and |S]
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Return Ratio RR, Schematic

NDF = (RR; + 1)(RR, + 1)
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NDF Plot of Ring Oscillator
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NDF Encirclement Plot (o = 0 to +x)
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SINGLE ACTIVE
ELEMENT EXAMPLE




Single Active Element Example

Z,=50Q

n = 180° @ 1GHz

R, = 100Q
R, = 100
C,=0.1pF
C, =10pF
0, =1.0S
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k-factor and |S]
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NDF Plot (scale = 10)
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NDF Plot (scale = 2)
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NDF GUIDELINES




NDF Polar Plots

 Regardless of stabllity, the polar plot for physically
realizable networks will always begin and end at ®
= +/-00 on the real axis at (1,0) by construction.

« The NDF does not specifically determine the
frequency of oscillation (if an encirclement
occurs). However, the frequency where the NDF
plot crosses 180 degrees is generally close to the
frequency of oscillation.
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NDF Polar Plots

* One exception to this rule is if the NDF plot
touches the origin (0,0) at some frequency. If this
happens, then this frequency Is at least one
frequency of oscillation.

* Encirclements of the origin (from o = -0 t0 +) In
a counterclockwise direction are not possible by
construction of the NDF.
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NDF Encirclement Plots

e A stable network will always have a cumulative
NDF phase/-360 of zero. That Is, sweeping
from -0 to +oo the plot will begin (by definition) and
end at zero encirclements.

|t is unimportant if the encirclement plot rises
above +1 or below -1 so long as it returns to zero
at o = +oo.
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NDF Encirclement Plots

« A unstable network will always have a cumulative
NDF phase/-360 of some multiple of 2. That Is,
sweeping from o = - to +oo the plot will begin at
zero and end at +2,4,6... encirclements.

e Since the NDF over negative frequencies Is the
complex conjugate of positive frequencies, one
can look for encirclements from o = 0 to +c only.
This will always show half the encirclements (as
above, but capture the same stability information).

* Negative numbers of encirclements at o = +o are
not possible by construction of the NDF.
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Appendix 2

Dead (passive) “black box”
Transistor Models
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and
Aryeh Platzker
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Dead “black box” Transistor Models

 How do we make a “black box” transistor in a linear network passive
(no RHP zeroes).

« Consider the simplified network representation of an active transistor
(at any single given frequency) (D.J.H. Maclean [1]). This is valid for
any transistor type (FET or Bipolar). (can also be a [S]-parameter file)

Il Yb |2

o—— 1] —o |
\:r Y, 9.V, l v \;L {(Ya+Yb) _Yb }|:V1}:|:I1}
-C <|> O (gm _Yb) (Yb +Yc) vV, iz

(Ya +Yb )Vl _vaz = i1
(gm _Yb)vl T (Yb +Yc)V2 = iz
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Dead “black box” Transistor Models

+C Y J] d) f] O+ (Ya+Yb) _Yb vy _ i1
Tl o o |:(gm _Yb) (Yb +Y, )}{Vj i LJ
O O

* We want to set g,, = O at all frequencies (other than DC) to
make the transistor passive.

Iy Yy, 2
o— ] —o _
\:’ v, E]Y \:“ (Ya +Yb) —Yy Vi _ l
1C Co'z _Yb (Yb +Yc) vV, i2
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Dead “black box” Transistor Models

» We need to subtract g,,v, from i, in the simplified model to
achieve this. This is done using two additional (identical)
transistors that use the following AC terminal conditions
(DC are the same as original):

 First, in identical transistor 1, set the input voltage equal to
v, (sampled from the original transistor terminals), short v,
and find the short circuit current i,

I'q '2

o =0
Ya -IJ gmv1(l> f- YC i.2: (gm _Yb)V1
O O

 The short circuit current is (g,-Y,)V;.
* Next we need to get Y, v,.
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Dead “black box” Transistor Models

* Next, in identical transistor 2, set the output voltage equal
to v, (sampled from the original transistor terminals) and
find the short circuit input current i,.

11 Yy, "5
—_ — -

O | | O
f (P[I] " — vy,

o

» The short circuit current is -Y,v;.

