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ABSTRACT OF VOLUMES I AND ]a

This book presents design techniques for a wide variety of low-pass,

band-pass, high-pass, and band-stop microwave filters; for multiplexers;

and for certain kinds of directional couplers. The material is organized

to be used by the designer who needs to work out a specific design quickly,
with a minimum of reading, as well as by the engineer who wants a deeper

understanding of the design techniques used, so that he can apply them to

new and unusual situations.

Most of the design procedures described make use of either a lumped-

element low-pass prototype filter or a step-transformer prototype as a

basis for design. Using these prototypes, microwave filters can be ob-

tained which derive response characteristics (such as a Tchebyscheff

attenuation ripples in the pass band) from their prototype. Prototype

filter designs are tabulated, and data is given relevant to the use of

prototype filters as a basis for the design of impedance-matching networks

and time-delay networks. Design formulas and tables for step-transfor,.er

prototypes are alsc given.

The design of microwave filter structures to serve as impedance-
matching networks is discussed, and examples are presented. The techniques

described should find application in the design of impedance-matching net-
works for use in microwave devices such as tubes, parametric devices,

antennas, etc., in order to achieve efficient broad-band operation. The

design of microwave filters to achieve various time-delay (or slow-wave)

properties is also discussed.

Various equations, graphs, and tables are collected together relevant

to the design of coaxial lines, strip-lines, waveguides, parallel-coupled

lines between common ground planes, arrays of lines between ground planes,

coupling and junction discontinuities, and resonators. Techniques for

measuring the Q's of resonators and the coupling coefficients between

resonators are also discussed, along with procedures for tuning filters.

Equations and principles useful in the analysis of filters are collected
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together for easy reference and to aid the reader whose bakgrcund for

the subject matter of this book may contain some gaps.

Diroctionot filters have special advantages for certain applica-

tions, and are treated in detail in a separate chapter, as are high-

power filters.-, Tunable filters of the kind that might be desired for

preselector applications are also treated. Both mechanically tunable

filters and filters using ferrimagsnetic resonatorq, which can be tuned

by varying a biasing magnetic field, are discussed.
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PMFA E TO VOWMES I AND 11

The organization of this book has three general objectives. The

first objective is to present fundamental concepts, techniques, and data

that are of general use in the design of the wide range of microwave

structures discussed in this book. The second objective is to present

specialized data in more or less handbook form so that a designer can

work out practical designs for structures having certain specific con-

figurations, without having to recreate the design theory or the deriva-

tion of the equations. (However, the operation of most of the devices

discussed herein is sufficiently complex that knowledge of some of the

basic concepts and techniques is usually important.) The third objective

is to present the theory upon which the various design procedures are

based, so that the designer can adapt the various design techniques to

new and unusual situations, and so that researchers in the field of

microwave devices may use some of this information as a basis for deriv-

ing additional techniques. The presentation of the material so that it

can be adapted to new and unusual situations is important because many

of the microwave filter techniques described in this book are potentially

useful for the design of microwave devices not ordinarily thought of as

having anything to do with filters. Some examples are tubes, parametric

devices, and antennas, where filter structures can serve as efficient

impedance-matching networks for achieving broad-band operation. Filter

structures are also useful as slow-wave structures or time-delay struc-

tures. In addition, microwave filter techniques can be applied to other

devices not operating in the microwave band of frequencies, as for

instance to infrared and optical filters.

The three objectives above are not listed in any order of importance, nor

is this book entirely separated into parts according to these objectives.

However, in certain chapters where the material lends itself to such

organization, the first section or the first few sections discues general

principles which a designer should understand in order to make beat use

of the design data in the chapter, then come sections giving design data
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for specific types of structures, and the end of the chaptcr discusses

the derivations of the various design equations. Also, at numerous places

cross references are made to other portions of the book where information

useful for the design of the particuler structure under consideration can

be found. For example, Chapter 11 describes procedures for measuring the

unloaded Q and external Q of resonators, and for measuring the coupling

coefficients between resonators. Such procedures have wide application

in the practical development of many types of band-pass filters and

impedance-matching networks.

Chapter 1 of this book describes the broad range of applications for

which microwave filter structures are potentially useful. Chapters 2

through 6 contain reference data and background information for the rest

of the book. Chapter 2 summarizes various concepts and equations that

are particularly useful in the analysis of filter atructures. Although

the image point of view for filter design is made use of only at certain

points in this book, some knowledge of image design methods is desirable.

Chapter 3 gives a brief summary of the image design concepts which are

particularly useful for the purposes of this book. Chapters I to 3 should

be especially helpful to readers whose background for the material of this

book may have some gaps.

Most of the filter and impedance-matching network design techniques

described later in the book make use of a low-pass prototype filter as a

basis for design. Chapter 4 discusses various types of lumped-element,

low-pass, prototype filters, presents tables of element values for such

filters, discusses their time-delay properties, their impedance-matching

properties, and the effects of dissipation loss upon their responses. In

later chapters these low-pass prototype filters and their various proper-

ties are employed in the design of low-pass, high-pass, band-pass, and

band-stop microwave filters, and also in the design of microwave impedance-

matching networks, and time-delay networks.

Various equations, graphs, and tables relevant to the design of

coaxial line, strip-line, waveguide, and a variety of resonators, coupling

structures, and discontinuities, are summarized for easy reference in

Chapter S. Chapter 6 discusses the design of step transformers and pre-

sents tables of designs for certain cases. The step transformers in

Chapter 6 ore not only for use in conventional impedance-transformer



applications, but also for use as prototypes for certain types of band-

pass or pseudo high-pass filters discussed in Chapter 9.

Design of low-pass filters and high-pass filters from the semi-

lumped-element point of view are treated in Chapter 7. Chapters 8, 9,

and 10 discuss band-pass or pseudo-high-pass filter design using three

different design approaches. Which approach is best depends on the type

of filter structure to be used and the bandwidth rejuired. A tabulation

of the various filter structures discussed in all three chapters, a

summary of the properties of the various filter structures, and the

section number where design data for the various structures can be found,

are presented at the beginning of Chapter 8.

Chapter 11 describes various additional techniques which are useful

to the practical development of microwave band-pass filters, impedance-

matching network&, and time-delay networks. These techniques are quite

general in their application and can be used in conjunction with the

filter structures and techniques discussed in Chapters 8, 9, and 10, and

elsewhere in the book.

Chapter 12 discusses band-stop filters, while Chapter 13 treats

certain types of directional couplers. The TEM-mode, coupled-transmission-

line, directional couplers discussed in Chapter 13 are related to certain

types of directional filters discussed in Chapter 14, while the branch-

guide directional couplers can be designed using the step-transformer

prototypes in Chapter 6. Both waveguide and strip-line directional filters

are discussed in Chapter 14, while high-power filters are treated inChapter 15.

Chapter 16 treats multiplexers and diplexers, and Chapter 17 deals with
filters that can be tuned either mechanically or by varying a biasing

magnetic field.

It is hoped that this book will fill a need (which has become in-

creasingly apparent in the last few years) for a reference book on design

data, practical development techniques, and design theory, in a field of

engineering which has been evolving rapidly.
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CHAPTER I

50 GENMAL APPLICATIONS OF FILTER STrECIS
IN MICROWAVE GINIURING

SEC. 1.01, INTIIODUCTION

Most readers will be familiar with the use of filters as discussed

in Sec. 1.02 below. However, the potential applications of the material

in this book goes much beyond tiese classical filter apnlications to

cover many other microwave engineering problems which involve filter-type

structures but are not always thought of as being filter problems.

Thus, the purpose of this chapter is to make clear to the reader

that this book is not addressed only to filter design specialists, but

also to antenna engineeri who may need a broadband antenna feed, to

microwave tube engineers who may need to obtain broadband impedance

matches in and out of microwave tubes, to system engineers who may need

a microwave time-delay network. and to numerous others having other

special microwave circuit design problems.

SEC. 1.02, USE OF FILTEtIS FOR THE SEPARATION Oi
SUMMING Oi" SIGNALS

The most obvious application of filter structures, of course, is

for the rejection of unwanted signal frequencies while permitting good

transmission of wanted frequencies. The most common filters of this

sort are designed for either low-pass, high-pass, band-pass or band-stop

attenuation characteristics such as those shown in Fig. 1.02-1. Of course,

in the case of practical filters for the microwave or any other frequency

range, these characteristics are only achieved approximately, since there

is a high-frequency limit for any given practical filter structure above

which its characteristics will deteriorate due to junction effects,

resonances within the elements, etc.

Filters are also commonly used for separating frequencies in

diplexers or multiplexers. Figure 1.02-2 shows a multiplexer which

segregates signals within the 2.0 to 4.0 Gc band into three separate
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FIG. 1.02-2 A THREE-CHANNEL MULTIPLEXING
FILTER GROUP
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channels according to their frequencies. A well designed multiplexer of

this sort would have very low VSW at the input port across the 2.0 to

4.0 Gc input band. To achieve this result the individual filters must

be designed specislly for this purpose along with a special junction-

matching network.

Another way that diplexers or muitiplexers are often used is in the

summing of signals having different frequencies. Supposing that the

signal-flow arrowheads in Fig. 1.02-2 are_rieiversed; in this event, signals

entering at the various channels can all be joined together with negligible

reflection or leakage of energy so that all of the signals will be super-

imposed on a single output line. If signals in these various channel fre-

quency ranges were summed by a simple junction of transmission lines (i.e.,

without a multiplexer), the loss in energy at the single output line would,

of course, be considerable, as a result of reflections and of leakage out

of lines other than the intended output line.

SEC. 1.03, INIPEDANCE-V!ATCIIING NI'f.AOIIKS

Bode' first showed what the physical limitations were on the broadband

impedance matching of loads consisting of a reactive element and a resistor

in series or in parallel. Later, Fano 2 presented the general limitations

on the impedance matching of any load. Iano's work shows that efficiency

of transmission and bandwidth are exchangealle quantities in the impedbnce

matching of any load having a reactive component.

To illustrate the theoretical limitations which exist on broadband

impedance matching, consider the example shown in Fig. 1.03-1 where the

load to be matched consists

of a capacitor C and a re-

sistor R. in parallel. A

loss less impedance-matching

network is to he inserted Eq IMPEDANCE -MATCHING R0

between the generator and NETWORK

the load, and the reflec-
q LOAD

tion coefficient between Zn

the generator and the

impedance-matching net- FIG. 1.03-1 EXAMPLE OF AN IMPEDANCE-MATCHING
work is PROBLEM
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r + (1.03-1)
Z i a + R 8

The wcrk of Bode' and that of Fanot shown that there is a physical limita-

tion on what r can be as a function of frequency. The best possible

results are limited as indicated by the relation*

In 111d 1 7 (1.03-2)

Recall that for a passive circuit 0 a Fl < 1, for total reflection

1I l - 1, and that for perfect transmission Flj - 0. Thus, the larger

In 11,1'I is the better the transmission will be. But Eq. (1.03-2) says

that the ares under the curve of In IFI vs r*J can be no greater than

11 /( C, ).

If a good impedance match is desired from frequency w. to w,, best

results can be obtained if IFI -1 at all frequencies except in the band

from r'* to w,. Then in lilF • 0 at all frequencies except in the w. to

Co. band, and the available area under the in II/Fi curve can all be con-

centrated in the region where it does the most good. With this specifi-

cation, Eq. (1.03-2) becomes

.- 0

In Id -0(1.03.3)

a

and if jl[ is assumed to be constant across the band of impedance match,

I Fi as a function of frequency becomes

-ff

I -u for we a W * 6
•(..03-4)

I I 1 for 0 < co I we and w < o * (10-

This relation holds if the impedaee atcehing network is designed so that the reflectio coast-
falest bet..s.a *0 and the cireuit to the left of 0 is Fig. 1.01-1 has a11 of its sarea is

the left bell p880o.
1'3

4



Equation (1.03-4) says that an ideal impedance-matching network for

the load in Fig. 1.03-1 would be a band-pass filter structure which would

cut off sharply at the edges of the band of impedance match. The curves

in Fig. 1.03-2 show how the iFl vs w curve for practical band-pass

impedance-matching filters might look. The curve marked Case 1 is for the

impedance matching of a given load over the relativtly narrow band from
o to ob, while the curve marked Case 2 is for the impedance matching of

the same load over the wider band from a) to wd using the same number of
elements in the impedance-matching network. The rectangular Irl character-

istic indicated by Eq. (1.03-4) is that which would be achieved by an

optimum hand-pass matching filter with an infinite number of elements.*

z

AS I CAI

2

0-

0 WC Wo Wb W ,'d
RADIAN FREUENCY, w- -

FIG. 1.03-2 CURVES ILLUSTRATING RELATION BETWEEN BANDWIDTH AND DEGREE OF
IMPEDANCE MATCH POSSIBLE FOR A GIVEN LOAD HAVING A REACTIVE
COMPONENT

The work of Fano 2 shows that similar conditions apply no matter what
the nature of the load (as long as the load is not a pure resistance).

Thus, for this very fundamental reason, efficient broadband impedance-
matching structures are necessarily filter structures. In this book

methods will be given for designing impedance-matching networks using

the various microwave filter structures to be treated herein.

Simple *tahin networks can give very $reet improvements in impedance match, and as the
nmb2or of matehing elements is increased the improvement per additional element rapidly
beoemes smaller and smeller. for this reaso fairly simple matching networks con live
pearfrmsenee whie coses close to the theoret eally optimum perforsance for an infinite
nomber of impedanee-watehing elements.



SEC. 1.04, COUPLING NETWORKS FOR TUBES AND
NEGATIVE-RESISTANCE AMPLIFIERS

A pentode vacuum tube can often be simulated at its output as an

infinite-impedance current generator with a capacitor shunted across the

terminals. Broadband output circuits for such tubes can be designed as

a filter to be driven by an infinite-impedance current generator at one

end with only one reeistor termination (located at the other ead of the

filter). Then the output capacitance of the tube is utilized as one of

the elements required for the filter, and in this way the deleterious

effects of the shunt capacitance are controlled.3 Data preseisted later

in this book will provide convenient means for designing microwave broad-

band coupling circuits for possible microwave situations of a similar

character where the driving source may be reg~rded as a current or voltage

generator plus a reactive element.

In some cases the input or output impedances of an oscillator or an

amplifying device may be represented as a resistance along with one or

two reactive elements. In such cases impedance-matching filters as dis-

cussed in the preceding section arc necessary if optimum broadband perform-

ance is to be approached.

Negative-resistance amplifiers are yet another class of devices which

require filter structures for optimum broadband operation. Consider the

circuit in Fig. 1.04-1, where we shall define the reflection coefficient

at the left as

20

z, . -M 0iV

A-3l',-97

FIG. 1.04-1 CIRCUIT ILLUSTRATING THE USE OF FILTER STRUCTURES
IN THE DESIGN OF NEGATIVE-RESISTANCE AMPLIFIERS
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zi - ft0

21 + Ro (1.04-1)

and that at the right as

Z3 -Its

13 - Z +.04-2)3 z 3  + R 4

Since the intervening band-pass filter circuit is dissipationless,

i' 1F31 (1.04-3)

though the phases of F'1 and 1"3 are not necessarily the same. The available

power entering the circulator on the right is directed into the filter

network, and part of it is reflected back to the circulator where it is

finally absorbed in the termination RL ' The transducer gain from the

generator to RL is

P
S I r31

2  
(1.04-4)

avail

where P.,.jj is the available power of the generator and P is the power

reflected back from the filter network.

If the resistor II0 on the left in Fig. 1.04-i is positive, the

transdurer gain characteristic might be as indicated Ly the Case I curve

in Fig. 1.04-2. In this case the gain is low in the pass band of the

filter since I11 IFt31 is small then. However, if Ito is replaced by a

negative resistance I; -R., then the reflection coefficient at the

left becomes

Z1 -I1 o  21 ~
= - ~, -(1.04-5)

1 0

As a result we then have

Ir;! - Ir,, - (1.04-6)



C. I

CASt

06- CASE I

0 o Wb

FIG. 1.04-2 TRANSDUCER GAIN BETWEEN GENERATOR IN FIG. 1.04-1
AND THE CIRCULATOR OUTPUT
Case I is for R0 Positive while Case 2 is for R0 Replaced by
R; • -Ro

Thus, replacing R0 by its negative corresponds to 1F31 being replaced by
I"-1 " 1/'11 3 1, and the transducer gain is as indicated by the curve marked

Case 2 in Fig. 1.04-2. Under these circumstances the output power greatly

exceeds the available power of the generator for frequencies within the

pass band of the filter.

With the aid of Eqs. (1.04-1) and (1.04-6) coupling networks for

negative-resistance amplifiers are easily designed using impedance-

matching filter design techniques. Practical negative-resistance elements

such as tunnel diodes are not simple negative resistances, since they also

have reactive elements in their equivalent circuit. In the case of tunnel

diodes the dominant reactive element is a relatively large capacitance in

parallel with the negaLive resistance. With this large capacitance present

satisfactory operation is impossible at microwave frequencies unless some

special coupling network is used to compensate for its effects. In

Fig. 1.04-1, C1 and R" on the left can be defined as the tunnel-diode

capacitance and negative resistance, and the remainder of the band-pass

filter circuit serves as a broadband coupling network.

Similar principles also apply in the design of broadband coupling

networks for masers and parametric amplifiers. In the case of parametric

amplifiers, however, the design of the coupling filters is complicated

somewhat by the relatively complex impedance transforming effects of the

time-varying element.
4
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The coupling network shown in Fig. 1.04-1 is in a lumped-element

form which is not very practical to construct at microwave frequencies.

However, techniques which are suitable for designing practical microwave

filter atructures for such applications will be given in later chapters.

SEC. 1.05, TIME-DELAY NETWORKS AND SLOW-
WAVE STRUCTURES

Consider the low-pass filter network in Fig. 1.05-I(s) which has a

voltage transfer function E0, E6 . The transmission phase is defined as

E 0
" arg- radians . (1.05-1)

The phase delay of this network at any given frequency ri is

t - seconds (1.05-2)

while its group delay is

di-
t - seconds (1.05-3)

where q, is in radians and u) is in radians per second, Under different

circumstances either phase or group delay may be important, but it is

go LZ I

FIG. 1.05-1(o) LOW-PASS FILTER DISCUSSED IN SEC. 1.05



E 5t IVw/2) PlAWARS

WI

FIG. 1.05-1(b) A POSSIBLE 1Eo/E 6 ICHARACTERISTIC FOR THE FILTER IN
FIG. 1.05-I(o), AND AN APPROXIMATE CORRESPONDING
PHASE CHARACTERISTIC

group delay which determines the time required for a signal to pass

through a circuits,60

Low-pass ladder networks of the form in Fig. 1.05-1(a) have zero

transmission phase for a) a 0, and as w becomes large

' - - radians (1.05-4)
c&'_W 2

where n is the number of reactive elements in the circuit. Figure 1.05-1(b)

shows a possible IEO"'E61 characteristic for the filter in Fig. 1.05-1(a)

along with the approximate corresponding phase characteristic. Note that

most of the phase shift takes place within the pass band w - 0 toc - W .

This is normally the case, hence a rough estimate of the group time delay

in the pass band of filters of the form in Fig. 1.05-1(a) can be obtained from

That is, if there is so saplitude distortion sad 66/d is soastant egress the froqeao bead of
the slgmsl, thee the output signal will be as exact replies of the input signal but diaplaced in
tint by ad scoands.

10



n77
d 7- seconds (.55

where n is again the number of reactive elements in the filter. Of course,

in some cases t. may vary appreciably within the pasa band, and Eq. (1.05-5)

is very approximate.

Figure 1.05-2(a) shows a Live-resonator band-pass filter while

Fig. 1.05-2(b) shows a possible phase characteristic for this filter.

In this case the total phase shift from w 20 to w~* is niT radians,

A-I127-.0.

FIG. 1.05-2(a) A BAND-PASS FILTER CORRESPONDING TO THE
LOW-PASS FILTER IN FIG. 1.05-1(a)

FIG. 1.0-2(b) A POSSIBLE PHASE CHARACTERISTIC FOR THE FILTER
IN FIG. 1.05-2(a)



where n in the number of resonators, and a rough estimate of the pass-

band group time delay is

nfy
t - seconds (1.05-6)

where w. and w. are the radian frequencies of the pass-band edges.

In later chapters more precise information on the time delay character-

istics of filters will be presented. Equations (1.05-3) and (1.05-6) are

introduced here simply because they are helpful for giving a feel for the

general time delay properties of filters. Suppose that for some system

application it is desired to delay pulses of S-band energy 0.05 microseconds,

and that an operating bandwidth of 50 Mc is desired to accommodate the

signal spectrum and to permit some variation of carrier frequency. If

this delay were to be achieved with an air-filled coaxial line, 49 feet

of line would be required. Equation (1.05-6) indicates that this delay

could be achieved with a five-resonator filter having 50 Mc bandwidth.

An S-band filter designed for this purpose would typically be less than

a foot in length and could be made to be quite light.

In slow-wave structures usually phase velocity

l
v (1.05-7)10 t

or group velocity

v - (1,05-8)
ti

is of interest, where I is the length of the structure and t. and t. are

as defined in Eqs. (1.05-2) and (1.05-3). Not all structures used as
slow-wave structures are filters, but very many of them are. Some

examples of slow-wave structures which are basically filter structures

are waveguides periodically loaded with capacitive or inductive irises,

interdigital lines, and comb lines. The methods of this book should be

quite helpful in the design of such slow-wave structures which are

basically filters.

