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Abstract 
The purpose of this analysis is to calculate the effect that dispersiveness in a waveguide 
has on modulated signals and how to possibly compensate for certain changes from 
system to system.  For the present, the compensation of interest is the preservation of 
second-order, or parabolic effects, in modulated signals when lengths of waveguide runs 
are changed.  Changes in modulation propagate down a waveguide at the so-called 
“group velocity”.  In this paper, we will first review the expression governing the 
propagation of signals in a waveguide.  Then we will review the expression for group 
velocity.  Following that, we will derive an expression for the slope of the group delay 
time, a quantity that is related to the distortion of modulated signals as they travel down a 
waveguide.  Finally, a method for compensation is suggested for preservation of the 
transfer characteristic of a waveguide system, as other considerations require that its 
length be changed. 
 
1.  Propagation Characteristics of Waveguides 
Propagation of a single frequency signal in a uniform rectangular waveguide is governed 
by the expression: 
 
 221

cc
ωωβ −=  Equation 1

 
In this expression, c is the velocity of light in the waveguide medium, which for air is: 
 
 c = 2.998X108 meters/second.  Equation 2
 
The quantity β is the so-called propagation constant.  It is a measure of the phase shift a 
signal undergoes as it travels down a waveguide.  In the MKS rationalized system of 
units, the units of β are radians/meter.  We shall come back to the significance of β in a 
moment.  Let us now turn our attention to ω and ωc, which are generally more familiar 
than β.  These are “angular” frequencies given by: 
  
 
 

fπω 2=  Equation 3

 
and cc fπω 2= . Equation 4
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where f is the signal frequency (in Herz) and fc is the cutoff frequency of the waveguide 
mode (in Herz), which in rectangular waveguide is usually the dominant TE10 mode.  For 
this mode, the cut-off frequency is simply given by 
 
 
 a

cfc 2
=  Equation 5

 
where a is the waveguide width (in meters). 
 
Now turning our attention back to Eq. 1, and substituting Eqs. 2 and 3 for the angular 
frequencies, we obtain the expression for the propagation constant,  
 
 
 

222
cff

c
−=

πβ  Equation 6
 
This expression will be key in determining signal distortion later in this paper.  Before 
proceeding, it is interesting to point out the significance of the propagation constant, β.  It 
expresses the axial spatial variation of waves as they propagate down a waveguide.  For 
example, in the TE10 mode, the electric field in the waveguide in space and time is given 
by: 
 
 
 ( )ψβωπ

−−





= zt

a
xAEy cossin  Equation 7

 
This is based on a rectangular coordinate system shown in Fig. 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Rectangular Waveguide and Coordinate System 
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In Eq. 7, it is evident that β expresses the phase shift per unit length; ψ is an arbitrary 
phase angle depending upon the onset of time measurement.  Another way of looking at β 
is that for a waveguide length L, the total phase shift experienced by a field, or by a 
signal, is: 
 
 
 
 

θ = βL Equation 8

This phase shift is in radians and is expressed in degrees as: 
 
 
 
 
 

Lβ
π

θ
2

3600

=  
Equation 9

 
Yet another way to look at the propagation constant, β, is to consider that the guide 
wavelength, λg , is related to β, by:  
 
 
 
 gλ

πβ 2
=  Equation 10

 
The discussion beyond Eq. 6 above has been academic and has been provided to give an 
intuitive feel for the propagation constant, β.   For the problem of interest, namely the 
second-order, or parabolic, effects on a modulated signal propagating down a waveguide, 
only Eq. 6 is important. 
 
 
 
2.  Group Velocity 
The changes in modulation on a signal as it travels down a waveguide is related to the 
“group velocity”, vg.  The reason for our dwelling on the propagation constant, β, above 
has been  that the group velocity is directly related to it through the expression: 
 
 
 
 

β
ω

d
dvg =  Equation 11

 
We now proceed to derive the expression for group velocity from Eq. 11 and Eq. 6.  
Because of the form of Eq. 11, it is evident that Eq. 6 has to be inverted.  Presently, Eq. 6 
expresses β as a function of ω; to find the derivative expressed by Eq. 11, we need ω as a 
function of β.  To do so, we can manipulate Eq. 6 algebraically to obtain: 
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2222
cc ωβω +=  Equation 12

If we now take the derivative of each side of Eq. 11with respect to β, we obtain: 
 
 
 
 

β
β
ωω 222 c

d
d

=  Equation 13

 
 
 
or 
 

ω
β

β
ω 2c

d
dvg ==  Equation 14

 
Substituting Eqs. 1, 2 and 3 into Eq. 14, we obtain the expression for group velocity: 
 
 
 
 

2

1 







−=

f
f

cv c
g  Equation 15

 
 
It is to be noted that in a waveguide, the operating frequency, f, is always greater than the 
cut-off frequency, fc.  Hence, the group velocity is always less than the speed of light.  
The group velocity approaches the velocity of light as frequency increases above cut-off.  
In the special case of coaxial waveguides, the cut-off frequency is zero and the group 
velocity is constant with frequency and equal to the speed of light. 
 