* Next we simply subtract i,’ and add i,” back to original
transistor model as shown on the next slide.
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Dead “black box” Transistor Models

e Subtract i’, and add i”’; to the original model like so...

o O
\Z YaIJ- OmV1 (l) [I]YC i’de i”l@ v+2
o o
(Y, +Y, W, =YV, =i, i, = (g — Yo Vs
(gm _Yb)vl+(Yb+Yc)V2_i'2+i”1:i2 1" ==YV,
This results in 1 '_1> Y, <I_z
(o, | o)

Y, + (Y, Y, =1, 00

. e
(Y, +Y, )Vl —YpV, =1 ¥ i ¥
—_ v, Y Same as Y. v,
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ADS Implementation of “dead” Transistor Models

(uses 3 identical transistor models)

» Model gives same DC currents as active model, but AC g,, = 0 (no gain
at AC frequencies). Same can be done for BJTs, [S]-parameter files.

]
V. = v v’, shorted
.. 1~ V1
Original model AV
4 4 + +
DC_Block \PC_Feed
RC_Feed6
- - v
Nonlin\&'sS — NonlinVCVS
CSRC1 CSRC2
EFET_NDF tqped_ehss Coeff=list(0,1) Coeff=list(0,1)
X252 o
W=46 um \’(lvzi/xll
Ng=1 s ff—l' 1(0,G1)
oeff=list(0,
> Dead=Dead ||
Port DC_Block
P3 pc_slocks\/”’ . shorted
Num=3 1 R I
Vo=V
VAR A L |~ .V
VAR1 + 4 tgped_ehss + 4
W1=if (W < 5e-6) then 5e-6 else W endif DC#reed Q3 DC_Feed
G1=if (Dead > 0.5) then 1.0 else 0.0 endif D@ Feed8 W=w1 DC_Feed7
w - Ng=Ng - -
. Nonlin S — NonlinVCVS
Dead = 0 Active CSRC6 CSRC5
Coeff=list(0,1 Coeff=list(0,1)

Dead = 1 Passive (no RHP zeroes)

Coeff=list(0,-G1)
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of Linear Networks from
Current/Voltage Ratios
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NDF calculation using currents ratio
With a dependent current source gm(Vi-Vj) connected between nodes k and |,

and an independent source s connected in parallel with it, the voltage nodes can
be calculated from the matrix equation using the Y matrix below

?11Y12............ . Y1i Yij......... Yik Y1I ........ Yin | V1 0
Y21 Y22 evveienee. Y2i Y25 ouniiin., Y2k Y2I......... Y2n | |V2 0
0

= 0

Yki Yk2 ....... -gm+Yki  Ykitgm....Ykk YK ............. Ykn | |Vk| |-Is
Yii Yiz........ gm+Yii Yi-gm....Yik YI ....... Yin | |V s
0

Yn1Yn2 ............. Yni Ynj....... Ynk Ynl Ynn | |Vn 0




NDF calculation using currents ratio

Introduce the sum of the independent and the dependent currents | as a new
variable | = Is — gm (Vi-Vj) and obtain the circuit description with the

augmented Y matrix, Yaug

_Y11 Y12 ..o Yii Yij......... Yik Y1l ........ Y1n O_ :/1_ _O_
Y21Y22 ............ Y2i Y2j........ Y2k Y2lI........ Y2n O] |v2 0
Yk1Yk2....... Yki Ykj.......... Ykk Yk ... Ykn 1] | Vk 0
Yii Yi2........... Yi Yij.......... Yk YII ......... Yin -1 | VI 0
YniYn2...ooo....... Yni Ynj........ Ynk Ynl ..... Ynn O |Vn 0
O O gm -gm O O O 1|1l s




NDF calculation using currents ratio

By Cramer’s rule the variable | is given by

‘Yaug ‘I =

Y11 Y12 ............ Yii Yij......... Yik Y1l ........ Yin O
Y21Y22 .cc......... Y2i Y2j........ Y2k Y2I........ Y2n O
YkiYk2 ....... Yki Ykj.......... Ykk Ykl ... Ykn O
Yii Yi2........... Yi Yl.......... Yik YIl ... Yin O.
YniYn2...oooo.. ... Yni Ynj........ Ynk Ynl ..... Ynn O
O O, gm -gm O 0 ... 0 s