18



SEC. 1.06, GENERAL USE OF FILTER PRINCIPLES IN THE
DESIGN OF MICROWAVE COMPONENTS

As can be readily seen by extrapolating from the discussions in

preceding sections, microwave filter design techniques when used in their

most general way are fundamental to the efficient design of a wide variety

of microwave components. In general, these techniques are basic to precision

design when selecting, rejecting, or channeling of energy of different fre-

quencies is important; when achieving energy transfer with low reflection

over a wide hand is important; or when achieving a controlled time delay

is important. The possible specific practical situations where such con-

siderations arise are too numerous and varied to permit any attempt to

treat them individually herein. However, a reader who is familiar with

the principles to be treated in this book will usually have little trouble

in adapting them for use in the many special design situations he will

encounter.

13
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CHAPTER 2

SW MOMu cnwrr COMMrr AM RIPAITMG

SEC. 2.01, INTRODUCTION

The purpose of this chapter is to summarize various circuit theory

concepts and equations which are useful for the analysis of filters. Though

much of this material will be familiar to many readers, it appears

desirable to gather it together for easy reference. In addition, there

will undoubtedly be topics with which some readers will be unfamiliar.

In such cases the discussion given here should provide a brief intro-

duction which should be adequate for the purposes of this book.

SEC. 2.02, COMPLEX FREQUENCY AND POLES AND ZEROS

A"sinusoidal" voltage

e(t) - IEI1 cos (wt + P) (2.02-1)

may also be defined in the form

e(t) - He LE e'"'] (2.02-2)

where t is the time in seconds, co is frequency in rad.ians per second, and

E. -E e'd O is the complex amplitude of the voltage. The quantity E,

of course, is related to the root-mean-square voltage E by the relation

E -

Sinusoidal waveforms are a special case of the more general waveform

e(t) = IE.ie o cos (Wt + €) (2.02-3)

a R*(Ene"'] (2.02-4)

where E. * IE.We6 is again the complex amplitude. In this case

1$



p + jo (2.02-5)

&pop is the complex frequency. In this

I b general case the weveform may be a

pure exponential function as ilium-

trated in Fig. 2.02-1(a), it may
a-,a be an exponentially-varying sinusoid

FIG. 2.02.1(o) SHAPE OF COMPLEX-FREQUENCY as illustrated in Fig. 2.02-1(b),

WAVEFORM WHEN p - o + 10 or it may be a pure sinusoid if
p " j/s.

In linear, time-invariant

circuits such as are discussed in this book complex-frequency waveforms
have fundamental significance not shared by other types of waveforms.

Their basic importance is exemplified by the following properties of

linear, time-invariant circuits:

(1) If a "steady-state" driving voltage or current of complex

frequency p is applied to a circuit the steady-state
response seen at any point in the circuit* will also
have a complex-frequency waveform with the same frequency

p. The amplitude and phase angle will, in general, be
different at different points throughout the circuit.
But at any given point in the circuit the response ampli-

tude and the phase angle are both linear functions of
the driving-signal amplitude and phase.

(2) The vsrious possible natural modes of vibration of the

circuit will have complex-frequency waveforms. (The
natural modes are current and voltage vibrations which
can exist after all driving signals are removed.)

The concepts of impedance and transfer functions result from the

first property listed above, since these two functions represent ratios
between the complex amplitudes of the driving signal and the response.

As a result of Property (2), the transient response of a network will

contain a superposition of the complex-frequency waveforms of the various
natural modes of vibration of the circuit.

The impedance of a circuit as a function of complex frequency p will

take the form

Usless stated otherwise., linear, tis-iavsriast sirvuit will be ussrstid.
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CrE AsP a + as-1 p j ' +  a' ap + a 0
Z(p) .1-+. (2.02-6)

I, bip . + b, 1pa-
1 + ... + b1p + ba

By factoring the numerator end denominator polynomials this may be
written as

/a) (p - PI) (P - p3 ) (p - p')
Z(p) - (p - P')(p - P4)(p - P') . (2.02-7)

At the frequencies p p P. P3 ' PS ... etc., where the numerator polynomial

goes to zero the impedance function will be zero; these frequencies are
thus known as the zeros of the function. At the frequencies p a P2, P4.

P 6 , ... , etc., where the denominator polynomial is zero the impedance

function will be infinite; these

frequencies are known as the poles

of the function. The poles and

zeros of a transfer function are

defined in a similar fashion.

A circuit with a finite num-
ber of lumped, reactive elements

will have a finite number of poles

and zeros. However, a circuit -- SU

involving distributed elements FIG. 2.02-1(b) SHAPE OF COMPLEX-FREQUENCY
(which may be represented as an WAVEFORMIHEN p a a + ico
infinite number of infinitesimal ANDa < 0

lumped-elements) will have an

infinite number of poles and zeros.

Thus, circuits involving traasmission lines will have impedance functions

that are transcendental, i.e., when expressed in the form in Eq. (2.02-7)

they will be infinite-product expansions. For example, the input impedance

to a lossless, short-circuited transmission line which is one-quarter wave-

length long at frequency co may be expressed as

A~P) a Z, tanh(2'w)

a Zo wp ( 2k - 1(p + j2kw o] 1p - j2k w. -( 2 02 8
2w 2A )[-r(2 ~,P + j(2k - )] (P - (2k - 1)03(1 28



where Z0 is the characteristic impedance of the line. This circuit is

seen to have poles at p - *j(2k - 1)w, and zeros at p * 0 and tj2k Of,

where k - 1, 2, 3 ....

liegarding frequency as the more general p - a, + joi variable instead

of the unnecessarily restrictive jeo variable permits a much broader point

of view in circuit analysis and design. Impedance and transfer functions

become functions of a complex variable (i.e., they become functions of

the variable p = a + jw) and all of the powerful tools in the mathematical

theory of functions of a complex variable become available, It becomes

very helpful to define the properties of an impedance or transfer function

in terms of the locations of their poles and zeros, and these poles and

zeros are often plotted in the complex-frequency plane or p-plane. The

poles are indicated by crosses and the zeros by circles. Figure 2.02-2(a)

shows such a plot for the lossless transmission line input impedance in

L'q. (2.02-8) while Fig. 2.02-2(0) shows a sketch of the shape of the

magnitude of this function for p z j(,. The figure also shows what happens

to the poles and zeros if the line has loss: the poles and zeros are all

moved to the left of the j o axis, and the IZ(j)l characteristic becomes

rouinded off.

The concepts of complex frequency and poles and zeros are very helpful

in network analysis and design. Discussions from this point of view will

be found in numerous books on network analysis and synthesis, including

those listed in References I to 5. Poles and zeros also have an electro-

static analogy which relates the magnitude and phase of an impedance or

transfer function to the potential and flux, respectively, of an analogous

electrostatic problem. This analogy is useful both as a tool for mathe-

matical reasoning and as a means for determining magnitude and phase by

measurements on an analog setup. Some of these matters are discussed in

References 2, 3, 6, and 7. Further use of the concepts of complex fre-

quency and poles and zeros will be discussed in the next two sections.

SEC. 2.03, NATURAL MODES OF VIBRATION AND THEIR RELATION
TO INPUT-IMPEDANCE POLES AND ZEROS

The natural modes of vibration of a circuit are complex frequencies

at which the voltages and currents in the circuit can "vibrate" if the

circuit is disturbed. These vibrations can continue even after all

driving signals have been set to zero. It should be noted that here the

i5



P-PANIWITHOUT 

LOSS -

P-PLANE W;T14 LINE LOSS

-Io (a) (b)

FIG. 2.02.2 THE LOCATIONS OF THE POLES AND ZEROS OF A SHORT-CIRCUITED
TRANSMISSION LINE WHICH IS A QUARTER-WAVELENGTH LONG WHEN
p 

"'The Magnitude, of the Input Impedance for Frequencies p -jco is also
Sketched

word vibration is used to include natural modes having exponential wave-
forms of frequency p - as well as oscillatory waveforms of frequency
p X or + )

Suppose that the input impedance of a circuit is given by the function

E P P,) (' - P,) (P - P)...
/(P) .7 . (2. 03-1)1 (P -p.) (p - P4 ) (p - P6)..

Rearranging Eq. (2.03-1),

I IZ(p) .(2.03-2)



If the input terminals of this circuit are open-circuited and the circuit

is vibrating at one of its natural frequencies, there will be a complex-

frequency voltage across Z(p) even though I - 0. By Eq. (2.03-2) it is

seen that the only way in which the voltage E can be non-zero while'Z I 0

is for Z(p) to be infinite. Thus, if Z(p) is open-circuited, natural

vibration can be observed only at the frequencies p2 , P4 , p6, etc., which

are the poles of the input impedance function Z(p). Also, by analogous

reasoning it is seen that if Z(p) is short-circuited, the natural fre-

quencies of vibration will be the frequencies of the zeros of Z(p).

Except for special cases where one or more natural modes may be

stifled at certain points in a circuit, if any natural modes are excited

in any part of the circuit, they will be observed in the voltages and

currents throughout the entire circuit. The frequency p. a 0', + jW. of

each natural mode must lie in the left half of the complex-frequency

plane, or on the jw axis. If this were not so the vibrations would be

of exponentially increasing magnitude and energy, a condition which is

impossible in a passive circuit. Since under open-circuit or short-

circuit conditions the poles or the zeros, respectively, of an impedance

function are natural frequencies of vibration, any impedance of a linear,

passive circuit must have all of its poles and zeros in the left half

plane or on the je axis.

SEC. 2.04, FUNDAMENTAL PROPERTIES OF TRANSFER FUNCTIONS

Let us define the voltage attenuation function E /,EL for the network

in Fig. 2.04-1 as
S c(p - p) )(p -. P3) (p - Ps) -'

T(p) E " (P - P,) (P - P4) (P -P) ... (2.04-1)

a-Na?-4

FIG. 2.04.1 NETWORK DISCUSSED IN SECTION 2.04
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where c is a real constant and p is the complex-frequency variable. We

shall now briefly summarize some important general properties of linear,

passive circuits in terms of this transfer function and Fig. 2.04-1.

(1) The zeros of T(p), i.e., PP, P3V PS .... are all fre-
quencies of natural modes of vibration for the circuit.
They are influenced by all of the elements in the
circuit so that, for example, if the value for ft or
RL were changed, generally the frequencies of all the
natural modes will change elso.

(2) The poles of T(p), i.e., Ps' P4V P6 . . . .. along with
any poles of T(p) at p - 0 and p - O are all frequencies
of infinite attenuation, or "poles of attenuation."
They are properties of the network alone and will not
be changed if Pt or RL is changed. Except for certain
degenerate cases, if two networks are connected in
cascade, the resultant over-all response will have the
poles of attenuation of both component networks.

(3) In a ladder network, a pole of attenuation is created
when a series branch has infinite impedance, or when
a shunt branch has zero impedance. If at a given fre-
quency, infinite impedance occurs in series branches
simultaneously with zero impedance in shunt branches,
a higher-order pole of attetuation will result.

(4) In circuits where there are two or more transmission
channels in parallel, poles of attenuat'ion are created
at frequencies where the outputs from the parallel
channels have the proper magnitude and phase to cancel
each other out. This can happen, for example, in
bridged-T, lattice, and parallel-ladder structures.

(S) The natural modes [zeros of T(p)] must lie in the left.
half of the p-plane (or on the jw axis if there are
no loss elements).

(6) The poles of attenuation can occur anywhere in the
p-plane.

(7) If E is a zero impedance voltage generator, the zeros
of in Fig. 2.04-1 will be the natural frequencies
of vibration of the circuit. These zeros must there-
fore correspond to the zeros of the attenuation function
T(p). (Occasionally this fact is obscured because in
.some special cases cancellations can be carried out be-
tween coincident poles and zeros of T(p) or of Zia.
Assuming that no such cancellations have been carried
out even when they ere possible, the above statement
always holds.)
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(8) If the zero impedance voltage generator EI were replaced
by an infinite impedance current generator I' then the
natural frequencies of vibration would correspond to the
poles of Z. ._ edefining T(p) as T'(p) ;'IS/EL, the
zeroa of TIp) would in this case still be the natural
frequencies of vibration but they would in this case be
the same as the poles of Z,.

Let us now consider some examples of how some of the concepts in the

statements itemized above may be applied. Suppose that the box in

Fig. 2.04-1 contains a lossless transmission line which is one-quarter

wavelength long at the frequency (,0' Let us suppose further that

Hf uR 0 Z0 , where Z0 is the characteristic impedance of the line.

Under these conditions the voltage attenuation function T(p) would have

a p-plane plot as indicated in Fig. 2.04-2(a). Since the transmission

line is a distributed circuit there are an infinite number of natural

iw
etc.

0 j6 W0
% o is-a a°

T(p) 0 J41w0
EL

p-PLAN I o

ALL POLES 0 Z* o
AT INFINITY

0

-0 2 r (( Cb)

o -I4Go

etc.JW A-352 '-S

FIG. 2.04-2 TRANSFER FUNCTION OF THE CIRCUIT IN FIG. 2.04-1 IF THE BOX CONTAINS
A LOSSLESS TRANSMISSION LINE X/4 LONG AT wo WITH A CHARACTERISTIC
IMPEDANCE Zo ,d Rg * RL
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modes of vibration, and, hence there are an infinite array of zeros to

T(p). In all impedance and transfer functions the number of poles and

zeros must be equal if the point at p - O is included. In this case there

are no poles of attenuation on the finite plane; they are all clustered

at infinity. As a result of the periodic array of zeros, IT(ji)I has an

oscillatory behavior vs (,)as indicated in Fig. 2.04-2(b). As the value of

ji X * L is made to approach that of Z o, the zeros of T(p) will move to the

left, the poles will stay fixed at infinity, and the variations iii IT(ji)I
will become smaller in amplitude. When B. = RL ' 20, the zeros will have

moved toward the left to minus infinity, and the transfer function

becomes simply

- T(p) . 2e (2,04-2)EL

which has 1T(j',,) equal to two for all p = iw.

From the preceding example it is seen that the transcendental function

eP has an infinite number of poles and zeros which are all clustered at

infinity. The poles are clustered closest to the p - +a axis so that if

we approach infinity in that direction eP becomes infinite. If we approach

infinity via the p = -a axis eP goes to zero. On the other hand, if we

approach infinity along the p - j6) axis, eP will always have unit magnitude

but its phase will vary. This unit magnitude results from the fact that

the amplitude effects of the poles and zeros counter balance each other

along the p - j, axis. The infinite cluster of poles and zeros at infinity

forms what is called an essential singularity.

Figure 2.04-3 shows a Land-pass filter using three transmission-line

resonators which are a quarter-wavelength long at the frequency 60, and

Fig. 2.04-4(a) shows a typical transfer function for this filter. In the

example in Fig. 2.04-4, the response is periodic and has an infinite

number of poles and zeros. The natural modes of vibration [i.e., zeros

of T(p)) are clustered near the ji axis near the frequencies j 0 ' j3co0,

ji5co O, etc., for which the lines are an odd number of quarter wavelengths
long. At p - 0, and the frequencies p - j2 0., j4coo , j6co*, etc. , for which

the lines are an even number of quarter-wavelengths long, the circuit

functions like a short-circuit, followed by an open-circuit, and then

another short-circuit. In accordance with Property (3) above, this

creates third-order poles of attenuation as indicated in Fig. 2.04-4(a).
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The approximate shape of IT(i )I
is indicated in Fig. 2.04-4(b).

If the termination values B and
AL were changed, the positions of

the natural modes [zeros of T(p)]

would shift and the shape of the
RL EL pass bands would be altered.

However, the positions of the

poles of attenuation would be

unaffected [see Property (2)].

£ " aThe circuit in Fig. 2.04-3

FIG. 2.04-3 A THREE-RESONATOR, BAND-PASS is not very practical because

FILTER USING RESONATORS CON- the open-circuited series stub
SISTINGOFANOPEN-CIRCUITED in the middle is difficult to
STUB IN SERIES AND TWO SHORT-

R TSTUBISN SHT- construct in a shielded structure.CIRCUITED STUBS IN SHUNT

The filter structure shown in

Fig. 2.04-5 is much more common

and easy to build. It uses short-

circuited shunt stubs with con-

necting lines, the stubs and lines all being one-quarter wavelength long

at frequency rv0" This circuit has the same numbet of natural modes as

does the circuit in Fig. 2.04-3, and can give similar pass-band responses

for frequencies in the vicinity of p = jw0, j3&o0 , etc. However, at

p x 0, j2w 0 , j4,0 , etc., the circuit operates like three short circuits

in parallel (which are equivalent to one short-circuit), and as a result

the poles of attenuation at these frequencies are first-order poles only.

It can thus be seen that this filter will not have as fast a rate of cut-

off as will the filter in Fig. 2.04-3 whose poles on the jw axis are

third-order poles. The connecting lines between shunt stubs introduce

poles of attenuation also, but as for the case in Fig. 2.04-2, the poles

they introduce are all at infinity where they do little good as far as

creating a fast rate of cutoff is concerned since there are an equal

number of zeros (i.e., natural modes) which are much closer, hence more

influential.

These examples give brief illustrations of how the natural modes and

frequencies of infinite attenuation occur in filters which involve trans-

mission-line elements. Reasoning from the viewpoints discussed above can

often be very helpful in deducing what the behavior of a given filter

structure will be.
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T (P) - 3- 'w - - 3

I_ _ w a_9.

3-j *12w 0

ot

FIG. 2.04.4 VOLTAGE ATTENUATION FUNCTION PROPERTIES FOR THE FILTER
IN FIG. 2.04-3
The Stubs are One-Quarter Wavelength Long at Frequency wo

FIG. 2.04-5 A BAND-PASS FILTER CIRCUIT USING SHORT-
CIRCUITED STUBS WITH CONNECTING LINES
ALL OF WHICH ARE A QUARTER-WAVELENGTH
LONG AT THE MIDBAND FREQUENCY wo
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SEC. 2.05, GENERAL CIRCUIT PARAMETERS

In terms of Fig. 2.05-1, the general circuit parameters are defined

by the equations

El a AE2 + B(-1 2 )
(2.05-1)

Ii - CE 2 + D(-12)

or in matrix notation

= (2.05-2)

These parameters are particularly useful in relating the performance of

cascaded networks to their performance when operated individually. The

general circuit parameters for the two cascaded neLworks in Fig. 2.05-2

are given by

[(A , + BC) (A,B + B.D)
= I I . (2.05-3)

L(CA b D.Cb) (CBb + D.D6

T .'- --
b a.,,E~~~~~ NEWOKa e c

FIG. 2.05-1 DEFINITION OF CURRENTS rc I ---

AND VOLTAGES FOR

TWO-PORT N ETWORKS FIG. 2.05-2 CASCADED TWO-PORT NETWORKS
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By repeated application of this operation the general circuit parameters

can he computed for any number of two-port networks in cascade.

Figure 2.05-3 gives the general circuit parameters for a number of common

structures.

Under certain conditions the general circuit parameters are inter-

related in the following special ways: If the network is reciprocal

AD - BC - 1 (2.05-4)

If the network is symmetrical

A = D (2.05-5)

If the network is lossless (i.e., without dissipative elements), then

for frequencies p = jr,', A4 and D will be purely real while B and C will

le purely imaginary.

If the network in Fig. 2.05-1 is turned around, then the square

matrix in Eq. (2.05-2) is

V :B (2.05-6)

C t  Dt -

where the parameters with t subscripts are for the network when turned

around, and the par.meters without subscripts are for the network with

its original orientation. In both cases, E, and 11 are at the terminals

at the left and E2 and 12 are at the terminals at the right.

dy use of Eqs. (2.05-6), (2.05-3), and (2.05-4), if the parameters

A', R', C', D' are for the left half of a reciprocal symmetrical network,

the general circuit parameters for the entire network are

[L B1 [I+ 2B'C' )(2A 'B') (.57• (2.05-7)

"D (2C'D')(I + 28'C')
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• CO, 0,1

(a)

A I , 3.0

CoY. Ol

(b)

Zo Zo ZbA.I + V-,.za +Zb + z

z" tZb

(c)

V't Y3

C a , + Y-' D'aoI +

(d)

- Ancoshtl *ZsinhVl

TRANSMISSION LINE

sinh o1

zo

Yt s a, + 10, v PROPAGATION CONSTANT, PER UNIT LENGTH
ZO CHARACTERISTIC IMPEDANCE

(6)

FIG. 2.05-3 GENERAL CIRCUIT PARAMETERS OF
SOME COMMON STRUCTURES
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SEC. 2.06, OPEN-CIRCUIT IMPEDANCES AND
SHORT:CIRCUIT ADMITTANCES

In terms of Fig. 2.05-1, the open-circuit impedances of a two-port

network may be defined by the equations

z11 1 + z1212 a El
(2.06-1)

z2111 + z221 2 z E2

Physically, zl is the input impedance at End 1 when End 2 is open-

circuited. The quantity z12 could be measured as the ratio of the

voltage E, 12 when End I is open-circuited and current 12 is flowing in

End 2. The parameters z21 and z22 may be interpreted analogously.