But in rectangular waveguides, the group velocity is a function of frequency and not a 
constant.  This leads to the distortion of a modulated signal as it propagates down a 
waveguide.  The next section of this paper will provide a measure for this distortion. 
 
3.  Phase Velocity 
The phase velocity is the velocity at which a field component propagates.  In a 
waveguide, it is different from the group velocity.  In a coaxial line it is equal to the 
group velocity.  The phase velocity, vp, is given by the expression: 
 
 
 
 

β
ω

=pv   
Equation 16 

By combining Eqs. 1, 2 and 4 with Eq. 16, we obtain the expression for phase velocity: 
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1 







−

=

f
f

cv
c

p  Equation 17

 
Whereas the group velocity, vg, was less than the speed of light, it is evident that the 
phase velocity, vp, is greater than the speed of light since the operating frequency f is 
always greater than the cut-off frequency fc.  It is interesting to note from Eqs. 15 and 17, 
 
 2cvv pg =  Equation 18

 
It is to borne in mind that the phase velocity is the velocity at which a field component, 
such as the electric field, travels down the guide, while the group velocity is the velocity 
at which energy travels down the guide. 
 
 
4. Group Delay, Dispersion and Signal Distortion 
The expressions for propagation, group velocity and phase velocity were discussed 
above.  From these expressions, it is seen that the group and phase velocities vary with 
frequency.  In a coaxial line or in free-space wave, the group and phase velocities are 
constant with frequency, and both are equal to the speed of light.  But in waveguides, 
they vary with frequency, which means that a modulated signal, which can be thought of 
as a spectrum of frequencies, would undergo distortion, or more accurately, dispersion, as 
it travels down a waveguide.  In general, a waveguide can be regarded as a dispersive 
transmission line, whereas, a coaxial line or free space are regarded as non-dispersive. 
 
We will now derive an expression that is a measure of the dispersion a modulated signal 
would undergo as it travels down a waveguide of length L.  Toward this end, we consider 
the group delay, tg, which is the time that it takes for a change in signal to propagate.  The 
group delay is simply length divided by speed, or 
 
 

g
g v

Lt =  Equation 19

 
If we have a signal with a center frequency of  f0 and a bandwidth ∆f, and ∆f is small in 
comparison with f0, we would expect that the variation in group delay, ∆tg , over the band 
would be given by 
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f
df
dt

t
ff

g
g ∆=∆

= 0

 Equation 20

 
Substituting the expression for group velocity from Eq. 15 and taking the derivative of 
each side of Eq. 19, we obtain 
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3
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c
L

df
dt ccg  Equation 21

 
 
This expression is basically the slope of the group delay.  The group delay is directly 
proportional to the waveguide length and has a somewhat involved algebraic relationship 
to the operating frequency and the cut-off frequency.  The higher above cut-off one 
operates, the less the dispersion.  For a coaxial line, the cutoff frequency is zero and so is 
the slope of the group delay.  For a coaxial line, the group velocity is non-dispersive, i.e., 
constant.  Note that the slope of the group delay is negative.  This is it is decreasing as 
frequency increases.  This is a direct consequence of group velocity increasing as 
frequency increases.  Note that the slope is negative.  This is because the group delay is 
decreasing as frequency increases.  This is a direct consequence of group velocity 
increasing as frequency increases.   
 
To obtain the variation in group delay for a signal of center frequency f0 and a bandwidth 
∆f, one plugs in the appropriate values in Eqs. 20 and 21. 
 
 
5. Circuit Behavior 
We will now examine how the various quantities we have been discussing are related to 
the circuit behavior of a waveguide.  We will concentrate on Eq. 9, which describes 
phase shift in terms familiar in circuit analysis.  Our interest is generally in modulated 
signals and these are usually narrow band, i.e., we have signals with center frequency f0 
and a bandwidth ∆f, where 
 
 0ff <<∆  Equation 22 
 
A Taylor Series Expansion of Eq. 9 takes the form: 
 
 

( ) ( ) ...........
!2
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2

2
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==

f
df
df

df
df

ffff

θθθθ  
Equation 23 
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The initial term, θ(f0), is the phase shift at the center of the band and is given by 
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Equation 24 

 
  

The first order term is given by  
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Equation 25 

 
which is obtained by taking the first derivative of Eq. 9.  The second order term is given 
by 
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Equation 26 

 
which is the second derivative of Eq. 9, i.e., the first derivative of Eq. 25.  So, to second 
order, the change in phase over a band centered at f0, with a bandwidth of ∆f, becomes: 
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Equation 27

 
To lend this expression more physical meaning rather than just mathematical meaning, it 
is instructive to substitute Eq. 15 and 19 into the first-order term and Eq. 21 into the 
second order term.  This results in the following expression: 
 
 ( )200 180360 f

df
dt

ft g
g ∆+∆=∆θ  

 
Equation 28 
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The first-order, or linear term, term is directly proportional to the group delay time, and 
the second-order, or parabolic, term is proportional to the slope of the delay time.   
 