From which s /1 =[Yaug /| Yaug(gm=0)|

i.e. Is /| is the Normalized Determinant Function (NDF) of the circuit




NDF calculation using currents ratio

It is easy to show that Y| < Y aug | by observing that subtracting in Yaug its k'th
row from its (n+1)’th row and adding its I'th row to its (n+1)’th row leads Yaug to

beCome: | N 11 Y12 o Yii Yij..o.o.... Yik Y1I o....... Yin O
Y21 Y22 covvvvnn. Y2i Y2j.......... Y2k Y2I......... Y2n O
Yki Yk2 ....... -gm+Yki  Ykj+gm....Ykk YKl ............. Ykn O
Yii Yio...... gm+Yi  Yij-gm.....Yk YI ....... Yin O
YniYn2 v, Yni Ynj.......... Ynk Ynl ......... Ynn O
0 0 gm -gm O O 0 1

Since the row adding operations we performed do not change the value of the
determinant, we readily see by expanding the determinant along the (n+1)’th

columnthat | Y|= |Yaug |



NDF calculation using currents ratio

l @ .TS. 1 | @ 3 Yl
Y.
i I
gm(vl-vz)CP s Y3
p
2 ;4 ' Y gm
Y2 Y6
Y, +Y,
_Yl
_Y3
0
| gm

By Cramer’s Rule we get:

1 _Vz) +Y3(V1 Vs)
2 _Vl) +Y2V2 +Y4(V2 V4)
V3 _Vl) +Y5(V V4)
4 _Vz) +Y5( ) +Y6V4
Vi-Vs)
~Y, ~Y, 0
Y, +Y, +Y 0 -Y,
0 Y,+Y, -V
-Y, Y: Y, + Y +Y
—gm 0 0
l,_ IY]
NDF ===




NDF calculation using voltages ratio

B .Tsl T I ?° Yl(vl _Vz) +Ya(Vl V3)
@ - Yl(VZ _Vl) +Y,V, +Y4(V2 V4)
Y1[] \ib []Ys Y3(V3 _Vl) +Y5(V3 _V4)
vV () l Y.V, -V,) +Y,(v,-V,) 4V,
2 — o v, -V,)
" /ﬁ, vm(V, -V,)
Y2 Ys
Y, +Y, -, -y, 0 0
_Yl Y1+Y2 +Y4 0 _Y4 0
—Y; 0 Y, + Y ~Y, 1
0 —Y4 —Y5 Y4+Y5+Y6 1
| vim —VMm O 0 O
’ NDF = Y& = M
By Cramer’s Rule we get: =y ‘ ‘
b (vm=0)

o O O o o

<

w

[



Cramer's Rule (from Wolfram Math World)

Given a set of linear equations

ayx+hv+ez=d
arx+hy+eorz=d (1)

B3 x+hyv+oiz=d.

consider the determinant

ap oo
n

dax b oo (2)

ay by o3

MNow multiply D by x, and use the property of determinants that multiplication by
a constantis equivalent to multiplication of each entry in a single column by that
constant, so

a; oo arx oo
xlay B oa|l=|laxx b oo |, (3)
dy by o dyx by oo

Another property of determinants enables us to add a constant times any
column to any colurmn and obtain the same determinant, so add y times
column 2 and = times column 2 to column 1,

arx+by v+ by d oo
xD=|lamax+bv+caz b oa|=|dh b 2. (4)

G x+hv+eiz oo dy by oo



Ifd = (), then (4) reduces to x D = (), so the systemn has nondegenerate
solutions (i.e., solutions other than (0, 0, 0)) anly if 2 = 0 (in which case there
is a family of solutions). Ifd + 0 and D = 0, the system has no unique solution.
Ifinstead d # 0 and D # 0, then solutions are given by

-|I'|!I| .Ir.?‘| i
1.’!':. I.J‘:u [

{'J'_:l I.J‘_:l 3 EE}

=

and similarly for

ayp d oy

s iy oy

V=
' dy dy o3 (6)

D
a; B

dr b

£

(7)

ay by iy

D

This procedure can be generalized to a set of » equations so, given a system of
n linear equations

dyy diz o dig X d

(8)

] dy2 0 gy Xy ":-{u



let

iz oo dig

o
I

(9)

Ay y2 o0 Gy

Ifd = (), then nondegenerate solutions existonlyif D = 0. fd £ 0 and D =0,
the system has no unigque solution. Otherwise, compute

dapy o dyge-n A dpgeny o Ay
Dl[E

&l

(10)

L T ":-{u Auie+ly "7 fyg

Then x; = Dy /Dfor | =k = n. Inthe three-dimensional case, the vector
analog of Cramer's rule is