In a similar fashion, the short-circuit admittances may be defined

in terms of Fig. 2.05-1 and the equations

y11E + Y1 2E2  a II

(2.06-2)

y2 1EI + Y 2 2E2 = 12

In this case Y1, is the admittance at End 1 when End 2 is short-circuited.

The parameter Y1 2 could be computed as the ratio I 'E2 when End I is

short-circuited and a voltage E2 is applied at End 2.

Figure 2.06-1 shows the open-circuit impedances and short-circuit

admittances for a number of common structures. For reciprocal networks

Z12 ' 21 and Y12 • Y2 1 " For a lossless network (i.e., one composed of

reactances), the open-circuit impedances and the short-circuit admit-

tance. are all purely imaginary for all p - jc.

SEC. 2.07, RELATIONS BETWEEN GENERAL CIRCUIT PARAMETERS
AND OPEN- AND SHORT-CIRCUIT PARAMETERS

The relationships between the general circuit parameters, the open-

circuit impedances, and the short-circuit admittances defined in

Secs. 2.05 and 2.06 are as follows:
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TRANSMISSION LINE
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coth Yt I -1
'il 2 ZI s h Y

Cc) Zo
-I coth Yll
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FIG. 2.06-1 OPEN-CIRCUIT IMPEDANCES AND
SHORT-CIRCUIT ADMITTANCES
OF SOME COMMON STRUCTURES
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2 -Y2

Z21 Y1 a 2 1

AnB -1 8 n
z21 Y 1  *21

(2.07-1)

C I - Y n o o
Z21 Y21 21

z 22 -yll1 n o

z21 Y2 1  21

Y22 .4 nlae
A1 r C n

y 00

-YI2 .z1 2  * a

00
y n

(2.07-2)
-Y21 2 "'1

21 A C n

~n
y 00

Yi I D no

Z22 D n

B n

1 2 -1

A 8

*21 21 -1 - 1(2.07-3)U-~ - -2

a l

AA so
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where

A - AD - C - it a1t -- 2

(42 1), 21
, (2.07-4)

a 1 (for reciprocal networks)

nf ftn n

2 - 1 1n- (2.07-5)As  1112 Z|Z| •(n )l "a.

N fth

n- a• - (2.07-6)
(n. )2 2,

If any of these various circuit parameters are expressed as a function

of complex frequency p, they will consist of the ratio of two polynomials,

each of which may be put in the form

polynomial - c(p - Pi ) ( p - P, ) (P - P,) ... (2.07-7)

where c is a real constant and the p. are the roots of the polynomial.

As should be expected from the discussions in Secs. 2.02 to 2.04, the

locations of the roots of these polynomials have physical significance.

The quantities on the right in Eqs. (2.07-1) to (2.07-6) have been intro-

duced to clarify this physical significance.

The symbols n.,, n., n.. and n.. in the expressions above represent

polynomials of the form in Eq. (2.07-7) whose roots are natural frequencies

of vibration of the circuit under conditions indicated by the subscripts.

Thus, the roots of n., are the natural frequencies of the circuit in

Fig 2.05-1 when both ports are short-circuited, while the roots of n.,

are natural frequencies when both ports are open-circuited. The roots

of no$ are natural frequencies when the left port is open-circuited

while the right port is short-circuited, and the inverse obtains for n .

The symbols all and a,, represent polynomials whose roots are poles of

attenuation (see Sec. 2.04) of the circuit, except for those poles of

attenuation at p = cO. The polynomial nit has roots corresponding to the

poles of attenuation for transmission to End 1 from End 2 in Fig. 2.05-1.

while the polynomial a3 1 has roots which are poles of attenuation for
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transmission to End 2 from End 1. If the network is reciprocal, a ,,

These polynomials for a given circuit are interrelated by the expressions

nonss a gee -a n12 a2 1  (2.07-8)

and, as is discussed in Ref. 8, they can yield certain labor-saving

advantages when they themselves are used as basic parameters to describe

the performance of a circuit.

As is indicated in Eqs. (2.07-4) to (2.07-6), when the determinants

A, A and A are formed as a function of p, the resulting rational

function will necessarily contain cancelling polynomials. This fact can

be verified by use of Eqs. (2.07-1) to (2.07-3) along with (2.07-8).

Removal of the cancelling polynomials will usually cut the degree of the

polynomials in these functions roughly in half. Analogous properties

exist when the network contains distributed elements, although the

polynomials then become of infinite degree (see Sec. 2.02) and are most

conveniently represented by transcendental functions such as sinh p and

cosh p. For example, for a lossless transmission line

n. • nos Z0 cosh 00 " f° P + 1 (+j(2k -l o p j(2k - 1)W])

n0 a sinh " 2aw + J2)()Ip - j2kwo)J

(2.07-9)

* a Z2 Binh -

*12 = a21 ' z0

where ZO is the characteristic impedance of the line, and w. is the radian

frequency for which the line is one-quarter wavelength long. In this case,

a12 a a21 is a constant since all of the poles of attenuation are at in-

finity (see Sec. 2.04 and Ref. 8). The choice of constant multipliers for

these "polynomials" is arbitrary to a certain extent in that any one multi-

plier may be chosen arbitrarily, but this then fixes what the other con-

stant multipliers must be.$
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SEC. 2.08, INCIDENT AND REFLECTED WAVES, REFLECTION COEFFICIENTS,
AND ONE KIND OF TRANSMISSION COEFFICIENT

Let us suppose that it is desired to analyze the transmission across

the terminals 2-2' in Fig. 2.08-1 from the wave point of view. 13y

definition

E, + E = E (2.08-1)

where E, is the amplitude of the incident voltage wave emerging from

the network, Er is the reflected voltage wave amplitude, and E is the

transmitted voltage wave amplitude

(which is also the voltage that would

£ be measured across the terminals 2-2').

If Z. -AL, there will be no reflection*

NETWORK so that E - 0 and E - E. Replacing

I iI : the network and generator at (a) in

Fig. 2.08-1 by a Thevenin equivalent

generator as shown at (b), it is

readily seen that since for Z - ZL,

E - E, then

E
90oC ' E = -- (2.08-2)

2'2

i A. 3,7-. where E., is the voltage which would

be measured at terminals 2-2' if they
FIG. 2.08-1 CIRCUITS DISCUSSED IN were open-circuited. Using Eqs. (2.08-1)

SEC. 2.08 FROM THE WAVE-
ANALYSIS VIEWPOINT and (2.08-2) the voltage reflection

coefficient is defined as

E ZL - Z'

r = -- - (2.08-3)E Zt + Z,

An analogous treatment for current waves proceeds as follows:

I. + I u 1 (2.08-4)

Note that ao reflection of tke voltage wave does mot necesarily imply maximum power transfer.
For me refleetion of the voltase wave Z8 m Z£, while for maximum power transfer Z8 a 11 where
ZI in the complex coojugate of ZL
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where 1 is the incident current amplitude, I, is the reflected current

amplitude, and I is the transmitted current amplitude which is also the

actual current passing through the terminals 2-2'. The incident current is

Iac
I. - (2.08-5)S 2

where 1 is the current which would pass through the terminals 2-2' if

they were short-circuited together. The current reflection coefficient

is then defined as

I Y -¥

- I L - -F (2.08-6)C 1. Y + Y

a L

where Y = 1,Z, and YL x I/ZL "

In addition, sometimes the voltage transmission coefficient

S 2ZLE . . 1 + F (2.08-7)
E ZL + Z

I L

is used. The corresponding current transmission coefficient is

1 2YL
I. . L 1 +  (2.08-8)S I IL Y

It will he noted that these transmission coefficients r and 'r are not

the same as the transmission coefficient t discussed in Sec. 2.10.

SEC. 2.09, CALCULATION OF THE INPUT IMPEDANCE OF
A TEHMINA'rEtD, %O-POkI' NETWOHK

The input impedance (Zi.) 1 defined in Fig. 2.09-1 can be computed

from Z 2 and any of the circuit parameters used to describe the perform-

ance of a two-port network. In terms of the general circuit parameters,

the open-circuit impedances, and the short-circuit admittances,
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(Zinig (Z~n)a

A- 3517-14

FIG. 2.09-1 DEFINITION OF INPUT IMPEDANCES
COMPUTED IN SEC. 2.09

AZ2 + B
(Zi.)l I CZ2 + D

z12 Z21S1 222 
(2.09-2)

z22 + Z 2

Y22 + Y2
(2.09-3)Y1 1 Y2 2 + }'2) - Y1 2Y21

respectively, where Y2 a i/Z,. Similarly, for the impedance (Zi.) 2 in
Fig. 2.09-1

DZ + B

Z1 + Z I (2.09-5)
2 CZ

1  + 1

-211 + (2.09-6)
Y22(Y11 + Y) - y1 2Y20

where Y, a l/Zi"

SEC. 2. 10, CALCULATION OF VOLTAGE TRANSFER FUNCTIONS

The transfer function Ia/E2 for the circuit in Fig. 2.10-1 can be

computed if any of the sets of circuit parameters discussed in Sacs. 2.05

to 2.07 are known for the network in the box. The appropriate equations are
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E AlR2  + B + 01112  + DfillSAR(2.10-1)

E2  R2

(zII + fi(z 2 2 + R2) - z1 z2 1
z 2 1 R2  

(2.10-2)

and

(YIt GI)(Y2 + G2) - Y12Y2 1

-Y21C1  
(2.10-3)

Transfer functions such as the E. E2 function presented above are

commonly used but have a certain disadvantage. This disadvantage is

that, depending on what the relative size of B, and B2 are, complete

energy transfer may correspond to any of a wide range of JE /E 2 1 values.

Such confusion is eliminated if the transfer function

E -2 T \E (2.10-4)

is used instead. TIe quantity

2,.E2 ,j - - E 8 (2.10-5)
2 It

will be refer,'ed to herein as the uvuzlIahle voltage, which is the voltage

across 12 when the entire available power of the generator is absorbed by

1 2  Thus, for complete energy transfer (E 2 ).,v.l//E2 1 regardless

E 3 I NETWORK 2 Re

-I
0, * tieI  GI * I#R|

A-I61-I1

FIG. 2.10-1 A CIRCUIT DISCUSSED IN SEC. 2.10
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of the relative sizes of As and A1. Note that (E2).,.,, has the same

phase as E .

In the literature a transmission coefficient t is commonly used where

((E2)/jEI 2 y8 \T/ (2.10-6)

Note that this is not the same as the transmission coefficients -r or

discussed in Sec. 2.08. The transmission coefficient t is the same,

however, as the scattering coefficients S,2 u S2,, discussed inSec. 2.12.

Also note that t is an output/input ratio of a "voltage gain" ratio,

while the function in Eq. (2.10-4) is an input/output ratio or a "voltage

attenuation" ratio.

SEC. 2.11, CALCULATION OF POWER THANSFEII FUNCTIONS
AND "ATTENUATION"

One commonly used type of power transfer function is the insertion

loss function

p2 0  1'2\V )21E1

P2  'R1 +Rit2/E 2  (.11

where R , R2V E. and E2 are defined in Fig. 2.10-1, and jE* E21 can be

computed by use of Eqs. (2.10-1) to (2.10-3). The quantity P2 is the

power absorbed by R2 when the network in Fig. 2.10-1 is in place, while

P20 is the power in R2 when the network is removed and R2 is connected

directly to Ri and EI'

Insertion loss functions have the same disadvantage as the E / J

function discussed in Sec. 2.10, i.e., complete power transfer may cor-

respond to almost any value of P2 /P2 depending on the relative sizes of

ft1 and R,. For this reason the power transfer function

- U- JEJ'1_'23"-" I8i1 (2.11-2)
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will be used in this book instead of insertion loss. The function P5,si6 iP 2

is known as a transducer loss ratio, where P2 is again the power delivered

to R2 in Fig. 2.10-1 while

12PVI! " 4R1  (2. 11-3)

is the available power of the generator composed of E. and the internal

resistance I1. Thus, for complete power transfer P,, - 1 regardless

of the relative size of I and R2 . Note that t in Eq. (2.11-2) is the

transmission coefficient defined by Eq. (2.10-6).

It will often be desirable to express *,.i1 /P2 in db so that

4  I0 logl 0  (P,.il P 2 ) db . (2.11-4)

Herein, when attnuation is referred to, the transducer loss (i.e.,

transducer attenuation) in db as defined in Eq. (2.11-4) will be under-

stood, unless otherwise specified.

If we define L, = 10 log1 0 P 2 0 P2 as insertion loss in db, then the

attenuation in db is

(I + B12)2

L4  Z L 1 + 0 lo1 "1 4B2 db (2.11-5)

Note that if R= I t2, then insertion loss and transducer attenuation are

the same.

If the network in

Fig. 2.11-1 contains dis-
LOSSLESS NETWORK SEPARATED

sipative elements which INTO TWO PARTS

cannot be neglected, then 0'

Lmay be computed hy u seT

of Eqs. (2.11-4), (2.11-2), E 2 I

and any of Eqs. (2.10-1)

to (2.10-3). However, if

the network in the box may (z4), Z zb z

be regarded as lossless

(i.e., without any FIG. 2.11-1 A NETWORK DISCUSSED IN SEC. 2.11
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dissipative elements), then some simplifications can be taken advantage of.

For example, as discussed in Sec. 2.05, for a dissipationless network A

and D will be purely real while B and C will be purely imaginary for fre-

quencies jw. Because of this, the form

• I [(.AR 2 + D) 2 + (2.11-6)

becomes convenient for computation. This expression applies to dissipa-

tionless reciprocal networks and also to non-reciprocal dissipationless

networks for the case of transmission from left to right. If we further

specify that Ri a R2 = R, that the network is reciprocal (i.e., AD - BC

1), and that the network is symmetrical (i.e., A D), then Eq. (2.11-6)

becomes

- = + (2. 11-7)P2 4 ,RJ '

Furthermore, it is convenient in such cases to compute the general circuit

parameters A', B', C', D' for the left half of the network only. Then by

Eqs. (2.05-7) and (2.11-7), the transducer loss ratio for the over-all

network is

( .
P2 in 1

In the case of dissipationless networks such as that shown in

Fig. 2.11-1, the power transmission is easily computed from the generator

parameters and the input impedance of the dissipationless network termi-

nated in R2. This is because any power absorbed by (Zi.)i must surely

end up in R2. The computations may be conveniently made in terms of the

voltage reflection coefficient r discussed in Sec. 2.08. In these terms

avail 1 1
- - I a(2.11-9)

4 1I- Irlj2
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where

(zi) I - Rl
Fl = (2.11-10)

(Zi) I + 81

and it, and (Zi1 ), are as defined in Fig. 2.11-1. The reflection coef-

ficient at the other end is

(Z i,)2 - "R2

-Z.) 2 + Rt2  (2.11-11)

and for a dissipationless network

I ! - 1121 (2.11-12)

so that the magnitude of either reflection coefficient could be used in

' 1. (2.11-9). 'It should be understood in passing that the phase of rl

is not necessarily the same as that of P2 even though Eq. (2.11-12) holds.]

The reflection coefficient

zb - Z'
+ Z (2.11-13)

between Z and Z. in Fig. 2.11-1 cannot be used in Eq. (2.11-9) if both

Z and Z, are complex. However, it can be shown that

Lb - z... Z6 +F1 =F 2  + .. (2.11-14)

where Z: is the complex conjugate of Z.. Thus, if Z - R. + jX. and

Z6 X R6 + jX6' by use of Eqs. (2.11-14) and (2.11-9) we obtain

P. (. + ft,)2 + (X. X6 )2

P2  4Rib (2.11-15)

For cases where Z.= Z such as occurs at the middle of a symmetrical

network, Eq. (2.11-15) reduces Lo
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-. - 1 +\j j) (2. 11-16)
P2 (B

Another situation which commonly occurs in filter circuits is for

the structure to be antimetricu]" about its middle. In such cases, if

Z and Z, in Fig. 2.11-1 are at the middle of a antimetrical network,

then for all frequencies

= - (2.11-17)1

where fiA is a real, positive constant. Defining Z. again as ft. + jX.,

by Eqs. (2.11-17), (2.11-14). and (2.11-9),

-jB .4.' + 2[ 111

(2.11-18)

The quantity itA is obtained most easily by evaluating

A a real, positive (2.11-19)

at a frequency where Z. and Za are both known to be real. The maximally

flat and Tchebyscheff low-pass prototype filter structure whose element

values are listed in Tables 4.05-1(a), (b) and 4.05-2(a), (b) are

symmetrical for an odd number n of reactive elements, and they are

antimetrical for an even number n of reactive elements. The step trans-

formers discussed in Chapter 6 are additional examples of artimetrical

circuits,

SEC. 2.12, SCATTERING COEFFICIENTS

In this book there will be some occasion to make use of scattering

coefficients. Scattering coefficients are usually defined entirely from

a wave point of view. However, for the purposes of this book it will be

sufficient to simply extrapolate from previously developed concepts.

s
Thia term was eaimed by Guillemia. See pp. 371 end 447 of Ref. 2.
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The performance of any linear two-port network with terminations

can be described in terms of four scattering coefficients: S,1 1 S 12 1

S21' and S22,. With reference to the two-port network in Fig. 2.11-1,

u1- and S,2 - F2 are simply the reflection coefficients at Ends 1

and 2, respectively, as defined in Eqs. (2.11-10) and (2.11-11). The

scattering coefficient S 2 1 is simply the transmission coefficient, t,

for transmission to End 2 from End 1 as defined in Eqs. (2.10-5) and

(2.10-6). The scattering coefficient, S1 2 , is likewise the same as the

transmission coefficient, t, for transmission to End 1 from End 2. Of

course, if the network is reciprocal 8 2 u112' The relations in

Sec. 2.11 involving t, F1 , and F2 , of course, apply equally well to

t = S 1 2  z S 2 1 , l'I . III and 1'2 = S2 2 , respectively.

Thus, it is seen that as far as two-port networks are concerned,

the scattering coefficients are simply the reflection coefficients or

transmission coefficients discussed in Sees. 2.10 and 2.11. However,

scattering coefficients may he applied to networks with an arbitrary

number of ports. For example, for a three-port network there are nine

scattering coefficients, which may be displayed as the matrix

= 1 2 2 S 2 (2. 12-1)

S31 $32 "3

For an n-port network there are n2 coefficients. In general, for any

network with resistive terminations,

S ") (2.12-2)

(z ) +

is the reflection coefficient between the input impedance (Z 3 ) j at

Port j and the termination R at that port. For the other coefficients,

analogously to Eqs. (2.10-5) and (2.10-6),

E

( j (2.12-3)

4avail
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where

1 
((Ej),i E ) (2.12-4)

The voltage E, is the response across termination RI. at Port j due to a

generator of voltage (E,)k and internal impedance Ih at Port k. In com-

puting the coefficients defined by Eqs. (2.12-2) to (2.12-4), all ports

are assumed to always be terminated in their specified terminations R.

If an n-port network is reciprocal,

(2.12-5)

By Eqs. (2.11-9)and (2.11-12) for a dissipationless reciprocal two-port

network

-=+ sS12, (2.12-6)

IS,!1 IS221 ,(2.12-7)

and

S12 S21 (2.12-8)

The analogous relation for the general n-port, dissipationless, reciprocal

network is

[1] iS) SiS] (2.12-9)

where [S] is the scattering matrix of scattering coefficients [as illus-

trated in Eq. (2.12-1) for the case of n - 3], (S] is the same matrix

with all of its complex numbers changed to their conjugates, and [I] is

an nth-order unit matrix. Since the network is specified to be reciprocal,

Eq. (2.12-5)applies and [S] is symmetrical about its principal diagonal.

For any network with resistive terminations,

P

Isj. 1 aI (2.12-10)
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where P is the power delivered to the termination Bt, at Port j, and

( vi il) is the available power of a generator at Port k. In accord with

Eq. (2.11-4) the db attenuation for transmission from Port k to Port

(with all specified terminations connected) is

LA - 20 log1 0 -L I db . (2.12-11)
'j k

Further discussion of scattering coefficients will be found in Hef. 9.

SEC. 2.13, ANALYSIS OF LADDER CIRCIJITS

Ladder circuits often occur in filter work, some examples being the

low-pass prototype filters discussed in Chapter 4. The routine outlined

below is particularly convenient
for computing the response of ,

such networks.

[he first step in this rou- ., Z3

tine is to characterize each E2 Y2  E4

series branch bv its tmpedlance " "

and the current flowing through I I

the branch, and each shunt

branch by its admtttance and the ,, 2

toltage across the branch. This

characterization is illustrated FIG. 2.13-1 A LADDER NETWORK EXAMPLE
in Fig. 2.13-1. Then, in general DISCUSSEDINSEC. 2.13

terms we define

Fk = series impedance or shunt admittance of' (2.13-1)

Branch k

U' V series-branch current or shunt-I-ranch (2.13-2)
voltage of uranch k

U series-branch currert or shunt-branch (2.13-3)
voltage for the last branch on the right

U0 = current or voltage associated with the (2.13-4)

driving generator on the left.