The key quantity for the parabolic behavior is evidently the first derivative of the group 
delay, what we have called the time delay slope.  This has appeared when we considered 
a somewhat intuitive treatment of group velocity and group delay and made the leap that 
the time delay slope would be related to preserving the character of a modulated signal as 
it propagates down a waveguide.  This slope is proportional to the length, L, of a 
waveguide of interest.  It will be useful to define a new quantity, τ, as the group delay for 
a unit length of waveguide.  We will use 1 meter as the unit length, since we are working 
in the MKS Rationalized System of Units, and since we wish to avoid any confusion or 
errors due to unit conversions.  With τ being the group delay per unit length, we will use 
the term τ’ to express its derivative with frequency.  So, we have: 
 
 

df
dττ ='   

Equation 29 

 
Accordingly, Eq. 28 becomes: 
 
 ( )







 ∆+∆=∆ 20 '

2
1360 ffL ττθ  

 
Equation 29 

 
 
6. Tables of Calculations 
Based on the above analysis, tables have been prepared in the form of a Microsoft Excel 
worksheet.  The file, named “Group Delay.xls”, provides calculations of group velocity 
vg, unit delay time, τ, and unit delay time slope, τ’.  These parameters can be calculated 
for standard millimeter waveguide sizes by entering the WR designation and the 
operating frequency.  An additional part to the table has been included so that these 
parameters may also be obtained for non-standard or oversized waveguides.  
 
 
 
7.  Consideration of a Specific Problem 
Consider the specific problem of a waveguide system with an equalizer that has been 
specifically designed to compensate for the parabolic behavior of the length of 
waveguide incorporated.  The equalizer likely represents a considerable investment in 
comparison to the waveguide run.  If system changes dictate that the length of the 
waveguide run be changed, then it would be desirable to somehow preserve the parabolic 
behavior of the waveguide system in order to utilize the existing equalizer.  Since the 



DR. PAUL CHORNEY 
INTERNATIONAL CONSULTANT 
 
MARKETING/APPLICATIONS/TRAINING 
RF/MICROWAVES/MILLIMETER WAVES 
  

  
 

 
1191E. VERSAILLES DR. 

TUCSON, AZ 85737-5844 
  

  
 

PHONE: 520-825-8502  
FAX: 520-825-8503 

E-MAIL: CHORNEYS@AOL.COM  
  

 

 
parabolic behavior is related to the cut-off frequency of the waveguide, it is conceivable 
that a change in waveguide size over part of the run could preserve the overall behavior. 
 
a) Let La be the original waveguide length and Lb be the new waveguide length. 
b) Let fc1 be the cut-off frequency of the original waveguide and fc2 be the cutoff 

frequency of a larger waveguide size to be spliced into the total run to increase it. 
c) Let L1 be the new length of waveguide with cut-off fc1 and L2 be the new length of 

waveguide with cut-off frequency fc2. 
d) It is clear that L2 = Lb – L1 
e) Let τ1' be the unit delay time slope for the waveguide section with cut-off frequency 

fc1, and τ2' be that for the waveguide section of cut-off frequency, fc2. 
f) To preserve the parabolic behavior from the first system to the next, we must have the 

overall derivative 
df
dt g  preserved, which implies that: 

 
 ( )1

/
21

/
1

/
1 LLLL ba −+= τττ  Equation 28 

 
 
 
or ( )/

1
/
2

/
1

/
2

1 ττ
ττ

−
−

= ab LLL  
 
Equation 29 

 
Assuming: 
a) A center frequency of 60 GHz,  
b) A length of 17' for La, 
c) A length of 21' for Lb, 
d) A waveguide size of WR-15 for La and L1, and  
e) A waveguide size of WR-19 for for L2, 
We obtain from Eq. 29 and the Excel spreadsheet: 
 
 
 

( )05885.02458.
1705885.2102458.

1 −
×−×

=L   
Equation 30 

From which it follows that  
 '13.14

03427.
0004.15162.

1 =
−

−
=L   

Equation 31 
 
 
 
and '87.613.14212 =−=L  Equation 32 
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Thus, if the system length were to be be increased from 17' to 21', the way to preserve the 
parabolic behavior would be to subtract 3' of WR-15 waveguide and add in a 7' section of 
WR-19 waveguide. 
 