(AxB)=(CxD) = (A-B=D)C - (A-B=xC)D. (11)



NDF Stability Analysis
of Linear Networks from
Network Admittances
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Relationship Between Network Determinants and Admittance

Add current source I
In parallel with dependent
Source and measure V,

Admittance = I./V
Y, Y
[YIIVI = 1]
Y, +Y, -V, Y, 0 [v,] [ 0]
-Y, Y, +Y,+Y, O -Y, V.| | O
gm-Y, —gm  Y,+Y, -y, (V.| | I,
- —gm gm-Y, =Ys Y+ Ys Y |V, [
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Relationship Between Network Determinants and Admittance

e First redefine the node voltages in terms of V
where V, = V-V,
e SO, column 3 Iin the matrix becomes the sum of

columns 3 and 4, and column 4 changes sign as
shown below.

Y +Y, -V, -, 0 'V, 0
=Y, Y, +Y,+Y, =Y, Y, V, 0

gm_Ys —gm Y3 Y5 V3 ) Is

. —gm gm-Y, Y, +Yy =Y, -Ys—=Yg V.| |-
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Relationship Between Network Determinants and Admittance

* Next, we replace row 3 in the matrix with the sum of rows 3
and 4 to eliminate |, on the right side.

Y, +Y, -V, Y, 0 'V, 0
-Y, Y 4Y,+Y, -, Y, V,| | 0
-y, Y, Y4V +Y,  -Y,-Y, |V, | | o

| —gm gm-Y, Y, + Y =Y, =Ys=Ye Vo] |-l

e And multiplying row 4 by -1,

_Y1+Y3 -Y, -Y, 0 V, 0
=Y, Y +Y,+Y, -Y, Y, V, B 0
-Y, -Y, Y, +Y, +Yy =Y, =Y, [V, 0

. gm —gm+Y, -Y, =Y, Y4+Y5+Y6__VS_ _IS_
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Relationship Between Network Determinants and Admittance

 Now using Cramer’s rule.

Y, +Y, -Y, Y,
.| =Y, Y, +Y,+Y, -Y,
-Y, -Y, Y, +Y, + Y
q

* Next, we recognize that the determinant in the
numerator Is equal to the determinant of the
original network with nodes 3 and 4 shorted (i.e.

dependent source is shorted)...
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Relationship Between Network Determinants and Admittance

 Original network with nodes 3 & 4 shorted

l "1 3

Y3
Y [] _Yl +Y3 _Yl _Y3 __Vl_ _Il_
=Y, Y HY, +Y, =Y, Vo =11
2 @— Y, i _Y3 —Y4 Y3_|_Y4+Y6__V3— —I3—
Y;Ll YjL]7
| ., M
» Therefore the admittance, A:V N
S ‘ (V;&V,shorted )

* Note that this shorted network is passive (no RHP zeroes),
but is not of the same order as the original network.
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Relationship Between Network Determinants and Admittance

* Next, we calculate admittance (at the same nodes) from a
known stable operating point (gm=0 for example).

AO _ Is _ ‘Ystable‘ A= Is — ‘Y‘
Vs ‘Ystable (V3&V,shorted ) VS ‘Y (V3 &V,shorted )
e Since, |Ystable (V,&V,shorted ) | (V;&V,shorted )

* Because the dependent source has been shorted.

A_ I

NDF =—=
AO ‘Ystable‘
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Appendix 5

Rigorous Linear
Stability Analysis

Wayne Struble
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Rigorous Linear Stability Analysis

(networks with many dependent sources)

« Consider the network with many dependent sources (i.e.
transistors) and matrix equation shown below.

i_l, Vi The perturbation nodes are chosen
—> 0O : .
i, v, :I_ at the outputs of all active devices
— 0 M-node

I3 Vs linear B 2l -

>
i O Vv, Network Yu Yin |V |
C With . . . .
. N/2 active

1 Vi ' devices Yn1 Yon Il Va I,
? C v, L AL

Ground
(datum node)
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Rigorous Linear Stability Analysis

From network theory, any node contained within a network can be
designated as the datum node (ground node) without affecting the
network (and thus the network determinant).