In general, if Branch 1 is in shunt, to should be the current of an

infinite-impedance current generator; if Branch 1 is in series, U0 should

be the voltage ofa zero-impedance voltage generator. Then, forall cases,
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Ua

A. - F•A* U
U

-_2
Aa = F.I'*A, + A,+1 s

(2.13-5)

Uk-I
A * . F A kl + A +2  U

t,0
A, * F'A2  + A 3

Thus A, is the transfer function from the generator on the left to

Branch m on the right. If we define

(F in)k * impedance looking right through Branch k if (2.13-6)

Branch k is in series, or admittance looking
right through Branch k if Branchk is in shunt,

then

(F a (2.13-7)

To illustrate this procedure consider the case in Fig. 2.13-1.

There m - 4 and

E 4A E 4

, 4  * Y4AS 4
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Z A A E2

A3 Z3A 4 +A E-

A2  Y2A 3 +A 4  E 4

A I ZIA 2  + A3  =
E4

Thus, Al is the transfer function between E0 and E 4 . The impedance

(Z,.), and admittance (Y,.)2 defined in the figure are

~~Ini 
I .

2
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CHAPTER 3

PRINCIPLE OF THE IMA;E METIMO FOR FILTER DESIGN

SEC. 3.01, INTRODUCTION

Although the image method for filter design will not be discussed in

detail in this book, it will be necessary for readers to understand the

image method in order to understand some of the design techniques used

in later chapters, The objective of this chapter is to supply the nec-

essary background by discussing the physical concepts associated with

the image method and by summarizing the most useful equations associated

with this method. lerivations will be given for only a few equations;

more complete discussions will be found in the references listed at the

end of the chapter.

SEC. 3.02, PIIYSICAL AND NIATIIEMATICAl, DEFINITION OF IMAGE

IMPEDANCE AND IMAGE PROPAGATION FUNCTION

The image viewpoint for the analysis of circuits is a wave viewpoint

much the same as the wave viewpoint commonly used for analysis of trans-

mission lines. In fact, for the case of a uniform transmission line the

charactertstic Lmpedance of the line is also its image impedance, and if

Y, is the propagation constant per unit length then ytl is the image

propagation function for a line of length 1. liowever, the terms image

tapedon'ce and image propagation Junction have much more general meaning

than their definition with regard to a uniform transmission line alone

would suggest.

Consider the case of a two-port network which can be symmetrical,

but which, for the sake of generality, will be assumed to be unsymmetrical

with different impedance characteristics at End 1 than at End 2.

Figure 3.02-1 shows the case of an infinite number of identical networks

of this sort all connected so that at each junction either End is are

connected together or End 2s are connected together. Since the chain of

networks extends to infinity in each direction, the same impedance Z!, is
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ETC. TO Z ia Z1 Z12 ETC. TO
INFINITY INFINITY

FIG. 3.02.1 INFINITE CHAIN OF IDENTICAL NETWORKS USED FOR
DEFINING IMAGE IMPEDANCES AND THE IMAGE
PROPAGATION FUNCTION

seen looking both left and right at a junction of the two End ls, while

at a junction of two End 2s another impedance Z1 2 will be seen when

looking either left or right. The impedances Z11 and Z 12 , defined as in-

dicated in Fig. 3.02-1, are the image impedances for End 1 and End 2,

respectively, of the network. For an unsymmetrical network they are

generally unequal.

Note that because of the way the infinite chain of networks in

Fig. 3.02-1 are connected, the impedances seen looking left and right at

each junction are always equal, hence there is never any reflection of a

wave passing through a junction. Thus, from the wave point of view, the

networks in Fig. 3.02-1 are all perfectly matched. If a wave is set to

propagating towards the right, through the chain of networks, it will be

attenuated as determined by the propagation function of each network, but

will pass on from network to network without reflection. Note that the

image impedances Z11 a.id Z12 are actually impedance of infinite networks,

and as such they should be expected to have a mathematical form different

from that of the rational impedance functions that are obtained for finite,

lumped-element networks. In the cases of lumped-element filter structures,

the image impedances are usually irrational functions; in the cases of

microwave filter structures which involve transmission line elements, the

image impedances are usually both irrational and transcendental.

An equation for the image impedance is easily derived in terms of the

circuit in Fig. 3.02-2. If ZL is made to be equal to Z,1 then the impedance

Zt. seen looking in from the left of the circuit will also be equal to Z1 l.

Now, if A, B, C, and D are the general circuit parameters for the box on

the left in Fig. 3.02-2, assuming that the network is reciprocal, the
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general circuit parameters A,, B6, C6,

and D. for the two boxes connected as

shown can be computed by use of

Eq. (2.05-7), Then by Eq. (2.09-1)

z.iA .ZI + B, 8. Zia

Z. - CZ + D (3.02-1)
s FIG. 3.02.2 CIRCUIT DISCUSSED IN SEC. 3.02

Setting Zia - ZL = Z11 and solving for

Z,, in terms of A, B, C, and D gives

'' I (3.02-2)

The same procedure carried out with respect to End 2 gives

ZD 2  R /(3.02-3)

Figure 3.02-3 shows a network with a generator whose internal imped-

ance is the same as the image impedance at End 1 and with a load impedance

on the right equal to the image impedance at End 2 With the terminations

matched to the image impedances in this manner it can be shown that

- -11 ea (3.02-4)
E 2

Z I,

Eq e E,1 ETWORK2

A-3527-2O0

FIG. 3.02.3 NETWORK HAVING TERMINATIONS WHICH
ARE MATCHED ON THE IMAGE BASIS
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or

I. FZ - -e y (3.02-5)
Z12

where

y " a + jt a In [v,4D + VBc (3.02-6)

is the image propagation function, a is the image attenuation in nepers,*

and 6 is the image phase in radians. Note that the YZI 2/Z 1 factor in

Eq. (3.02-5) has the effect of making y independent of the relative imped-

ance levels at Ends I and 2, much as does the vR2/R factor in Eq. (2. 10-4).

An alternative form of Eq. (3.02-5) is

a + j/& a In (3.02-7)
V212

where I, . EI/Z , and I' - E2/Z 1 2 are as defined in Fig. 3.02-3.

It should be emphasized that the image propagation function defines

the transmission through the circuit as indicated by Eq. (3.02-4),

(3.02-5). or (3.02-7) only Q' the terminations match the image impedances

as in Ft&. 3.0'2-3. The effects of mismatch will be discussed in Sec. 3.07.

For a reciprocal network the image propagation function is the same for

propagation in either direction even though the network may not be

symmetrical.

SEC. 3.03, RELATION BETWEEN THE IMAGE PARAMETERS AND GENERAL

CIRCUIT PARAMETERS, OPEN-CIRCUIT IMPEDANCES, AND

SHORT-CI RCUIT ADMITTANCES

The transmission properties of a linear two-port network can be de-

fined in terms of its image parameters as well as in terms of the various

parameters discussed in Secs. 2.05 to 2.07. Any of these other parameters

can be computed from the image parameters and vice versa. These various

relationships are summarised in Tables 3.03-1 and 3.03-2. For simplicity,

only equations for reciprocal networks are included.

To champ moper. to doibels mliply ampere by S.AW.
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Table 3.03-1

IMAGE PARAMETERS IN TERMS OF GENERAL CIRCUIT PARAMETERS,
OPEN-CIRCUIT IMPEJANCES, OR SHORT-CIRCUIT ADMITTANCES

IMAGE IN TERMS OF IN TgMS OF IN TERMS OF IN CONVENIENT
PARAMETER A,8.C.D l1 82 '2 '222 YIIY12 s y21Y22 MIXED FORM

EIf Y2 6y

Z11 'Y CZl 22 z2 .

12 F'-y 2'i V 24 22

=a + j coth. I ;.F) e.th11 /~~i c*.-I Y/_Iui ce th it- lvr

AY ceoth-

eosh YAID eosiil(112 eosh-1~12

fifth 3vv sink Minh-±

where A 21l222 - 12

2- Y11Y22 - Y12

Table 3.03-2

GENERAL CIR IT PARAMETERS, OPEN-CIRCUIT IMPEDANCES.

AND SHORT-CIRCUIT ADMITTANCES IN TERMS OF IMAGE PARAMETERS

A = /-1 eosh y , B - sinh y

sinh ,y D F cosh yIZ1 -k ,1l---

1 a z cothy z

221 z12 ,22 z 12 coth v
Yll SYI coth y , 2 i " t

Y21 Y12 Y22 Y 2 cothy

where "Il I ji-and Y 2 7*.7
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SEC. 3.04, IMAGE PARAMETERS FOR SOME COMMON STRUCTURES

The image parametera of the L-section network in Fig. 3.04-1 are

given by

z vZ 6 (z d + Ze) (3.04-1)

zz
*V7 1 (3.04-2) z1 -e.

C 1

z 2 Z= ZZ (3.04-3) FIG. 3.04-1 AN L-SECTION NETWORK
.Z. + Ze)

- 1 (3.04-4)

ycoth-1  I +(3.04-5)

a cosh-1  1 -(3.04-6)

z zC

a ZC
11-Z12 (3.04-8)

For the symmetrical T-section in Fig. 3.04-2

Z *r Z1 V''Z(Ze + 2Z6) (3.04-9)
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2Z6
y = 2 coth 1 1 +- (3.04-10)

(2 cosh 1 1 + L 3.04-11) zo
2Zb (3. 4-11) - ---- - - T-ll

FIG. 3,042 A SYMMETRICAL T-SECTION NETWORK

* 2 sinh 1  7 (3.04-12)

Note that the circuit in Fig. 3.04-2 can be formed by two L-sections as

in Fig. 3.04-1 put back to back so that Z6 in Fig. 3.04-2 is one-half of

Ze in Fig. 3.04-1. Then Z,, will be the same for both networks and y for

the T-section is twice that for the L-section.

For the 77-section in Fig. 3.04-3 the image admittances are

)'Il 12 1 = (Y! + 2Y3 ) (3.04-13)

and

-y 2 coth - I  + (3.04-14)

0 2 cosh- 1  + Y (3.04-15)

. 2 sinh" 1  (3.04-16)

A 7T-section can also be constructed

from two half sections back to

back, so that )'1/Z an
1/(2Z.). For Fig. 3.04-1, vY,-.. - Y12 ,

Y 12 • I/Z1 will then be the same
as Y12 •  YI in Fig. 3.04-3, while ,,,z

y for Fig. 3.04-3 will again be FIG. 3.04-3 A SYMMETRICAL 77-SECTION NETWORK

twice that for Fig. 3.04-1.
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For a uniform transmission line of length 1, nharacteristic impedance

ZOO and propagation constant Y, W at + j,6, per unit length,

Z1 1  " z 2  aZ 0  (3.04-17)

Y " y7I - ad + jstl (3.04-18)

SEC. 3.05, THE SPECIAL IMAGE PROPERTIES OF DISSIPATIONLESS

NETWORKS

By Table 3.03-1

Z 1  214 /i (3.05-1)

while

V a a + j u3 coth' 1  
.1 (3.05-2)

For a dismipationlesp network, we may write for frequencies p a jcu

z " j(X*,) (3.05-3)

and

1

l j(X 9 ) (3.05-4)

where j(X.e) is the impedance at End 1 of the network with End 2 open-

circuited, and j(X,1 ) is the impedance at End I with End 2 short-I

circuited. Then by Eqs. (3.05-1) to (3.05-4), for dissipationless net-

works

Z1 /-(X.*) (X*) (3.05-5)

and

y g+ - coth' .. ± (3.05-6)
Tv

(X8*



The inverse, hyperbolic cotangent function in Eq. (3.05-6) is a

multivalued function, whose various possible values all differ by

multiples of j77. For this reason, it is convenient to write Eq. (3.05-6)

in the form

y a a + j/ M coth"1  + jn7 (3.05-7)
(X)

where the inverse hyperbolic function is to be evaluated to give an

imaginary part having minimum magnitude, and where the appropriate value

for the integer n must be determined by examination of the circuit under

consideration. Equation (3.05-7) also has the equivalent form

a + a + tanh- . + j(2n - I) - (3.05-8)

( )X.) 2

Two distinct cases occur in the evaluation of Eq. (3.05-5) and

Eq. (3.05-7) or (3.05-8) depending on whether (X.,) and (.V,,) have the
I I

same sign or opposite signs. These two cases will be summarized

separately.

Case A, Condition for a Pass Band- In this case (X..) and (X.,)
1 I

have opposite signs and

Z *- " 17- i:7) (X,) = real and positive. (3.05-9)

It ca,, be shown that, at the same time, the condition

Z (X) real and positive. (3.05-10)
12 *d 2 ('eC)2

must also exist, where (X c) and (X*,) are the open- and short-circuit

impedances measured from End 2. Under these conditions, Eqs. (3.05-7)

and (3.05-8) yield for a and A,

a - 0 (3.05-11)
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-cot- 1  (X.) radians

(3.05-12)

* ta-I - radians
[fl (X.2

Note that for this pass-band case, the attenuation is zero while the phase

is generally non-zero and varying with frequency. In Eqs. (3.05-11) and

(3.05-12) the nfT term has been omitted since the multivalued nature of

these inverse trigonometric functions will be familiar to the reader

(though perhaps the multivalued nature of inverse hyperbolic functions

may not).

Case B. Conditions for a Stop Band-In this case (X ) and (X,,)

[and also (Xs) 2 and (X ) 2 have the same sign. Then

Z11 V'-(X 1 ) (X,,) u jX,1  (3.05-13)

and

Z12 a 1'-(X,) 2(X,&)2 * JX1 2  (3.05-14)

are both purely imaginary. Both X,, and X12 must have positive slopes

vs. frequency, in accord with Foster's reactance theorem. If

(X.e) > (X) Eq. (3.05-7) should be used to obtain a and A:
1 1

(X**)l

a a coth"1 P/- nepers (3.05-15)

and

/3 - n radians . (3.05-16)
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If (X*,) < (X,,) , Eq. (3.05-8) should be used, and it gives

a w tanh nepers (3.05-17)

and

- (2. - 1) - radians (3.05-18)
2

Note that for this stop-band case the image attenuation is non-zero and

will vary with frequency. Meanwhile, the image phase is constant vs.

frequency at some multiple of v, or odd multiple of n/2. However, it will

be found that the image phase can make discrete jumps at points in the

stop band where there are poles of attenuation for frequencies juo.

A similar analysis for dissipationless networks can be carried out

using the various other expressions for the image parameters in Secs.3.03

and 3.04. The various equations given for the image propagation constant

will involve inverse hyperbolic functions of a purely real or purely

imaginary argument. Due to the multivalued nature of these inverse

hyperbolic functions care must be taken in evaluating them. Table 3.05-1

should prove helpful for this purpose. Note that in some cases a different

equation must be used depending on whether lul or IvI is greater or less than

one. This is because, for example, cosh-lw when taken to be a function of

a real variable cannot be evaluated for u = jul < 1; if however, w is a

function of a complex variable the above example has a value, namely,

j(cos-1 u). The proper value of the integer n to be used with the various

equations in Table 3.05-1 must be determined by examination of the circuit

at some frequency where the transmission phase is easily established. As

was done in the case of Eqs. (3.05-Il) and (3.05-12), the nir terms have

been omitted for forms involving inverse trigonometric functions since

their multivalued nature is much more widely familiar than is that of in-

verse hyperbolic functions.
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Table 3.05-1

EVALUATION OF' SOME INVERS HYPERSOLIC FUJNCTION4S
FOR PURELY REAL ON4 PURELY IMAGINARY ARGUMENTS

to general. V + jU v aY a 4 i v. &ad a is an integer (positive. negative or zeo)

reacion Case of Va s Case of 0 ja

if I .1

r U cth-l + jW 9 0 + j (-Cofr W)

a coth *ja

if . 0 uIj tan-I) *
W a tanh-aa + .p(2n - 1)1L.

1. a ish-10 F a (-D1)"" sintht aa + jaw if 1.1 ' I

ni = odd
if V '1

kv cash1 * + j(2n 1)
Is - even

i f V < -1

if IVI '.I
N:0 +, j inI,

r a cah- a if 1.1 , I

a - even na~ odd

F = cash1l +a jnw n - dainh-I v + j(2n - 1) a-*o

if U ' -1 .if ,i ' 0

if I

W a0 +j cas1 u

SEC. 3.06, CONSTANT-k AND a-DERIVED FILTER SECTIONS

Constant-k and a-derived filters are classic examples of filters

which are designed from the image point of view. Their properties will

be briefly summarized in order to illustrate some of the image properties

of dissipationlesa networks discussed in the preceding section, and to

provide reference data. The filter sections shown are all normalized so

that their image impedance is 8a - ohm at co' - 0 and their cutoff fre-

quency occurs at w; - 1 radian/sec. However, these normalized circuits

can easily be chang..d to other impedance and frequency scales. Each

resistance, inductance, or capacitance is scaled using



_ R 0' ( 3 . 0 6 - 1 )

L ( ) ) (3.06-2)

or

where R', L', and C' are for the normalized circuit and R, L,and C are

corresponding elements for the scaled circuit. The ratio R0/R defines

the change in impedance level while wj/w; defines the change in frequency

scale.

Figure 3.06-1(a) shows a normalized constant-k filter half section.

Its image impedances are

ZIT -/I - (0, )2 (3.06-4)

and

Zli 3 (o_ )_ - . (3.06-5)

Its propagation function is

Y a a + j,8 0 + j sin-Iwo (3.06-6)

for the 0 < o' < I pass band, and

( x + j/f - cosh' 1co' + j 2 (3.06-7)
2

for the I = o' = cO stop band, where a is in nepers and /8 is in radians.

Figures 3.06-1(b), (c) show sketches of the image impedance and

attenuation characteristics of this structure. Note that, as discussed
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(a) z1T., ___ 2e- :,

/2

0 01

N(b) * O0 I ,*

0 I m

FIG. 3.06.1 THE IMAGE PROPERTIES OF NORMALIZED,
CONSTANT-k HALF SECTIONS
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in Sec. 3.05, ZIr and Z are purely real in the pass band and purely

imaginary in the stop band. Also note that a - 0 in the pass band while

ia constant in the stop band.

Figure 3.06-2(a) shows a "series, a-derived" half section. Its

image impedances are

Zr 1-(3.06-8)

Z11,. (3.06-9)

where

1
______ (3.06-10)

vil - m

Note that Eq. (3.06-8) is identical to Eq. (3.06-4), but Eq. (3.06-9)

differs from Eq. (3.06-5). The propagation function is

(+ J) 0 + j ) cos -  I W (3.06-11)2 2
-(I - 42)

in the 0 o' < 1 pass band,

12 2

- (1 - 2)

in the 1 w' ,o' stop band, and

, coh 1  212 + jo (3.06-13)

in the w. . o' stop hand.
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0

OD-

0-P-

FIG. 3.06.2 NORMALIZED, SERIES, rn-DERIVED HALF-
SECTION CHARACTERISTICS



Figures 3.06-2(b) and (c) show sketches of the image impedance and

propagation characteristics of this structure. Note that introducing a

series resonance in the shunt branch in Fig. 3.06-2(s) has produced a

pole of attenuation at the frequency w, where the shunt branch short-

circuit-& transmission. (See discussion in Sec.2.04.) Note that

Z1.w ,RW. in the pass band in Fig. 3.06-2(b) is more nearly constant

than is RBff in Fig. 3.06-1(b). This property of a-derived image impedances

makes them helpful for improving the impedance match to resistor

terminations.

The "shunt u-derived" half section in Fig. 3.06-3(a) is the dual of

that in Fig. 3.06-2(a). The image impedances are

ZT .  (3.06-14)

I 1 (3.06-15)
"1l - (co')

where again

1 ,(3.06-16)
vl -um

In this case ZT in Eq. (3.06-14) differs from Z1T in Eq. (3.06-4), but

Eqs. (3.06-15) and (3.06-5) are identical. The image propagation function

for this bection is the same as that in Eqs. (3.06-11) to (3.06-13).

Figures 3.06-3(b) and (c) show sketches of the image characteristics of

this filter section. In this case, a pole of attenuation is produced at

the frequency w. where the series branch has apole of impedance which blocks

all transmission. The image impedance Zir . is seen to be more nearly con-

stant in the pass band than was ZIT in Fig. 3.06-1(b). Thus, a-derived

half sections of this type are also useful for improving the impedance

match to resistor terminations.

Figure 3.06-4(a) and (b) show how constant-k and a-derived half sec-

tions may be pieced together to form a sizeable filter. In this case,

three constant-k half sections are used along with two, series, n-derived,
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MITZI

(b) 0

-40

0 IW~.

FIG. 3.06.3 NORMALIZED, SHUNT, rn-DERIVED
HALF-SECTION CHARACTERISTICS



'. I TL'.I L'.15 Le. 5 71

(a) L.0 5 6

1111 Zr 1 Zl lrmv~ Z: ,Zjw

ZT? ZZ,

(C) 1- . . __

0- 0 / I ,'- I.1

FIG. 3.06.4 A FILTER PIECED TOGETHER FROM THREE CONSTANT-k
AND TWO m-DERIVED HALF SECTIONS
The resulting image propagation function is sketched at (c)
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half sections. The two a-derived sections have a • 0.5, which introduces

a role of attenuation at ' - 1.16 and greatly increases the rate of cutoff

of the filter. As indicated in Fig. 3.06-4(a) the sections are all chosen

so that the image impedances match at each junction. Under these conditions

when the sections are all joined together, the image attenuation and the

image phase for the entire structure are simply the sum of the image atten-

uation and phase values for the individual sections. Likewise, with all of

the sections matched to each other, the image impedances seen at the ends

are the same as the image impedances of the end sections before they were

connected to the interior sections.

The circuit in Fig. 3.06-4(b) would have the transmission character-

istics indicated in Fig. 3.06-4(c) if it were terminated in its image im-

pedances at both ends. However, since in practice resistor terminations

are generally required, this transmission characteristic will be consider-

ably altered (mainly in the pass band) due to the reflections at both ends

of the filter. In order to reduce the magnitude of these reflections ef-

fects, it is customary with filters of this type to introduce a-derived

half-sections at each end of the filter with the impedance Z11. or Z,,,

next to the termination resistor. With a - 0.6, these image impedances

are relatively constant in the pass band and it becomes possible to greatly

reduce the reflection effects over much of the pass band. These matters

will be discussed further in Seca. 3.07 and 3.08.

SEC. 3.07, THE EFFECTS OF TERMINATIONS WHICH MISMATCH THE

IMAGE IMPEDANCES

The resistance terminations used on dissipationless filter structures

cannot match the image impedance of the structure except at discrete fre-

quencies in the pass band. As a result of the multiple reflections that

occur, the performance of the filter may be considerably altered from that

predicted by the image propagation function. This alteration is most severe

in the pass band and in the stop band near cutoff. Formulas which account

for the effects of such terminal reflections are summarized below.

Consider the circuit in Fig. 3.07-1 whose image impedances, Z11 and

Z1 1, may differ considerably from R, and R. The voltage attenuation

ratio, E1/53 , may be calculated from the image parameters and the termi-

nations using the equation
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where

fil  - Z 11
F" I + Z1 (3.07-2)

and

R2 - Z1 2F 2 R 2 + 1 2  (3.07-3)

are the reflection coefficients at Ends 1 and 2 while

2Z1 1
'r R 1 + Z,1  (3.07-4)

and

2B 2
1r2 R 2 +Z 2 (3.07-5)

are the transmission coefficients (see Sec. 2.08). Note that these re-

flection and transmission coefficients are defined with respect to the

image impedances rather than with respect to the actual input impedances

(Z I ) an d (Z i )  "

1 2

6,



The actual input impedance seen looking in End I with End 2 termi-

nated in R 2 is

(Zi.) a Z, 1 + 1 2 e-2 1 (3.07-6)

Li - F, 2 e
2VJ

By analogy, (Zi.) in Fig. 3.07-1 is
2

(Z i  ) E z t 12 +- 11e 2 (3.07-7)
i 2 1 T'Ii e - 2 7

Equations (3.07-1) to (3.07-7) apply whether the circuit has dissipation

or not.

For a dissipationless network at pass band frequencies where

y 0 ± niilEq. (3.07-6) shows that

(Z3) a _ R (3.07-8)

I z 1 2

while at frequencies where y - 0 ± j(2n - ])(/2)l.=1.2. 3.

7 Il 12
(7 It (3.07-9)

where Ell and Z,2 will be purely real. Analogous expressions also exist

for (Zi,) .
2

Equation (3.07-1) is quite general, and it can be used with

Eqs. (2.11-2) and (2.11-4) for computing the attenuation of a network.

However, simpler expressions (about to be presented) can be used if the network

is dissipationless. Such expressions become especially simple if the dis-

sipationless network is symmetrical (i.e., Z u Z,,) and has symmetrical

terminations (i.e., i1  A R 2 ). Another case of relative simplicity is that

of a dissipationlesa antimetrical network (see Sec. 2.11) with antimetrical

terminations. Such a filter will satisfy the conditions



2

at all frequencies, where Iois a positive, real constant. The constant-k

half section in Fig. 3.06-1 is an example of an antimetrical network. The

filter in Fig. 3.06-4 also satisfies the antimetry condition given by

Eq. (3.07-10).

For dissipationless symmetrical networks with symmetrical terminations,

z f1 .1 in the pass band and the attenuation is

L4 a 10 log1  [1 + i (-- - sin 2 i db (3,07-12)

while in the stop band 7Z, a JX, and

L4 a10 Loi I + -( ! + -j sinh 2 a db . (3.07-13)

Similarly for dissirationless antimetrical networks with antimetrical

terminations, in the pass band

LA a 10 logl [11 , I ot db (3.07-14)

while in the stop band Eq. (3.07-13) applies just as for the symmetrical

case. For the symmetrical case

r,, *r 2  (3.07-15)

while for the antinuetrical case

r,1  -r 12  .(3.07-16)
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For the diasipationles symmetrical case the stop-band image phase is a

multiple of 7? radians, while in the dissipati,.less antimetric case it is

an odd multiple of 7r/2 radians.

The actual pass-band attenuation which will result from mismatched

image impedances is seen by Eqs. (3.07-12) and (3.07-14) to depend strongly

on the image phase, A. For given Z,1 and Pi it is easily shown that the

maximum possible pass-band attenuation in a dissipationless symmetrical

or antimetrical network with symmetrical or antimetrical terminations,

respectively, is

L, - 2 log/oa 2 + 1 )

L4 a 20 log10  2 + db (3.07-17)

where

Z1 1  /Ii
a - or

R1  Z1 1

with either definition giving the same answer. For symmetrical networks,

the value given by Eq. (3.07-17) applies when 3 - (2n - 1)7/2 radians

while LA a 0 when A - n77 radians (where n is an integer). For antimetrical

networks Eq. (3.07-11) applies when 8 - nn radians while LA N 0 when

3 - (2n - 1)7/2 radians. Figure 3.07-2 shows a plot of maximum LA vs. a,

and also shows the corresponding input VSH.

SEC. 3.08, DESIGN OF MATCHING END SECTIONS TO IMPROVE THE

RESPONSE OF FILTERS DESIGNED ON THE IMAGE BASIS

As mentioned in Sec. 3.06, one way in which the pass-band response

of constant-k filters can be improved is to use a-derived half sections

at the ends. Experience shows that a half section with a about 0.6 will

cause Z,,, or Zi7a to give the best approximation of a constant resistance
in the pass band, and hence will cause the ends of the filter to give the

beat match to resistor terminations. As an example, Fig. 3.08-1 shows the

normalized filter structure in Fig. 3.06-4(b) with matching sections added

to improve the pass-band match to the one-ohm terminations shown. The

matching sections also introduce poles of attenuation at c - 1.25, which

will further sharpen the cutoff characteristics of the filter.
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FIG. 3.07-2 MAXIMUM POSSIBLE PASS-BAND ATTENUATION AND VSWR FOR
DISSIPATIONLESS SYMMETRICAL NETWORKS WITH SYMMETRICAL
TERMINATIONS, OR DISSIPATIONLESS ANTIMETRICAL NETWORKS
WITH ANTIMETRICAL TERMINATIONS
These values will apply if i - (2n - 1)(i/2) 1.., 2 3 for the
symmetrical case or 3 - n In.1,2,3 ..... for the nl 4rcal case
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FIG. 3.08.1 THE NORMALIZED FILTER CIRCUIT IN FIG. 3.06-4(b) WITH
m-DERIVED HALF SECTIONS ADDED TO IMPROVE THE
PASS-BAND IMPEDANCE MATCH TO RESISTOR TERMINATIONS

In the design of microwave filter structures on the image basis, it

is often desirable that the matching end sections be of the same general

form as the main part of the filter. Consider ihe case of a wide band,

band-pass filter to be constructed using filter sections as shown in

Fig. 3.08-2(a). The filter sections have image characteristics as shown

in Fig. 3.08-2(b), (c). Figure 3.08-3 shows the left half of a symmetrical

filter formed from such sections. In this filter the interior sections of

the filter are all alike, but two sections at each end are different in

order to improve the pass-band match to the terminations. The design of

such end sections will now be considered.

As is seen from Fig. 3.08-2(c), each section of the filter has a mid-

band image phase shift of 13 - 77/2. The total midband image phase shift

for the end matching network in Fig. 3.08-3 at fo is thus /6 * 7r. At mid-

band, then, the end matching network will operate similarly to a half-

wavelength transmission line, and in Fig. 3.08-3

zl -(3.08-1)

Thus, if Z1 is the image impedance of the interior sections of the filter,

and Z,* is the image impedance of the sections in the end matching network,

then if

ZlI = u (3. 08-2)
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FIG. 3.08-2 A BAND-PASS FILTER SECTION USING
TRANSMISSION LINES, AND ITS IMAGE
CHARACT ER ISTICS
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FIG. 3.08.3 ONE-HALF OF A SYMMETRICAL FILTER COMPOSED OF
SECTIONS OF THE TYPE IN FIG. 3.08-2

a perfect match is assured at Jo, regardless of the size of Z a at that

frequency. At pass-band frequencies f, 12 and f 3rr12, where the image phase

shift of the end matching network is 77 / ir2 and 377/2, respectively,

(Zt,) 2

Zia (3.08-3)

similarly to Eq. (3.07-9). Thus, setting Zia 0 Z, and solving for Z,,

gives

Z1' a ZI7R (3.08-4)

as the condition for a perfect impedance match when ,8 - 77/2 or 377/2 for

the end matching network. By such procedures a perfect impedance match

can be assured when the end matching network has 77/2, 7T, or 37T/2 radians

image phase.

Figure 3.08-4 shows how the image impedance of the end matching net-

work might compare with the image impedance of the interior sections for

a practical design. In this case R1 is made a little less than ZI for

the interior sections at 1'0 , but Z, and Z,, are both made to be equal to

R8 at f. and fb, a little to each side of f0 , so that a perfect match will

be achieved at those two frequencies. This procedure will result in a

small mismatch in the vicinity of f0, but should improve the over-all re-

sults. The end matching network is made to be more broadband than the
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FIG. 3.08.4 RELATIVE IMAGE IMPEDANCE CHARACTERISTICS
FOR THE END MATCHING NETWORK AND INTERIOR
SECTIONS OF A PROPOSED FILTER OF THE FORM
IN FIG. 3.08-3

interior sections of the filter so that the /e a 7/2 and 3-/2 phase shift

points will occur near the cutoff frequencies of the interior sections.

The end matching network is designed so that Eq. (3.08-4) will be satis-

fied, at least approximately, at these two frequencies in order to give

a good impedance match close to the cutoff frequencies of the filter. In

this particular example there are only three degrees of freedom in the

design of the end matching network, namely the size of C . the size of

(Z0 ) , and the length of the transmission lines in the sections of the end

matching network. One degree of freedom is used in fixing the center fre-

quency of Lhe response, another may be used for setting Z,. , .R at fre-

quency J' in Fig. 3.08-4, and another may be used for satisfying

Eq. (3.08-4) at f11 2. Although matching conditions are not specifically

forced at frequencies f6 and f3,/2 in Fig. 3.08-4, they will be approxi-

mately satisfied because of the nearly symmetrical nature of the response

about f0.

The design procedure described above provides a perfect impedance

match at certain frequencies and assures that the maximum mismatch through-

out the pass band will not be large. In addition it should be recalled

that perfect transmission will result at pass-band frequencies where the

image phase of the over-all filter structure is a multiple of 17 radians,

as well as at points where the image impedances are perfectly matched.

These same principles also apply for the design of matching sections for

other types of filters.
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SEC. 3.09, MEASUREMENT OF IMAGE PARAMETERS

Occasionally it will be desirable to measure the image parameters of

a circuit. A general method is to measure the input impedance at one end

for open- and short-circuit terminations at the other end. Then

Z11 , I(Z,) I(Z, ) (3.09-1)

Z 12 N ,'(7. ) 2(Z, )2 (3.09-2)

and for a reciprocal network

(Z")
Y a coth' (3.09-3)

(Z.,)

In these equations (Z.o) and (Z..) are impedances measured at End 1 with1 1,

End 2 open-circuited and short-circuited, respectively. Impedances (Z.o)

and (Z.,) are corresponding impedances measured from End 2 with End 12

open-circuited or short-circuited.

If the network has negligible dissipation and is symmetrical, a con-

venient method due to Dawirss can be used. Using this method the network

is terminated at one port in a known resistive load RL and its input im-

pedance Zi, Rin + jXin is measured at the other port. Then the image

impedance Z, can be computed from Z and RL by the equations

z " / \ / \ /(3.09-4)

which applies for both the pass and stop bands.

Dawirs s has expressed this method in terms of a very useful chart
which is reproduced in Fig. 3.09-1. This chart should be thought of as

being superimposed on top of a Smith chart 67 with the zero "wavelengths

toward generator" point coinciding with that of the Smith chart. Then
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to obtain the image parameters, 7j. measured as discussed above, is nor-

malized with respect to R/" Next, the point Zi./L is first plotted on
a Smith chart, and then scaled to the same point on this chart by use of

a scale and cursor. In the pass band the Zi/R 1 points will fall within
either of the two heavy circles marked "cutoff circle," while in the stop
band the Zt,'R, points will fall outside of these circles. Further details

of the use of the chart are perhaps best illustrated by examples.
Suppose that ZinIft a 0.20 + j 0.25. Plotting this point on a Smith

chart and then rescaling it to this chart gives the point shown at A in

Fig. 3.09-1. The circles intersecting the vertical axis at right angles

give the image impedance while the nearly vertical lines give the phase
constant. Following the circle from point A around to the vertical axis

gives a normalized image impedance value of RIRL - 0.35, while the phase
constant is seen to be approximately 0.37 . This chart uses the term
"characteristic impedance" for image impedance and expresses the image
phase in wavelengths for spaecific reference to transmission lines. low-
ever, the more general image impedance concept also applies and the cor-

responding image phase in radians (within son:, unknown multiple of 7r) is

simply 2r- times the number of wavelengths. Thus in this case

0.37(2-,) + n- radians.

If Zin B1L gave the point P in Fig. 3.0Q-l, the filter would be cut

off, hence, the image impedance would be imaginary and a would be non-
zero. lit this case the image impedance is read by following the line to
the outer edge of the chart to read XI1  * J 1.4, while the image at-
tenuation in db is read from the horizontal axis of the chart as being

about 8.5 db. Since the network is specified to be symmetrical, the stop-

band image phase will be zero or some multiple of 7T radians (see Sec. 3.07).
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CHAPTER 4

LOW-PAWS PROTOTYPE FILTERS OBTAINED BY
N M ORK SYNTHESIS METhODM

SEC. 4.01, INTRIODUCTION

Many of the filter design methods to he discussed in later chapters

of this book will make use of the lumped-element, low-pass prototype

filters discussed in this chapter. Most of the low-pass, high-pass, I-and-

pass, or band-stop microwave filters to L~e discussed will derive their

important transmission characteristics from those of a low-pass prototype

filter used in their design. Element values for such low-pass prototype

filters were orig'inally obtained by network synthesis methods of Darlington

and others. 1 ,3 Jlowevcr, more recent ly conci se -qoat ions"' which are con-

venient for computer programming have l-een found for tihe element values

of the types of prototype filters of interest in tis book, and numerous

filter designs have ibeen tatbulated. "ome of' the tatbles in this I-ook were

obtained from the work of Weinberg,8,9 while others were 'omputed at

Stanford Riesearch Institute for the purposes of this hook. No discussion

of formal network synthesis methods will be included in t~jis b'ook since

these matters are discussed extensively elsewhere (see liefs. 1 to 3, for

example), and since the availal-ilitv of talolated designs makes such dis-

russion uinnecessary. 'Ihe main objectives of this chapter are to make clear

the properties of the tairuldted prototype filters, delay networks, and

impedance-matching networks so that they may be used intelligently in the

solution of a wide variety of' microwave circoit design problems of the

soet~s discussed in Chapter 1.

It should be noted that the step transformers in Chapter 6 can also

be used as prototypes for the design of certain types of microwave filters

as is discussed in Chapter 9.

SEC. 4.02, COMIPAIIISON OF' IMAU AND NEYi'%01;K S1.Nfli,.SIS
0,1 11o1S ihli F! LTE1 DiES IN

As was discussed in Chapter 3, the image impedance and attenuation

function of a filter section are defined in terms of' ain infinite chain

of identical filter sections connected together. Using a finite,

3



dissipationless filter network with resistor terminations will permit

the image impedances to be matched only at discrete frequencies, and the

reflection effects can cause sizeable attenuation in the pass band, as

well as distortion of the stop-band edges.

In Sec. 3.08 principles were discussed for the design of end sections
which reduce these reflection effects. Although such methods will defi-

nitely reduce the size of reflections in filters designed by the image

method, they give no assurance as to how large the peak reflection loss

values may be in the pass [,and. I[lus, though the image method is con-
ceptually simple, it requires a good deal of "cut and try" or "know how"

if a precision design with low pass-band reflection loss and very

accurately defined hand edges is required.

Network synthesis methods'2'3 for filter design generally start out

by specifying a transfer function rsuch as the transmission coefficient t,
defined by Eq. (2.10-6)] as a function of complex frequency p. From the

transfer function tie input impedance to the circuit is found as a function

of p. Then, by various continued-fraction or partial-fraction expansion

procedures, the input impedance is expanded to give the element values of
the circuit. 'ihe circuit obtained 1,v these procedures has the same transfer

function that was specified at tihe outset, and all guess work and "cut and

try" is eliminated. Image concepts never enter such procedures, and the

effects of the terminations are included in the initial tpecificetionq of

the transfer function.

In general, a low-pass filter designed by the ima-e method and an

analogous filter designed for the same applicaLion by network synthesis

methods will ie quite similar. Ilowever, the filter designed by network

synthesis methods will have somewhat different element values, to give it

the specified response.

The Tchehyscheff and maximally flat transfer functions discussed in

the next section are often specified for filter applications. The filters

whose element values are tabulated in Sec. 4.05 will produce responses

discussed in Sec. 4.03 exactly. ilowever, in designing microwave filters

from low-pass, lumped-element prototypes approximations will he involved.

Nevertheless, 'the approximations will generally be very good over sizeable

frequency ranges, and the use of such prototypes in determining the

parameters of the microwave filter will eliminate the guess work inherent

in the classical image method.
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SEC. 4.03, MAXIMALI.Y FLAT AN) TCIIEIn$SCIIEFF FIL'IEiI
ATTENUATION CIIAiHACrEHI ST ICS

Figure 4.03-1 shows a typical maximally flat.* low-pass filter at-

tenuation characteristic. The frequency ', where the attenuation is LAI'

is defined as the pass-iand edge. This characteristic is expressed

mathematically as

4('.) " 10 log 1 0  1 db (4.03-1)

where

a nti lo ~l) - -~ 1 (4.03-2)

The response in Fig. 1.03-I can l.e ach itved I'y low-pass filter circuits

such as those discussed in Ses. 4.01 and 4..05, and the parameter n in

Eq. (4.03-1) corresponds to the numi,.r

of reactive elements requ i rei in th,.

circuit. this attenuation character-

istic acquires its name maxLtmally flat

from the fact that the quantity within

the square brackets in Eq. (t. 03-1)

has (2n - I) zero derivatives at'." =0. -

In most cases 'Ifor maximally ._

flat filters is defined as the 3-dh

band-edge point. Figure 4.03-2 shows 0 f

plots of the stop-band attenuation w'-adiaM

characteristics of maximally flat fil-

ters where L = 3 di., for n - I to 15. FIG. 4.03-1 A MAXIMALLY FLAT LOW-

Note that for convenience in plotting PASS ATTENUATION
CHARACTERISTIC

the data ","''r'lI - 1 was used for the

abscissa. The magnitude sign is used

on /o'/,, because the low-pass to band-

pass or band-stop mappings to be discussed in later chapters can yield

negative values of ,'/c4 for which the attenuation is interpreted to be

the same as for positive values of

Another commonly used attenuation characteristic is the Tchebyscheff

or "equal-ripple" characteristic shown in Vrig. 4.03-3. In this case LA,

This characteristic ias also known sa B utterworth filter characteristic.
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FIG. 4.03.2 ATTENUATION CHARACTERISTICS OF MAXIMALLY FLAT FILTERS
The Frequency I'is the 3.db Bond-Edge Point

is again the maximum db attenuation in tile pass I-and, while C),' is tihe

equal-ripple band edge. Attenuation characteristics of tile form in

Fig. 4.03-3 may be specified mathematically as

LA-)-10910 1+ e coss2 [n Cos- (4.03-3)

and

,L A(r,') a10 log 1 01 I + e cosh 2 [n coshyy)] (4.03-4)



where

t [anti log, (0 ) 1 (4.03-5)

This type of characteristic can also be achieved by the filter structures

described in Sees,. 4.04 and 4.05, and the parameter n in Eqs. (4.03-3)

and (4.03-4) is again the number of reactive elements in the circuit. if

n is even there will be n/2 frequenicies where LA m0 for a low-pass

Tchebyscheff response, while if n is odd there will be (n + 1L)/2 such

frequencies. F'igures 4.03-4 to 4.03-10 show the stop-band attenuation

characteristics of '1chebyscheff f'ilters having L A, = 0.01, 0.10, 0.20,

0.50, 1.00, 2.00, and 3.00 dl) pass-land ripple. Again, I,' is

used as the abscissa.