Iy Vi Iy Vi-V,
—> O —> O
I, v, n— 7 Vo~V n_
—> O M-node —> O M-node
I3 o V3 linear I3 V3V, linear
iy V, Network Equivalent i, V-V, Network
— O with Network » O with

| N/2 active | =l N/2 active
i Vo1 _ devices i vy _ devices
— — n-1 Yn
Ih C vV, n_ i C z_
- O — $

. . Vi I
Ground $ T-(|1+|2+___ i) Ground O
(datum node) (datum node) Firiphn iy
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Rigorous Linear Stability Analysis

* The indefinite [Y] matrix is defined as:

Zyij _Zyil _Zyin R
i=1 i=1

i=1j=1

L k=1
_Zylj Yu Yin _ I,
j=1 )
n V. I
o Z ynj Y1 o Yon - n -
1= _

» Note that the datum node (ground) contribution to the indefinite network
matrix is a linear summation of rows and/or columns of the definite [Y]

matrix.
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From The Properties of Determinants

» 1. Switching two rows or columns changes the sign.

» 2. Scalars can be factored out from rows and columns.

« 3. Multiples of rows and columns can be added together without
changing the determinant's value.

« 4. Scalar multiplication of a row by a constant C multiplies the
determinant by C.

e 5. A determinant with a row or column of zeros has value O.

« 6. Any determinant with two rows or columns equal has value O.
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Rigorous Linear Stability Analysis

» S0, if one stimulates nodes n and n-1 with external perturbation current

source i, (and all other node current stimulations at are zero), we
get...

i,=0 v, 1,=0 _v,-v
._> C _» C 1 Yn
1,=0 v 1,=0 TV,-v
_2—5 O0—= “‘_'I_ M-node = O0— :|_ M-node
3= V3 linear 5=0  _v,-v linear
— —} n
i,=0 o Vy Network Equivalent i,=0 V4'Vn Network
— O . with Network — O with

_ N/2 active —_— N/2 active

. devices . devices

Ground $ T (iyF+ip*...0)
(datum node) " Ground

(datum node) To




Rigorous Linear Stability Analysis

* The network [Y] matrix equations are:

Indefinite [Y] matrix

Zyij —Zyil _Zyi,n—l _zyi,n
i=1j=1 i=1 i=1 i=1 Ty -
- ; Yij Yu T Yina Yin (v,—Vv,)
- Z yn—l,j Yn-11 Yn-1n1 Yn-1n (Vn—l — Vi )
j=t 0
- Z ynj Y1 yn,n—l Yon
=1 J
definite [Y] matrix
Zyij _ZYil _Zyi,n—l _
i=1j=1 i=1 i=1 -V,
- Z Y1 Yu Yin (v, — V") — 0
=t : :
. ' W, —v)| i
- Z yn—l,j Yn11 Y1 ' 1
L =l i

Il:o. Vi1-Vj
,=0 T V,-v
— O— - M-node
150 _v,;-v, linear
i 4:0' v Ry Network
- with
: N/2 active
. devices
Ground

(datum node)

To
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Rigorous Linear Stability Analysis

* Partition the definite [Y] matrix as follows:

Zyij _Zyil _Zyi,n—l
i-1 i-1

i=1j=1
- Z Yij Yu Yina — Av | By
- .| [l
- Z yn—l,j Yn—1,1 yn—l,n—l
i=1
e Where: - -
Zyij _Zyil _Zyi,n—z [N ]
i=1j=1 i=1 i=1 _ Z Yina
C i=1
Ad=| TEY e Y | B| Ve
N Z Yn-2,i Yn-21 Yn-2n-2 _ Yo-2n1 _
L=l 1
[CN ] = |~ Z yn_l,j yn_l,l ot yn_l’n_z [DN ] = [yn—l,n—l]
j=1
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Rigorous Linear Stability Analysis

* Now, solving for the admittance i,_,/(v,.;-V,):

AN ‘ BN V1 - 2 Where: " _:/)_
Cy ‘ D, {Vj_{lj M]= 15 ”

Vo ]= (v Vi)
[Iz]: [in—l]

« Expanding gives: (V"Z_V.n)-
A+ [5, 1] 0 b0
Cy M1+ Dy Vv, ]=11.] =0 g

* Solve for [V,] and substitute: 120 O
[Vl] = _[AN ]_1[BN ][Vz] Ih.1 SV

[IZ]: in—l — D _ C -1 B
Vil Ty AT

(datum node)

“‘_'I_ M-node

linear

;I_ Network
with

N/2 active
devices

A J; TO
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Rigorous Linear Stability Analysis

The result, [Dy]-[ChJ[AN BN IS @ scalar (1x1 matrix) so the determinant
IS equal to the value of the scalar.