It is intert-st ing to compare the maximally flat attenuation character-

istics in F'ig. 4.03-2 with thie l (hel'vsche ff ctiaracteristics in Figs. 4.03-4

to 4.03-10. It will I-e seein that for a given pass-ind attenuation toler-

ance , L A.' and number of reactive elements, " , that a Tchel'Iysche if filter

will give a much sharper rate of cutoff. f'or example, the maximally flat

characteristics in P'i g. t. 03-2 and the Teeysche f cha rac teristies in

Fig. 4.03-10 both have L .1=A di,. For the n 15 maximal ly flat case,

710 di at tenuat ion is reachted at

1.7 ~;for the n = I.- ]*lithlysche Cl

case, 70 db) attenuation is reached atI/

I" = 1 . 18 ,,' I Blecause of thle ir shiarlo

cutoff, Tchebysche ff charac teni sties

are often preferred over other pos-

sible characteristics; however, if

the reactive elements of' a filter

have appreciable dissipation loss the

.shape of the pass-band response of'

any type of filter will be altered as A

compared with the lossless ease, and ?__.______-.

time effects will be particularly 0

large in a l'clebysche f fiIt er. wi-odioni

Tbe~e mater wil ljedisusse in FIG. 4.03.3 A TCHEBYSCHEFF LOW-
Sec. 4. 13. MaximalIly fl[at f jIters PASS CHARACTERISTIC

have often been reputed to have less

delay distortion than 'rehebyselieff
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filters; however, as discussed in Sec. 4.08, this may not be true,

depending on the size of LA..

The maximally flat and "chebyscheff characteristics in Figs. 4.03-1

and 4.03-3 are not the only possible characteristics of this type. For

example, the Tchebyscheff characteristics of the impedance-matching-

network prototypes to be discussed in Sees. 4.09 and 4.10 will be similar

in shape, but LA will not touch zero at the bottom of the ripples. Some-

times Tchebyscheff filters are designed to have both an equal-ripple

characteristic in the pass band, and an "equal-ripple" approximation of

a specified attenuation level in the stop band. Although such filters

are used at low frequencies, they are very difficult to design precisely

for use at microwave frequencies. One possible exception is the type

of microwave filter discussed in Sec. 7.03.

SEC. 4.04, DEFINITION OF CIIICUIT PAIIAMETERS FOR
LOW-PASS PHOTOTYPE FILTERS

The element values g0 ,gl g2 . . . . . . g' g- of the low-pass prototype

filters discussed in this chapter are definedas shown inFig. 4.04-1.

We~ E t
L'2"00

(a)

(bIA-$M7?6

FIG. 4.04-1 DEFINITION OF PROTOTYPE FILTER PARAMETERS

A prototype circuit is shown ot (a) and its dual is shown
at (b). Either form will give the some response.
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One possible form of a prototype filter is shown at (a) while its dual

is shown at (b). Either form may be used, since both give identical

responses. Since the networks are reciprocal, either the resistor on

the left or the one on the right may be defined as the generator internal

impedance. It should be noted that in Fig. 4.04-1 the following conven-

tions are observed:

{ the inductance of a series coil,

or the capacitance of a shunt capacitor

f the generator resistance f10 if K, - C , but is
g0 = (4.04-1)

defined as the generator conductance Gif g, -L'

the load resistance R..1 if . - C', but is

defined as the load conductance G'+, if g. = 9,

The reason for using these conventions is that they lead to equations of

identical form whether a given circuit or its dual is used. Besides the

circuit element values, g,, an additional prototype parameter, wo, will also

be used. The parameter e' is the radian frequency of the pass-band edge,

which is defined in Figs. 4.03-1 and 4.03-3 for maximally flat and

Tchebyscheff filters of the sort discussed here. Its definition in the

case of maximally flat time-delay filters is discussed in Sec. 4.07.

The element values of the prototype filters discussed in this chapter

are all normalized to make go 1 I and r,,'= 1. These prototypes are easily

changed to other impedance levels and frequency scales by the following

transformations applied to the circuit elements. For resistances or

conductances,

S•Go or - (4.04-2)

For inductances,

L a ( G ( )) (4.04-3)
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And, for capacitances,

C - ) ( G" (4.04-4)

In these equations the primed quantities are for the normalized prototype

and the unprimed quantities are for the corresponding scaled circuit. As

indicated from the preceding discussion, for the prototypes in this

chapter, g0 . R0 - 1 or go - Go - 1.

As an example of how this scaling is accomplished, suppose that we

have a low-pass prototype with 8. - 1.000 ohm, C; a 0.8430 farad,

L 2 = 0.6220 henry, and G; = 1.3554 mho. These element values are for a

Tchebyscheff filter with 0.10-db ripple and an equal-ripple band edge

of (,= I radian. .'See the case of 0.10-db ripple and n - 2 in

Table 4.05-2(a).] Assuming that it is desired to scale this prototype

so that fi0 = 50 ohms and so that the equal-ripple band edge occurs at

f 1000 Mc, then (R0oR O) = 50, and (1/) -/(27r10 9 ) - 0.159 X 10-9
Next, by Eqs. (4.04-2) to (4.04-4), R0 - 50 ohm, CI (1.50) (0.159 ×

10 - 9 ) (0.8430) - 2.68 x 10-12 farad, L2  • 50 (0.159 x 10- 9 ) (0.6220)

4.94 x 10O henry, and =3 - (1/50) (1.3554) = 0.0271 mho.

SEC. 4.05, DOUBLY TEHtINA'iID, MAXIMALLY FLAT AND
"fmIEYSCHEFF PIiOTO'ITYPE F I L'ElS

For maximally flat filters having resistor terminations at both ends,

a response of the form of that in Fig. 4.03-1 with LAr . 3 db, go = 1,

and o= 1, the element values may be computed as follows:

go a I

k2" 2 sin[(2 1)j k a 1, 2, ... , n (4.05-1)

Table 4.05-1(o) gives element values for such filters having n - 1 to

10 reactive elements, while Table 4.05-1(b) presents corresponding

filters with n . 11 to 15 reactive elements.
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Table 4.05-1(a)

ELEMENT VALUES FOH FILTERS WITH MAXIMALLY FLAT ATTENUATION HAVING

so a 1, w - 1, and n - I to 10
The response are of the form in Fig. 4.03-1 with LAr u 3 db

VALUE
OF'. i 82 S3 84 85 96 57 8 69 8I0 811-

1 2.000 1.000
2 1.414 1.414 1,000

3 1.000 2.000 1.000 1.000

4 0.7654 1.848 1.848 0.7654 1.000

5 0.6180 1.618 2,000 1.618 0.6180 1.000

6 0.5176 1.414 1.932 1.932 1.414 0.5176 1.000

7 0.4450 1.247 1.802 2.000 1.802 1.247 0.4450 1.000

8 0.3902 1.111 1.663 1.962 1.962 1.663 I1.111 0.3902 1,000

9 0.3473 1.000 1.532 1.879 2.000 1,879 1.532 1,000 0,3473 1.000

10 0.31291 0.9080 1,414 1.782 1,975 1.975 1.782 1.414 0,9080 0.3129 1.000

Table 4.05-1(b)

ELEMENT VALUES FOR FILTERS WITH MAXIMALLY FLAT ATTENUATION HAVING
g .1, ,' I, and n x 11 to 15

The responses are of the form in Fig. 4.03-1 with LAr 3 dh

VALUE
OF a 61 92 93 84 8 C6 17 18

11 0.2846 0.8306 1.3097 1.6825 1.9189 2.0000 1.9189 1.6825

12 0.2610 0.7653 1.2175 1.5867 1.8477 1.9828 1.9828 1.8477

13 0.2410 0.7092 1.1361 14')70 1.7709 1.9418 2.0000 1.9418

14 0.2239 0.6605 1.0640 1.4142 1.6934 1.8877 1,9F74 1.9874

15 0.2090 0.6180 1.0000 1.3382 1.6180 1.8270 1.9563 2.0000

69 910 611 g12 813 914 815 816

11 1.3097 0.8308 0.2846 1.0000

12 1.5867 1.2175 0.7653 0.2610 1.0000

13 1.7709 1.4970 1.1361 0.7092 0.2410 1.0000

14 1.8877 1.6934 1.4142 1.0640 0.6605 0.2239 1.0000

15 1.9563 1.8270 1.6180 1.3382 1.0000 0.6180 0.2090 1.0000
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For Tchebyscheff filters having resistor terminations at both ends,
with responses of the form shown in Fig. 4.03-3 having L4, db pass-band

ripple, g " 1, and w - 1, the element values may be computed as follows:'5

first compute

. In coth )AI

y - sinh 2n~

a sin (2k - 1) k -1, 2, n.,fI 2n

*ba_ + sin2  k77 k -1, 2, n (4.05-2)

then compute

2a,

4a -I k-
h k -*h- 2, 3, ... , nt

9.+1 a l for n odd

. coth2 (-i- for n even

Table 4.05-2(a) gives element values for such filters for various L Ar and

n - I to 10 reactive elements. Table 4.05-2(b) gives corresponding data

for filters having n - 11 to 15 reactive elements.

It will be noted that all of the filter prototypes discussed in this

section are symmetrical if n is odd. If n is even, they have the property

of antimetry mentioned in Secs. 2.11 and 3.07. Uider this condition one

half of the network is the reciprocal of the other half of the network

with respect to a positive real constant R h' where R4 may be defined as

; (4.05-3)



Table 4.05-2(a)

ELEMENT VALUES FOB TCHEBYSCHEFF FILTERS HAVING g o , . 1, AND RESPONSES
OF THE FON IN FIG. 4.03-3 WITH VARIOUS db RIPPLE

Cases of n I 1 to 10

OF. 1 I 81 ]82183 9 85 gb 87 88 69 910 511

0.01 db ripple

I 0.A960 1.0000
2 0.4,'88 0.4077 1.1007
3 0.6231 0.9702 0.6291 1.0000
4 0.128 1.2003 1.3212 0.6476 1.1007
5 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000
6 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007
7 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000
8 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007
9 0.8144 1.4270 1,8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000
10 0.81% 1.4369 1,8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007

0.1 db ripple

1 0.3052 1.0000
2 0.8430 0.6220 1.3554
3 1.0315 1.1474 1.0315 1.0000
4 1.1088 1.3061 1.7703 0.8180 1.3554
5 1.1468 1.3712 1.9750 1.3712 1.1468 1.0000
6 1.1681 1.4039 2.0562 1.5170 1.9029 0.8618 1.3554
7 1.1811 1.4228 2.0%6 1.5733 2.0966 1.4288 1.1811 1.0000
8 1.1897 1.4346 2.1199 1.6010 2.1699 1.5640 1.9444 0.8778 1.3554
9 1.195t) 1.4425 2.1345 1.6}67 2.2053 1.6167 2.1345 1.4425 1.1956 1.0000

10 1.1999 1.4481 2.1444 1.6265 2.2253 11.6418 2.2046 1.5821 1.9628 0.8853 1.3554

0.2 db ripple

1 0.434- 1.0000
2 1.0378 0.745 1.5386
3 1.2275 1.1525 1.2275 1.0000
4 1.3028 1.2844 1.9761 0.8468 1.5386
5 1.3394 1.3370 2.1660 1.3370 1.3394 1.0000
6 1.3598 1.3632 2.2394 1.4555 2.0974 0.8838 1.5386
7 1.3722 1.3781 2.2756 1.5001 2.2756 1.3781 1.3722 1.0000
8 1.3804 1.3875 2.2963 1.5217 2.3413 1.4925 2.1349 0.8972 1.5386
9 1.3860 1.3938 2.3093 1.5340 2.3728 1.5340 2.3093 1.3938 1.3860 1.0000

10 1.3901 1.3983 2.3181 1.5417 2.3904 1.5536 2.3720 1.5066 2,1514 0.9034 1.5386

0.$ db ripple

1 0.6986 1.0000
2 1.4029 0.7071 1.9841
3 1.5963 1.0967 1.563 1.0000
4 1.6703 1.1926 2.3661 0.8419 1.9841
5 1.7058 1.2296 2.5408 1.22% 1.7058 1.0000
6 1.7254 1.2479 2.6064 1.3137 2.4758 0.8696 1.9841
7 1.7372 1.2583 2.6381 1.3444 2.6381 1.2583 1.7372 1.0000
8 1.7451 1.2647 2.6564 1.3590 2.6%4 1.3389 2.5093 0.87% 1.9841
9 1.7504 i.2690 2.6678 1.3673 2.7239 1.3673 2.6678 1.2690 1.7504 1.0000

10 1.7543 1.2721 2.6754 1.3725 2,7392 1.3806 2.7231 1.3485 2.5239 0.8842 1.9841
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Table 4.05-2(s) Concluded

VALUE
OF a 1 I 1 93 8 4 1 5 81 1 8 81 99 610 all

1.0 db ripple

1 1.,77 1.0000
2 1.82.s 0.6850 2.6599
3 2.0236 0.9941 2.0236 1.0000
4 2.0991 1.0644 2.8311 0.7892 2.6599
5 2.1349 1.0911 3.0009 1.0911 2.1349 1.0000
6 2.1546 1.1041 3.0634 1.1518 2.9367 0.8101 2.6599
7 2.1664 1.1116 3.0934 1,1736 3.0934 1.1116 2.1664 1.0000
8 2.1744 1.1161 3.1107 1.1839 3.1488 1.1696 2.9%85 0.8175 2.6599
9 2.1797 1.1192 3.1215 1.1897 3.1747 1.1897 3.1215 1.1192 2.1797 1.0000

10 2.1836 1.1213 3.1286 1.1933 3.1890 1.1990 3.1738 1.1763 2.9824 0.8210 2.6599

2.0 db ripple

1 1.5296 1.0000
2 2.4881 0.6075 4.0957
3 2.7107 0.8327 2.7107 1.0000
4 2.7925 0.880 3.6063 0.6819 4.0957
5 2.8310 0.8985 3.7827 0.8985 2.8310 1.0000
6 2.8521 0.9071 3.8467 0.9393 3.7151 0.6%4 4.0957
7 2.8655 0.9119 3.8780 0.9535 3.8780 0.9119 2.8655 1.0000
8 2.8733 0.9151 3.8948 0.%05 3.9335 0.9510 3.7477 0.7016 4.0957
9 2.8790 0.9171 3.9056 0.%43 3.9598 0.9643 3.9056 0.9171 2.8790 1.0000
10 2.8831 0.9186 3.9128 0.%67 3.9743 0.9704 3.9589 0.9554 3.7619 0.7040 4.0957

3.0 db ripple

1 1.9953 1.0000
2 3.1013 0.5339 5.8095
3 3.3487 0.7117 3.3487 1.0000
4 3.4389 0.7483 4.3471 u.5920 5.8095
5 3.4817 0.7618 4.5381 0.7618 3.4817 1.0000
6 3.5045 0.7685 4.6061 0.7929 4.4641 0.6033 5.8095
7 3.5182 0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1.0000
8 3.5277 0.7745 4.6575 0.8089 4.6990 0.8018 4.4990 0.6073 5.8095
9 3.5340 0.7760 4.6692 0.8118 4.7272 0.8118 4.6692 0.7760 3.5340 1.0000

10 3.5384 0.7771 4.6768 0.813t 4.7425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095
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Table 4.05-2(b)

ELEMENT VALUES FOR TCHEBYSCJIEFF FILTERS HAVING so a 1, , a 1. AND RESPONSES
OF THE FORM IN FIG. 4.03-3 WITH VARIOUS db RIPPLE.

Casen of n - 11 to 15

OF 8l 2 163 1 4 1 . 6 17 I, ',Il 19 ,101 il 1 12 1 13 1 14 1j 11 191
0.01 db ripple

11 0.8234 1.4442 1.8296 1.7437 1.9554 1.7856 1.9554 1.7437 1.8298T1.4442 0.8234 1.0000
12 0.8264 I1.4497 1.8377 1.7527 1.%84 1.8022 1.9837 1.7883 1.929311.6695 1.5957 0.7508 1.1007
13 0.8287 1.4540 1.8437 1.7594 1.9777 1.8134 2.0014 1.8134 1.97771.7594 1.8437 1.4540 0.8287 1.0000
14 0.8305 1.4573 1.8483 1.7644 1.9845 1,8214 2.0132 1.8290 2.0048 1.8029 19422 1.6792 1.6041 0.7545 1.1007
15 0.8320 1.4600 1,8520 1.7684 1.9897 1.8272 2.0216 .021611.8272 1.9897 1.7684 1.8520 1.4600 0.8320 1.0000

0.10 db ripple

11 1.20311.4523 2.1515 1.0332 2.2378 1.6554 2.2378 1.6332 2.1515 1.4523 1.2031 1.0000
12 1.2055 1.4554 2.1566 1.6379 2.2462 1.6646 2.2%2 1.6572 2.2200 1.5912 1.9726 0.8894 1.3554
13 1.2074 1.4578 2.1605 1.6414 2.2521 1.6704 2.2675 1.6704 2.2521 1.6414 2.1605 1.4578 1.2074 LO000
14 1.2089 1.45% 2.1636 1.6441 2.2564 1.6745 2.2751 1.6786 2.2696 1.6648 2.2283 1.5963 1.9784 I)08919 1.3554
15 1.2101 1.4612 2.1660 1.6461 2.2598 1.677b 2,2804 1.6839 2.2804 1.6776 2.2598 1,6461 2.1660j1.4612 1.2101 1.0000

0.20 db ripple

11 1.3931 1.4015 2.3243 1.5469 2.4014 1.5646 2.4014 1.54 2.3243 1.4015 1.3931 1.0000
12 1.3954 1.4040 2.3289 1.5505 2.4088 1.5713 2.4176 1.5656 2.3856 1.5136 2.1601 0.9069 1.5386
13 1.3972 1.4059 2.3323 1.5532 2.4140 1.5758 2.4276 1.5758 2.4140 1.5532 2.3323 1.4059 1.3972 1.0000
14 1.3986 1.4073 2.3350 1.5553 2.4178 1.5790 2.4342 1.5821 2.4294 1.5714 2.3929 1.5176 2.1653 0.9069 1.5386
15 1.3997 1.4085 2.3371 1.559 2.4207 1.5813 2.4388 1.5862 2.4388 1.5813 2.4207 1.5509 2.3371 1.4065 1.3997 1.0000

0.50 db ripple

11 1.75721.2743 2.6809 1.3759 2.7488 1.3879 2.7488 1.3759 2.68091.2743 1.75721 1.0000
12 1.7594 1.2760 2.6848 1.3784 2.7551 1.3925 2.7628 .3886 2.7349 1.3532 2.5317 0.8867 1.9841
13 1.7610 1.2772 2.6878 1.3802 2.75% 11.3955 2.7714 1.3955 2.7596 1.3802 2.6878 1.2772 1.7610 1.0000
14 1.7624 1.2783 2.6902 1.3816 2.7629 1.3976 2.7771 1.3997 2.7730 1.3925 2.7412 1.3558 2.5362 0.8882 1.9641
15 1.7635 1.2791 2.6920 1.3826 2.765411.3991 2.7811 1.4024 2.7811 1.399 2.7654 1.3826 2.6920 1.2791 1.7635 1.0000

1.00 db ripple 
I

11 2.1865 1.12293.1338 1.1957 3.1980 1.2041 3.1980 1.1957 3.1338 1.1229 2.1865 1.0000
12 2.1887 1.12413.1375 1.1974 3.2039 1.2073 3.2112 1.2045 3.1849 1.1796 2.9696 0.8228 2.6599
13 2.1904 1.1250 3.1403 1.197 3.2081 1.2094 3.2192 1.2094 3.2081 1.1987 3.1403 1.1250 2.1904 1.000
14 2.1917 1.125713.1425 1.1996 3.2112 1.2108 3.2245 1.2123 3.2207 1.2073 3.1906 1.1815 2.9944 0.8239 2.6599
15 2.192811.1263 1.2004 1.2119 3.2282 1.2142 3.2282 1.2119 3.2135 1.2004 3.1442 1.1263 2.1928 1.0000

m2.00 db ripple

11 2.8863 0.9195 3.9181 0.9682 3.9834 0.9737 3.9834 0.9682 3.9181 0.9195 2.886311.0000
12 2.8886 0.9203 3.9219 0.9693 3.9894 0.9758 3.9967 0.9740 3.9701 0.9575 3.7695 I'0.7052 4.095710
13 2.8904 0.9209 3.9247 0.9701 3.9936 0.9771 4.0048 0.9771 3.9936 0.9701 3.9247 0.9209 2.8904 1.000014 2.8919 0.9214 3.9269 0.9707 3.9967 0.9781 4.0101 0.9791 4.0062 0.9758 3.9761 0.9587 3.7739 0.7060 4.0957
15 2.8930 0.9218 3.9287 0.9712 3.9990 0.9788 4.0139 0.9803 4.0139 0.9788 3.9990 0.9712 3.928710.9218 2.8930 10000

3.00 db ripple

11 3.5420 0.7778 4.6825 0.8147 4.7523 0.8189 4.7523 0.8147 4.6825 0.7778 3.5420 1.0000
12 3.5445 0.7784 4.686510.8155 4.7587 0.8204 4.7664 0.8191 4.7381 0.8067 4.5224 0.6101 5.8095
13 3.5465 0.7789 4.6896 0.8162 4.7631 0.8214 4.7751 0.8214 4.7631 0.8162 4.6896 0.7789 3.5465 1.0000
14 3.5480 0,7792 4.6919 0.8166 4.7664 0.8222 4.7808 0.8,29 4.7766 0.8204 4.7444 0.8076 4.5272 0.6107 5.8095
15 3.5493 0.7795 4.6938 0.8170 4.7689 0.8227 4.7847 j0.8238 4.7847 0.8227 4.7689 0.8170 4.6938 0.7795 3.5493 1.0000
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and where B0 and ft, are the resistances of the terminations at the ends0 +*1of the filter. If Z; is the impedance of one branch of the filter ladder

network, then

R2

.- = -Z (4.05-4)

where Z', is the dual branch at the other end of the filter. 3y

Eq. (4.05-4) it will be seen that the inductive reactances at one end of

the filter are related to the capacitive susceptances at the other end by

cALk
* - (4.05-5)

R2

Also,

• (4.05-6)

so that it is possible to obtain the element values of the second half

of the filter from those of the first half if the filter is antimetrical,

(as well as when the filter is symmetrical).

It will be found that the symmetry and antimetry properties discussed

above will occur in maximally flat and Tchebyscheff filters of the form in

Fig. 4.04-1 having terminations at both ends, provided that the filter is

designed so that LA - 0 at one or more frequencies in the pass band as

shown in Figs. 4.03-1 and 4.03-3. The maximally flat and Tchebyscheff

filters discussed in Secs. 4.06, 4.09, and 4.10 do not have this property.

The maximally flat time-delay filters in Sec. 4.07 are not symmetrical or

antimetrical, even though LA - 0 at ca' a 0.

In some rare cases designs with n greter than 15 may be desired.

In such cases good approximate designs can be obtained by augmenting an
n a 14 or n a 15 design by repeating the two middle elements of the filter.

Thus, suppose that an n - 18 design is desired. An n - 14 design can be

augmented to n - 18 by breaking the circuit immediately following the g7

element, repeating elements g, and g7 twice, and then continuing on with

element g. and the rest of the elements. Thus, letting primed g'a indicate

element values for the n - 18 filter, and unprimed g's indicate element

values from the n - 14 design, the n - 18 design would have the element

values
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1go o a a; =g ,l g2 " 2'' 16" 6

9; " 9; g; " 96 9; 1 97 ' 81o " g6 g 

12 * gS I g 13 "'g9# S's - 14 g1 1

This is, of course, an approximate procedure, but it is based on the

fact that for a given Tchebyscheff ripple the element values in a design

change very little as n is varied, once n is around 10 or more. This is

readily seen by comparing the element values for different values of n,

down the columns at the left in Table 4.05-2(b).

SEC. 4.06, SINGLY TEIIMINATED MAXIMALLY FLAT
AND TCHEIBYSCHEFF FILTERS

All of the prototype filters discussed in Sec. 4.05 have resistor

terminations at both ends. However, in some cases it is desirable to

use filters with a resistor

termination at one end only.

Figure 4.06-1 shows an example

of such a filter with a re-
to I 9e sistor termination on the left

.. . * m and a zero internal impedance

voltage generator on the right

Y.'. to drive the circuit. In this

case the attenuation LA defined

FIG. 4.06-1 AN n 5REACTIVEELEMENTSINGLY by Eq. (2.11-4) does not apply,
TERMINATED FILTER DRIVEN BY A since a zero internal impedance
ZERO-IMPEDANCE VOLTAGE voltage generator has infinite
GENERATOR

available power. The power

absorbed by the circuit is

P - I g12 fie Y' (4.06-1)9in

where Y" and E are defined in the Fig. 4.06-1. Since all of the power

must be absorbed in G;,

JE 12 He Y',. - ItELI 2G (4.06-2)

and

e(4.06-3)
LEI 04 Y'



Thus in this case it is convenient to use the voltage attenuation function

Ll • 20 log, - 10 logo10  e db . (4.06-4)

Figure 4.06-2 shows the dual case to that in Fig. 4.06-1. In this

latter case the circuit ia driven by an infinite-impedance current

generator and it is convenient to use the current attenuation function

defined as

L 20 log, • 10 log1 0  Z db (4.06-5)

where I I , R , and V. are as defined in Fig. 4.06-2. If LA and LA,

in Sec. 4.03 are replaced by analogous quantities L. and L.,' or L. and

LIP, all of the equations and charts in Sec. 4.03 apply to the singly

terminated maximally flat or Tchebyscheff filters of this section as

well as to the doubly terminated filters in Sec. 4.05.

Equation (4.06-1) shows that for a given generato" voltage, Eg the

power transmission through the filter is controlled entirely by He Y!..

Thus, if the filter in Fig. 4.06-1 is to have a maximally flat or

Tchebyscheff transmission characteristic, Be Y'. must also have such a

characteristic. Figure 4.06-3 shows the approximate shape of He Y' and

Im )' for the circuit in Fig. 4.06-1 if designed to give a Tchebyscheff'a

transmission characteristic. The curves in Fig. 4.06-3 also apply to

the circuit in Fig. 4.06-2 if Y' is replaced by Z' As will be dis-

cussed in Chapter 16, this property of He Y'. or He Z'.n for singly loaded

filters makes them quite useful in the design of diplexers and multi-

plexers. Prototypes of this sort will also be useful for the design of

filters to be driven by energy sources that look approximately like a

zero-impedance voltage generator or an infinite-impedance current gener-

ator. A typical example is a pentode tube which, from its plate circuit
may resemble a current generator with a capacitor in parallel. In such

cases a broadband response can be obtained if the shunt capacitance is

used as the first element of a singly terminated filter.

Orchardt gives formulas for singly terminated maximally flat filters

normalized so that g 1, and ' I at the band-edge point where
LI *LI, or L. a LI, is 3 db. They may be written as follows:

S
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FIG. 4.06.2 THE DUAL CIRCUIT TO THAT IN
F IG. 4.06.1
In this case the generator is an
Infinitimpodance current generator.

.1R.Y

0

FIG. 4.06.3 THE APPROXIMATE FORM OF
THE INPUT ADMITTANCE Y'
IN FIG. 4.06.1 FOR AN n - 5
REACTIVE-ELEMENT, SINGLY
TERMINATED TCHEBYSCHEFF
FILTER



17 (2k - 1)
ah sin 2 n k - 1, 2, n

2 n
c, cost ( ,. k - 1, 2, ..... n

with the element values

g, a, (4.06-6)

g, k 2, 3, ... ,n

[check: g. n ng l ]

where the g, defined above are to be interpreted as in Fig. 4.04-1(a)

and (b). Table 4.06-1 gives element values for such filters for the

cases of n - I to n - 10.

Table 4.06-1

EI.EMENT %ALUES FOR SINGLY TERMINATEI) MAXIMALLY FLAT FILTERS HAVING

go a 1, + = on AND w 1

VALUE

OF 91 92 13 64 1 |6 17 e 19 610 811

1 1.0000 O
2 0.7071 1.4142
3 0.5000 1.3333 1.5000
4 0.3827 1.0824 1.5772 1.5307 O

5 0.3090 0.8944 1.3820 1.6944 1.5451 ®
6 0.2588 0.7579 1.201t 1.5529 1.7593 1.5529 m
7 0.2225 0.bShO 1.0550 1.3972 1.6588 1.7988 1.5576 ®
8 0.1951 0.5776 0.9370 1.2588 1.5283 1.7287 1.8246 1.5607 0
9 0.1736 0.5155 0.8414 1.1408 1.4037 1.6202 1.7772 1.8424 1.5628 C

10 0.1564 0.4654 0.7626 1.0406 1.2921 1.5100 1.6869 1.8121 1.8552 1.5643

Note: Date by courtesy of L. Weisberg asd the Journal of the Franklin Institute
9

For singly loaded Tchebyscheff filters having go " 1, &t - 1, and

Li, or Lr db pass-band ripple, Orchard's equations give

F 0 (Lr or Lid
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y - ainh ( 21)

77(2k - 1)
ah  -2 sin 2 , 1, 2, ... ,n

2n 2
d * ( T2 + sin2 ".'n)cos. --. " k . 1, 2, ..... n-i1

(4.06-7)

with element values

a,

Y

a ka k -h = , k = 1,2 , ... , n
. d k - k !

Table 4.06-2 presents element values for singly terminat ed ilI ,ers for

various amounts of Tchebvscheff ripple.

SEC. 4.07, MAXIMALLY FI.AT TIME-I)ELAY PROTOTYPE FILTERS

The voltage attenuation ratio (F 2 ).,,il 't2 (see Sec. 2.10) for a

normalized, maximally flat, time-delay filter may be defined as 1°'9

S - cp'y.(1'p' ) (4.07-1)
E2

where p' = a' + jw' is the normalized complex-frequency variable, c is

a real, positive constant, and

y(]/p') = (n (4.07-2)
h= (n - k)!k!(2p')*

lee



Table 4.06.2

ELEMENT VALUES FOR SINGLY TERMINATED TCHERBYSCHEFF FILTERS HAVING
* l, *s~ 

=  AND U 18001 MA w

VALUE" 1'j 2 gal 8j 9 1 '61 SOI 99I sioT
0.10 db ripple

1 0.1526
2 0.4215 0.7159 ®
3 0.5158 1.0864 1.0895 OD
4 0.5544 1.1994 1.4576 1.2453 O

S 0.5734 1.2490 1.5562 1.5924 1.3759 m
6 0.5841 1.2752 1.5999 1.6749 1.7236 1.4035 m
7 0.5906 1.2908 1.6236' 1.7107 1.7987 1.7395 1.4745 o
8 0.5949 1.3008 1.6380 1.7302 1.8302 1.8070 1.8163 1.4660 c
9 0.5978 1.3076 1.6476 1.7423 1.8473 1.8343 1.8814 1.7991 1.5182

10 10.6000 1.3124 1.6542 1.7503 1.8579 1.8489 1.9068 1.8600 1.8585 1.4964
0.20 db ripple

1 0.2176 m
2 0.5189 0.8176 O
3 0.6137 1.1888 1.1900 co
4 0.6514 1.2935 1.5615 1.2898
5 0.6697 1.3382 1.6541 1.6320 1.4356 m
6 0.6799 1.3615 1.6937 1.7083 1.7870 1.4182 '
7 0.6861 1.3752 1.7149 1.7401 1.8590 1.7505 1.5161 c
8 0.6902 1.3840 1.7276 1.7571 1.8880 1.8144 1.8623 1.4676 'r

9 0.6930 1.3899 1.7360 1.767,; 1.9034 1.8393 1.9257 1.7974 1.5512 O
10 0.6950 1.941 1.7418 1.7744 1.9127 1.8523 1.9500 1.8560 1.8962 1.4914 e,

0.50 db ripple
1 0.3493 00
2 0.7014 0.9403 ano
3 0.7981 1.3001 1.3465 OD

4 0.8352 1.3916 1.7279 1.3138 m
5 0.8529 1.429I 1.8142 1.6426 1.5388 c

, O.PF27 1.4483 1.8494 1.7101 1.9018 1.4042 m
7 0.8 2n 1.4596 1.8675 1.7371 1.9712 1.7254 1.5982 0
8 {0.8725 1.46661 1.8750 1.7508 1.9980 1.7838 1.9S71 11.4379
9 0.8752 1.4714 1.8856 1.7591 2.0116 1.8055 2.0203 1.7571 1.6238 o

10 1 0.8771 1.4748 1.8905 1.7645 2.0197 1.8165 2.0432 1.8119 1.9816 1.4539
...._ 1.00 db :ipple

1 MOM8 OD

2 0.9110 0.9957
3 1.0118 1.3332 1.5088 O

4 1.0495 1.4126 1.9093 1.2817 ®
5 1.0674 1.4441 I1.9938 1.5908 1.6652
6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457 I
7 1.0832 1.4694 2.0437 1.6736 2.1192 1.6489 1.7118 { '
8 1.0872 1.4751 2.0537 1.6850 2.1453 1.7021 2.0922 1.3601
9 1.0899 1.4790 2.0601 1.6918 2.1583 1.7213 2.1574 1.6707 1.7317 -10 1.0918 1.4817 2.0645 1.6961 2.1658 1.7306 2.1803 1.7215 2.1111 1.3801 O

2.00 db ripple

1 0.7648 co
2 1.2441 0.9766 M
3 1.3553 1.2740 1.7717 CD

4 1.3962 1.3389 2.2169 1.1727 =
5 1.4155 1.3640 2.3049 1.4468 1.9004 o
6 1.4261 1.3765 2.3383 1.4974 2.3304 1.2137
7 1.4328 1.3836 2.3551 1.5159 2.4063 1.4836 1.9379 m
8 1.4366 1.3881 2.3645 1.5251 2.4332 1.5298 2.3646 1.2284 0
9 1.4395 1.3911 2.3707 1.5304 2.4463 1.5495 2.4386 1.4959 1.9553 O

10 1 1.4416 1.3932 2.3748 1.53371 2.4538 1.5536 2.4607 1.5419 2.3794 1.2353
[ _ _3.00 db ripple

1 0 9976 - ,

2 1.5506 0.9109
3 1.6744 1.1739 2.0302 m
4 1.7195 1.2292 2.5272 1.0578 0
5 1.7409 1.2501 2.6227 1.3015 2.1491 ®
6 1.7522 1.2606 2.6578 1.3455 2.6309 1.0876 ®
7 1.7591 1.2666 2.6750 1.3614 2.7141 1,3282 2.1827
8 1.7638 1.2701 2.6852 1.3690 2.7436 1.3687 2.6618 1.0982 co
9 1.7670 1.2726 2.6916 1.3733 2.7577 1.3827 2.7414 1.3380 2.1970 m

10 1.7692 1.2744 2.6958 1.3761 2.7655 1.3893 2.7683 1.3774 2.6753 1.1032 o

.OTE: Most of the data i a this table wart obtained by eourtesy of L. Weinberg and the
Jour al of the F rmkli n Institute. 1



is a Bessel polynomial function of 1/p'. Equations (4.07-1) and (4.07-2)

reduce to a simple polynomial of the form

(E2) ,,.is
E * . P,(p') • (p)"a + (p')"'e,.! + ... + p'a +a

(4.07-3.)

Let

(E2). .il]I. P lif(o)

er F a tan-1  radians
E2 H"e P (jP)

t4. 07-4)

Then, as was discussed in Sec. 1.05, the time delay (i.e., group delay) is

do' Sec (4.07-5)

where w' is in radians per second. The transfer function, defined by

Eqs. (4.07-1) and (4.07-2) has the property that its group delay, t',

has the maximum possible number of zero derivatives with respect to w'

at w' = 0, which is why it is said to have maximally flat time delay.

The time delay, td, may be expressed as '9

tj tdo (I - (L')2 t_ [ .) *j) (4.07-6)j2 2
W# 2o W O.

where J-(. /w) and JK uWi) are Bessel functions of "s'/w, and

1 -- (4.07-7)
wI

is the group delay as w' 0* . The magnitude of (R2 ),,*11 /E2 is

II0



(4.07-8)

and for increasing n the attenuation approaches the Gaussian form I11109

10

"A4 (2n - 1) In 10 db (4.07-9)

For n > 3 the 3 db bandwidth is nearly

(-T) - (2n - 1) In 2 (4.07-10)

3 db

Weinberg 9 has prepared tables of element values for normalized maxi-

mally flat time-delay filters, and the element values in Table 4.07-1 are

from his work. These element values are normalized so that t 0 1/wi'-

1 second, and g. = 1. In order to obtain a different time delay, tdo,

the frequency scale must be changed by the factor

w1 dO

"- = - (4.07-11)601 t dO

using the scaling procedure discussed in Sec. 4.04. Weinberg also pre-

sents some computed data showing time delay and attenuation in the

Table 4.07-1

ELEMENT VALUES FOR, MAXIMALLY FLAT TIME DELAY FILTERS
HAVING go 1 I and w, - ltdo - I

VALUE,OFn i 832 83 14 S 16 87 sI 69 810 811 12

1 2.0000 1.0000
2 1.5774 0.4226 1.0000
3 1.2550 0.5528 0.1922 1.0000
4 1.059 0 5116 0.3181 0.1104 1.OO
5 0.9303 0.4577 0.3312 0.2090 0.07181.0000
6 0.8377 0.4116 0.3158 0.2364 0.1480 0.0505 1.0000
7 0.7677 0.3744 0.2%4 0.2378 0.1778 0.1104 0.0375 1.0000
8 0.7125 0.3446 0.2735 0.2297 0.1867 0.1387 0.0855 0.0289 1.0000
9 0.6678 0,3203 0.2547 0.2184 0.1859 0.1506 0.1111 0.0682 0.0230 1.0000
10 0.6305 0.3002 0.2384 0.2066 0.1806 0.1539 0.1240 0.0911 0.0557 0.0187 1.0000
11 0.5989 0.2834 0.2243 0.1954 0.1739 0.1528 0.1296 0.1039 0.0761 0.0465 0.0154 1.0000

mote: Dts by courtesy of L. Wainberg @ad the Joural of the Franklin Institute.
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vicinity of the pass band for filters with n I 1 to 11. His data have

been plotted in Figs. 4.07-1 and 4.07-2, and curves have been drawn in

to aid in interpolating between data points. Although the time-delay

characteristics are very constant in the pass-band region, these filters

will be seen to have low-pass filter attenuation characteristics which

are generally inferior to those of ordinary maximally flat attenuation

or Tchebyscheff filters having the same number of reactive elements.

SEC. 4.08, COMPARISON OF THE TIME-DELAY CHARACTERISTICS
OF VARIOUS PROTOTYPE FILTERS

If the terminations of a prototype filter are equal or are not too

greatly different, the group time delay as w' - 0 can be computed from

the relations

d " - , seconds (4.08-1)

d4lW'-C 2 ha1

where gl, 92, ..., g. are the prototype element values as defined in

Fig. 4.0441. Also in Table 4.13-1 and Fig. 4.13-2 a coefficient C is

tabulated for maximally flat and Tchebyscheff prototype filters where

td0 = C seconds (4.08-2)

which is exact.

If the frequency scale of a low-pass prototype is altered so that

cal becomes oi1, then the time scale is altered so that as w - 0 the

delay is

ado ' C seconds . (4.08-3)

If a band-pass filter is designed from a low-pass prototype, then the
midband time delay is (at least for narrow-band cases)t

is equation is due to S. B. Coh sad can be derivd by us of [ . (4.15-9) sa (4.13-11) to fallen.
This is the approximate delay for a lumped-eleeat b ad-pus filter eosiotiq of a ladder of series
sad shuat resnatonr. If trmsmission lime circuits we used there may he additional time delay due to
the physical ienth of the filter.
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1 t0
t0 W2 1W(4.08-4)

where wl and w, are the pass-band edges of the band-pass response corre-

sponding to wl for the low-pass response.

In order to determine the time delay at other frequencies it is

necessary to work from the transfer functions. For all of the prototype

filters discussed in this chapter the voltage attenuation ratio (E2),,i,/E,

defined in Sec. 2.10 can be represented by a polynomial P (p') so that

(E2)evil

E 2  
s P.(p')

where p' -a' + jw' is the complex frequency variable. In the case of

prototype filters with maximally flat attenuation, n reactive elements.

wc 1, and LA, = 3 db (see Fig. 4.03-1), P.(p') is for n even

P.(p') - c 7T" (p,)2 + 2 cos 2n ) + I (4.08-5)
4=1

and for n odd

(n-1)/2

P (P') *c(p + ) 7T [(p ) 2 + (2 con 774)P # +I
awl

(4.08-6)

where c is a real constant.

For Tchebyscheff prototype filters having n reactive elements, W1, . 1,

and LA. db ripple (see Fig. 4.03-3), P.(p') is for n even

P3(p',z) - c 7 ( (p,)2 + [2z cob7(2^ - 1)P

.(P',X(2 - 1)7 2

+ x 2 + sin 2 7(2 (4.08-7)
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and for n odd with n t 3

( x-1)/2

P(p',x) - c(P' + x) 7r ta'') + (2X con + X, + sn
8-1

(4.08-8)

where

x - ainh sinh-1  (4.08-9)
n

and c is again a real constant. The constants c in Eqs. (4.08-5) to

(4.08-9) are to be evaluated so as to fix the minimum attenuation of the

response. For example, for the Tchebyscheff response in Fig. 4.03-3, c

would be evaluated so as to make, LA - 20 1og 1 0 (E2 ).,.,1 /E 2 a 0 at the

bottom of the pass-band ripples. However, for the Tchebyscheff response

in the impedance-matching filter response to be presented in Fig. 4.09-2

a different value of c would be required since L never goes to zero in

this latter case. Both cases would, however, have identical phase shift

and time delay characteristics.

The phase shift and group time delay fox filters with maximaily flat

or Tchebyscheff attenuation characteristics can be computed by use of

Eqs. (4.08-5) to (4.08-9) above and Eqs. (4.07-4) and (4.07-5). Cohn12

has computed the phase and time delay characteristics for various proto-

type filters with n - 5 reactive elements in order to compare their

relative merit in situations where time-delay characteristics are im-

portant. His results are shown in Fig. 4.08-1 to 4.08-3.

Figure 4.1R-1 shows the phase characteristics of Tchebyscheff filters

having 0.01-db and 0.5-db ripple with &* - 1, and a maximally flat at-

tenuation filter with its 3-db point at w i - 1. The 3-db points of the

Tchebyscheff filters are also indicated. Note that the 0.5-db ripple

filter I:as considerably more curvature in its phase characteristic than

either the 0.01-db ripple or maximally flat attenuation filters. It will

be found that in general the larger the ripple of a Tchebyacheff filter

the larger the curvature of the phase characteristic will be in the

vicinity of coj. As a result, the larger the ripple, the more the delay

distortion will be near cutoff.