1 _ [DN ]— [CN ][AN ]_1[BN ]

(Vn—l_vn)
Therefore:
| 1
v P CeA

From the theory of determinants of a subdivided matrix ref [10]:

A|B
C|D
The admittance below is related to the full network determinant:
I — 81 — ‘Y‘ Where |Ay| may have RHP zeroes due to other active
(V _v ) ‘A ‘ transistors resulting in pole-zero cancellation in [Y|/|Ayl.
n-1 n N

Y |= =|A-BD"'C||D|=|D-CA"B|-|A
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Rigorous Linear Stability Analysis

* However, if we now short circuit the first perturbed nodes (at AC frequencies
only, so the transistor biases are unaffected) we get...

Partition the Network Matrix as:

il_> oY

DAV I A | By }{Vl}{ll

'3 V3V, linear il

— O Cy IDy] O] [I

4 - Network | N N 2

I—> CV4 Yn } W\ilfclh .
(N/2-1) active - 10T ]

A+ B0,

| . u _ _ 0

Ground Vn J) o .
T'('1+|2+---'n-2)

(datum node)

 This isolates, but does not change, the sub-network [A] from the full network
[Y], in affect, creating a new network [A,] that is of order 1 smaller than [Y].

[AJV]=11]
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Rigorous Linear Stability Analysis

 Remember the simplified network representation of an active transistor
(ala D.J.H. Maclean [4]).

+C vy v d) r]YOJ“ (Ya+Yb) _Yb Vi . l;
] QL e weolul
O O

(Ya +Yb )Vl _vaz = i1
(gm _Yb)vl + (Yb +Yc)V2 = i2
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Rigorous Linear Stability Analysis

» By shorting the dependent source of the active transistor model at AC
frequencies only (v,=0), we have made the transistor passive so it can
no longer contribute any RHP zeroes to the remaining network.

I_1> Y 4|_2
O | | O
+
V, Ya f- OmVi < l ) [I] Ye
O O
Iy Yy, 2
—_— r— -

O | | O
Equivalent network @ +
AC frequencies — vV, Ya

O O
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Rigorous Linear Stability Analysis

* Next, we simply repeat the procedure (perturb at a second active
transistor contained in sub-network [A,] with the first active transistor
shorted at AC frequencies)...

IZ—E O 2 :I_ M-node
Vi3 linear
i Network
”'3®Vn-z with
(N/2-1) active
devices

=

short @ AC
open at DC

v to

Equivalent i;
Network e

q

Czl _zn-z y
O-20:2 1 M-node
Vi3~V linear
Network
with
$ (N/2-1) active
devices
| .
pu

short @ AC
open at DC

e J) To
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Rigorous Linear Stability Analysis

 Partition the remaining [A,] network matrix as:

[AJVI=11] where: [~V

(V= Vo) 2= I\Vn3 = Vo
— |, . l,]= -n—3
Cya ‘ Dy Vs l, | (Vos =Vi2) | |

 Solving for the admittance [I,]/[V,]:

Results in:

[AN—l][Vl]+ [BN—l][VZ]: [O] in_3 g — ‘AN‘
[CN—l][Vl]"' [DN—l][VZ] = [Iz] (Vn—3 _Vn—Z) 2 ‘AN—l‘

» Multiplying this admittance result by the previous one we get:

M
CT AL A
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Rigorous Linear Stability Analysis

* If we continue to repeat the procedure until we have perturbed all active
transistors contained in network [Y] (and short circuited all subsequent
perturbed nodes at AC frequencies)...

* |A,| contains no RHP zeroes (all active transistors have been shorted),
so |Y|/|A;| cannot have any pole-zero cancellations.

* Now, repeat the process for the same linear network from a known
stable operating point (for normalization) and we get...
Y

stable ‘

A

Ay " 8oy " Ay =
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Rigorous Linear Stability Analysis

» Use this result to normalize and we get the Normalized Determinant
Function.

N
NDF =L _7T2

‘Ystable ‘ =1 aOi

« Where N is the number of active transistors in the linear network, a; is
the measured admittance of the it active transistor due to a perturbing
current with all previous transistors shorted at AC frequencies, and ay;
IS the measured admittance of the same transistor due to the same
perturbing current with all previous transistors shorted at AC
frequencies, where the network is operating from a known stable state.
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