11S



450-

n 8db

3003

1.1;. 0. db

I IPPLEI

200

-V MAXIMALLY FLAT

00 0 04 0

0a204 6 0 1.0 1.2 1.4
wo

SOURCF:: Final Report, Contract DA~ 36.039 SC.74862, Stanford
Research Institute, reprinted in The Microwave
Journal (see Ref. 13 by S. RI. Cohn).

FIG. 4.08-1 PHASE-SHIFT CHARACTERISTICS OF FILTERS
WITH MAXIMALLY FLAT OR TCHEBYSCHEFF
ATTENUATION RESPONSES AND r - 5
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FIG. 4.06-2 NORMALIZED TIME DELAY vs. &a'/w3db FOR
VARIOUS PROTOTYPE FILTERS
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FIG. 4.08-3 NORMALIZED TIME DELAY vs. w'/6Odb FOR VARIOUS
PROTOTYPE FILTERS 6d

Figure 4. 08- 2 shows the L ime de lay characterist ics of 0. 1- and
0.5-db ripple Tchebyscheff filters, of a maximally flat attenuation
filter, along with that of a maximally flat time delay filter. The

scale of t. is normalized to the tine delay t.0, obtained as wo' -0,

and the frequency scale is normalizvd to the frequency w db where
LA 03 db for each case. Note that the time-delay characteristic of
the 0.5-db ripple filter is quite erratic, but that delay characteris-

tics for the 0.l-db ripple filter are superior to those of the maximally

flat attenuation filter. The 0.l-db-ripple curve is constant within

il percent for Cs'/wO' db 1 0. 31 wh ile the maximal ly flat filter is within
this tolerance only for cu'/wo dh 0. 16. The maximally flat time-delay

filter is seen to have by far the most constant time delay of all. How-
ever, the equal-rippie band for the 0.l-db:ripple filter extends to



0.88 W'/W3 db while the maximally flat time delay filter has about 2.2 db

attenuation at that frequency. (See Fig. 4.07-2.) Thus, it is seen that

maximally flat time-delay filters achieve a more constant time delay at

the coat of a less constant attenuation characteristic.

In some cases a band of low loss and low distortion is desired up

to a certain frequency and then a specified high attenuation is desired

at an adjacent higher frequency. Figure 4.08-3 shows the time-delay

characteristics of various prototype filters with the frequency scale

normalized to the 60-db attenuation frequency w 0 db for each filter. For

a ±1 percent tolerance on td, a 0.l-db-ripple filter is found to be usable

to 0.106 wh0 db while a maximally flat attenuation filter is within this

tolerance only to 0.040 w, For a ±10 percent tolerance on t, a 0.5-db-• o db"d

ripple filter is usable to 0.184 w60 db while the maximally flat attenuation

filter is usable only to 0.116 610 db* The maximally flat time-delay filter

again has by far the broadest usable band for a given time-delay tolerance;

however, its reflection loss will again be an important consideration. For

example, for a,' 0.1 6O db its attenuation is 1.25 db and its attenuation

is 3 db for w' * 0.15 w[0 db' In contrast the 0.]-db-ripple prototype filter

has 0.1 db attenuation or less out to w' - 0.294 ">60db"

The choice between these various types of filters will depend on the

application under consideration. In most cases where time delay is of

interest in microwave filters, the filters used will probably be band-pass

filters of narrow or moderate bandwidth. Such filters can be designed

from prototype filters or step transformers by methods discussed in

Chapters 8, 9, and 10.* For cases where the spectrum of a signal being

transmitted is appreciable as compared with the bandwidth of the filter,

variations in either time delay or pass-band attenuation within the signal

spectrum will cause signal distortion.1 However, for example, a maximally

flat time-delay filter which has very little delay di-tortion and a mono-

tonically increasing attenuation will tend to rp"mnd a pulse out without

overshoot or ringing, while a filter with a sharp cu.ouff (such as a

Tchebyscheff filter) will tend to cause ringing.U The transient response

requirements for the given applicetion will be dominant considerations

when choosing a filter type for such cases where the signal spectrum and

filter pass band are of similar bandwidth.

As is disecsed ia See, 1.05, uost microwave filters will hove extra tim delay over that of
their protetype& because of the electrieal length of their physieal structures.
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In other situations the signal spectrum may be narrow compared with

the bandwidth of the filter so that the spectral components of a given

signal see essentially constant attenuation and delay for any common

filter response, and distortion of the signal shape may thus be negligible.

In such cases a choice of filter response types may depend on considera-

tions of allowable time delay tolerance over the range of possible fre-

quencies, allowable variation of attenuation in the carrier operating

band, and required rate of cutoff. For example, if time-delay constancy

was of major importance and it didn't matter whether signals with dif-

ferent carrier frequencies suffered different amounts of attenuation, a

maximally flat time-delay filter would be the best choice,

S EC. 4.09, PIOTO'TYPE, rCEYSIIEFF I IIEI)ANCE- IA TIC II I N G

NE''WOIIkS GI V I N MINI \IU\M 1BEFIIAIION

In this sectioni the low-pass impedance matching of loads repre-

sentable as a resistance and inductance in series, and of loads repre-

sentalle as a resistor and

capacitance in parallel 
will be

__ ._ ___ _ .__ ___ __s discussed. A load of the former

type with a matching network of
C4. E the sort to lie treated is shown

in hig. 4.09-I. In general, the

LOAD MATCING IETWORK elements go, and g, in the cir-

cuits in Fig. 4.04-I(s), (b) may

FIG. 4.09-1 A LOAD WITH A LOW-PASS be regarded as loads, and the
IMPEDANCE-MATCHING
NETWORK (Case of n a 4) remainder of the reactive ele-

ments regarded as impedance-

inatching networks. For convenience

it will be assumed that the imped-

ance level of the load to be matched has been normalized so that the re-

sistor or conductance is equal to one, and that the frequency scale has

been normalized so that the edge of the desired band of good impedance

match is *)1 1.

An was discussed in Sec. 1.03, if an impedance having a reactive part

is to be matched over a band of frequencies, an optimum impedance-matching

network must necessarily have a filter-like characteristic. Any degree of

impedance match in frequency regions other than that for which a good match

is required will detract from the performance possible in the band where
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good match is required. Thus, the sharper the cutoff of a properly

designed matching network, the better its performance can be.

Another important property of impedance-matching networks is that

if the load has a reactive part, perfect power transmission to the load

is possible only at discrete frequencies, and not over a band of fre-

quencies. Furthermore, it will usually be found that the over-all

transmission can be improved if at least a small amount of power is re-

flected at all frequencies. This is illustrated in Fig. 4.09-2, where

it will be assumed that the designer's objective is to keep (LA).,x as

small as possible from w' - 0 to a' - r;, where the db attenuation LA

refers to the attenuation of the power received by the load with respect

to the available power of the generator (see Sec. 2.11). If (LA).ia is

made very small so as to give very efficient transmission at the bottoms

of the pass-band ripples, the excessively good transmission at these

points must be compensated for by excessively poor transmission at the

crests of the ripples, and as a result, (L )... will increase. On the

0

0

FIG. 4.09.2 DEFINITION OF (LA)m.x AND (LA)mi.
FOR TCHEBYSCHEFF IMPEDANCE
MATCHING NETWORKS DISCUSSED
HEREIN
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other hand if (LA).i , is specified to be nearly equal to (LA)sl, the

small pass-band ripple will result in a reduced rate of cutoff for the

filter; as indicated above, this reduced rate of cutoff will degrade the

performance and also cause (L)..s to increase. Thus, it is seen that

for a given load, a given number of impedance-matching elements, and a

given impedance-matching bandwidth, there is some definite value of

Tchebyscheff pass-band ripple (LA).a" - (LA)nia that goes with a minimum

value of (LA)... The prototype impedance-matching networks discussed in

this section are optimum in this sense, i.e., they do minimize (LA)a.a

for a load and impedance-matching network of the form in Fig. 4.09-1 or

its generalization in terms of Figs. 4.04-1(a), (b).

It is convenient to characterize the loads under consideration by

their decrement, which is defined as

1
g 1 (4.09-1)

1 I
_ or

where the various quantities in this equation are as indicated in

Figs. 4.09-1, 4.09-2, and 4.04-I(a), (b). Note that 6 is the reciprocal

of the Q of the load evaluated at the edge of the impedance-matching

band and that 6 evaluated for the un-normalized load is the same as that

for the normalized load. Figure 4.09-3 shows the minimum value of (LA)., ,

vs 6 for circuits having n = 1 to n - 4 reactive elements (also for case

of n - )). Since one of the reactive elements in each case is part of

the load, the n - 1 case involves no L or C impedance-matching elements,

the optimum result being determined only by optimum choice of driving-

generator internal impedance. Note that for a given value of 6, (LA)aax

is decreased by using more complex matching networks (i.e., larger values

of n). However, a point of diminishing returns is rapidly reached so

that it is usually not worthwhile to go beyond n - 3 or 4. Note that

n - O is not greatly better than n a 4.

Figure 4.09-4 shows the db Tchebyscheff ripple vs 8 for minimum

(LA).... Once again, going to larger values of n will give better results,

since when n is increased, the size of the ripple is reduced for a given S.

For n - O the ripple goes to zero.
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Figures 4.09-5 to 4.09-8 show charts of element values vs b for

optimum Tchebyscheff matching networks. Their use is probably best

illustrated by an example. Suppose that an impedance match is desired

to a load which can be represented approximately by a 50-ohm resistor

(Go = 0.020 mho) in series with an inductance L, u 3.98 x 10-8 henry,

and that good impedance match is to extend up to f 1 Gc so that

WI - 27f, - 6.28 x 109. Then the decrement is 6 = 1/(G0o wL)

1/(0.020 x 6.28 x 10' - 3.98 - 10-B) - 0.20. After consulting

Figs. 4.09-3 and 4.09-4 for 6 - 0.20 let us suppose that n - 4 is chosen

which calls for (LA)... - 1.9 db and a ripple of about 0.25 db. Then by

Fig. 4.09-8 (which is for n = 4) we obtain for go - 1, ',o - 1, and

= 0.20: g1/10 = 0.50, g2 = 0.445, g 3/10 0.54, g4 
• 0,205, and

g 5, 10 - 0.39. This corresponds to the circuit in Fig. 4.09-1 with

go - G'0 = 1, g, - 5.00 = Ll, g2 = 0.445 - C2, g. = 5.40 = L.3, g 4 
= 0.205=

C 4, and gs = 3.90 • R. Un-normalizing this by use of Eqs. (4.04-2) to

(4.04-4) with (G. G0 ) = 0.020,1 and = 1/(6.28 ×  109) = 1.59 - 10-10

gives: Go = 0.020 mho, L, = 3.98 x 10- 8 henry, C2  = 1.415 x 10-12 farad,

L 3 a 4.29 x 10-8 henry, C4 ' 6.52 , 1 0
- 1 3 farad, and B5 = 195 ohms. Note

that GO and Il are the original elements given for the load. The physical

realization of microwave structures for such an application can be accom-

plished using techniques discussed in Chapter 7.

It is interesting to note how much the impedance-matching network

design discussed above actually improves the power transfer to the load.

If the R-L load treated above were driven directly by a generator with

a 50-ohm internal impedance, the loss would approach 0 db as f - 0, but

it would be 8.6 db at f, 2 1 Gc. fly Figs. 4.09-3 to 4.09-5, the optimum

n = 1 design for this case would call for the generator internal imped-

ance to be about 256 ohms, which would give about 2.6 db loss as f -- 0

and 5.9 db loss at 1 Gc (a reduction of 2.7 df, from the preceding case).

Thus, the n = 4 design with only 1.9 db maximum loss and about 0.25 db

variation across the operating band is seen to represent a major improve-

ment in performance. Going to larger values of n would give still greater

improvement, but even with n - ,, (LA)..,, would still be about 1.46 db.

In most microwave cases band-pass rather than low-pass impedance

matching networks are desired. The design of such networks is discussed

in Chapter 11 working from the prototypes in this section. One special

feature of band-pass impedance-matching networks is that they are easily

designed to permit any desired value of generator internal resistance,
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whereas low-pass matching networks must have a specified generator

internal resistance for optimum design.

The attenuation characteristics of the impedance-matching networks

discussed in this section and in Sec. 4.10 may be computed by

L = LA + (ILA). db (4.09-2)

where L; is the attenuation of the impedance-matching network and L is

obtained by Eqs. (4.03-3) to (4.03-5), or by Figs. 4.03-4 to 4.03-10 for

the appropriate db Tchebyscheff ripple LA, = (LA).oa - (L )min .

It the next section the calculation of prototype impedance-matching

networks so as to give a specified Tchebyscheff ripple [at the cost of a

larger (LA)...' will be discussed. The method by which Figs. 4.09-3 to

4.09-8 were prepared will also be outlined.

SEC. 4.10, COMPUTATION OF PROTOTYPE IMPEDANCE-MATCHING
NE''WO1KS FOR SPECIFIED IPPLE OR MINIMUM
HEFLECTION

The networks discussed in the preceding section were specified so

that (LA)U. was to be as small as possible. Under that condition, it

was necessary to accept whatever pass-band "'chebyscheff ripple the charts

might call for in the case of any given design. Alternatively, we may

specify the pass-band Tchebyscheff ripple and accept whatever value of

(LA) .. may result. Since in some cases keeping the pass-band attenua-

tion constant may be the major consideration, computation of prototype

matching-network element values for a specified Tchebyscheff ripple will

be briefly outlined.

Prototype circuits for specified decrement b a 1/(g 0glw;) and db

ripple may be obtained as follows. First compute'

1/ 0 antilog10 (db Tchebyscheff ripple) (4.10-1)it • entilogl010 (.01

and

d - sinh (4.10-2)
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where n is the number of reactive elements in the prototype. Next

compute

d 2 sin ( (4.10-3)

and the maximum, pass-band reflection coefficient value

Fl cosh (n sinh 1 e)
cosh (n sinh "1 d) (4.10-4)

Then the (LA)... value which must be accepted is

1

(L A)N = 10 log1 0  (4.10-5)

I - II
max

Figure 4.10-1 shows a plot of (LA).m x vs 6 for various values of n

and various amounts of Tchebyscheff ripple amplitude [(LA)Re x - (L A),i].

Suppose that - 0.10 and 0 10-db ripple is desired with n - 2. This

chart shows that (LA) max will then be 5.9 db. By Figs. 4.09-3 and 4.09-4

it is seen that for the same b, when (LA ).. is minimized, (L A)MX m

4.8 db while the ripple is 0.98 db. Thus, the price for reducing the

ripple from 0.98 dh to 0.10 db is an increase in (L )max of about 1.1 db.

Green's work 6,7 appears to provide the easiest means for determining

the element values. Using his equations altered to the notation of this

chapter, we obtain

d gog1

D z d 1 - 09 (4.10-6)
6 sin -2)g'g

where the g,'s are as defined in Fig. 4.04-1. The element values are

then computed by use of the equations

1
91 a o (4.10-7)
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g*1 ~ i (4.10-9)

where the k j 1 .) are coupling coefficients to be evaluated as shown below.

Green's equations for the k , 1 ,- are 
6 ,7

n 2

k 12 1+( 2 )~ (4. 10-10)

122

8 33

k2 3 L[ + I+ 32)b ] (4. 10-12)

n 4

12 (I2 + ID2 + , (4. 10-13)

23 +a I 2( + 2Dij (4. 10-14)

k2I + 8 + 1)2) 2 (4. 10-15)

where

a2 =2(2 + v!) 6.83

133



4

Also, for n arbitrary,

r os + 2cos r& + D2 sin 2 r&) (sin 2 O)2
krr 4  . r6_ sin (2r - 1)& sin (2r + 1)&

(4.10-16)

where

= 2,n/n

It is usually convenient to normalize the prototype design so that

go= 1 and wi - 1, as has been done with the tabulated designs in this

chapter.

The element values for the prototype matching networks discussed in

Sec. 4.09 and plotted in Figs. 4.09-5 to 4.09-8 could have been obtained

using Green's charts 7 of coupling coefficients and D values along with

Eqs. (4.10-7) to (4.10-9).* However, in order to ensure high accuracy,

to add the n = I case, and to cover a somewhat wider range of decrements

than was treated by Green, the computations for the charts in Sec. 4.09

were carried out from the beginning. The procedure used was that de-

scribed below,

Fano 14has shown that, for low-pass networks of the type under con-

sideration, (LA)... will be as small as possible if

tanh na tanh nb

cosh a cosh b (4.10-17)

where

a • sinh - 1 d (4.10-18)

a = sinh- l  e (4.10-19)

and d and e are as indicated in Eqs. (4.10-2) and (4.10-3). By

Eqs. (4.10-18), (4.10-19), and (4.10-3),

b -. sinh" [sinl, a - 26 sin 2n] (4. 10-20)

Barton (sea Af. IS) has tdopeadeIly also computed shoar: equivalest to the asPlirn-
coefficient aborts of Gross. Ilarton, hoever, iseiodoe the asixim |y flat ceraoe ed ti .
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A computer program was set up to find values of a and b that satisfy

Eq. (4.10-17) under the constraint given by Eq. (4.10-20). From these a

and b values for various b, values for d and e were obtained by d - sinh4

and e - sinh b. When values of d and e had bee, obtained for various 8,

the element values for the networks were computed using Eqa. (4.10-6) to

(4.10-15).

The data for the charts in Fig. 4.09-3 were obtained by using the

values of a and b vs b obtained above, and then computing (LA).,S by use

of Eqs. (4.10-18), (4.10-19), (4.10-4), and (4.10-5). The data in

Fig. 4.09-4 were obtained by solving Eqs. (4.10-18), (4.10-19), (4.10-1)

and (4.10-2) for the db ripple as a function of a and b.

Lossless impedance matching networks for some more general forms of

loads are discussed in Refs. 14, 16, 17, and 18. However, much work re-

mains to be done on the practical, microwave realization of the more com-

plicated forms of matching networks called for in such cases. At the

present time the prototype networks in Sec. 4.09 and this section appear

to have the widest range of usefulness in the design of low-pass, high-

pass, and band-pass microwave impedance matching networks in the forms

discussed in Chapters 7, and 11.

SEC. 4.11, PHOTOTYPES FOB NEGATIVE-RESISTANCE
AMPLI FI EHS

As was discussed in Sec. 1.04, if a dissipationless filter with re-

sistor terminations has one termination replaced by a negAtive resistance

of the same magnitude, the circuit can become a negative-resistance ampli-

fier. It was noted that, if PI(F) is the reflection coefficient between

a positive resistance R 0 and the filter, when R is replaced by R; = -,R

the reflection coefficient at that end of the filter becomes

1
J (p) • - (4.11-1)

where p = a + jio is the complex frequency variable. Then, referring to

Figs. 1.04-1 and 1.04-2, the gain of the amplifier as measured at a

circulator will be

P

• I5 (p I,.j _ Ir3(p ( 1
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where PP is the power reflected into the circulator by the negative-

resistance amplifier. If LA is the attenuation (i.e., transducer loss)

in db (as defined in Sec. 2.11) for the dissipationless filter with

positive terminations, then the transducer gain when R* is replaced by
R " a -/ will be

P
- (4.11-3)

where

t L A (4.11-4)LA

antilog1 0 -

and t is the transmission coefficient (for positive terminations) dis-

cussed in Secs. 2.10 and 2.11. Figure 4.11-1 shows a graph of LA in db

5.0
4.0
3.0-_

2.0-

0.6-
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Ja 0.1__ __ _ _
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0 5 t0 Is to t6 s0
TRANIOUCER GAIN-lb

FIG. 4.11-1 ATTENUATION OF A PASSIVE FILTER
vs. TRANSDUCER GAIN OF THE
CORRESPONDING NEGATIVE-RESISTANCE
AMPLIFIER USING A CIRCULATOR
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for a filter with positive resistance terminations vs the db transducer

gain of the corresponding negative-resistance amplifier with a circulator,

as determined using the above relations.

The prototype impedance-matching filters discussed in Seca. 4.09

and 4.10 can also be used as prototypes for negative-resistance amplifiers.

With regard to their use, some consideration must be given to the matter

of stability. Let us define F1 (p) as the reflection coefficient between

any of the filters in Fig. 4.04-1 and the termination g0 a R, or Go at

the left and 1".(p) as the reflection coefficient at the other end. It

can be shown that the poles of a reflection coefficient function are the

frequencies of natural vibration of the circuit (see Sacs. 2.02 to 2.04),

hence, they must lie in the left half of the complex-frequency plane if

the circuit is passive However, the zeros of F1 (p), or of 1.(p), can

lie in either the left or right half of the p-plane. Since F"'(p)

I/r,(p), the zeros of 1,(p) for the passive filter become the poles of

1i'(p) for the negative-resistance amplifier. Thus, in choosing a filter

as a prototype for a negative-resistance amplifier, it is important that

Fl(p) have its zeros in the left half plane since if they are not, when

these zeros become poles of rj"(p) for the negative-resistance amplifier

they will cause exponentially increasing oscillations (i.e., until some

non-linearity in the circuit limits the amplitude).

T'he mathematical data given in Secs. 4.09 and 4.10 for filter proto-

types of the various forms in Fig. 4.04-I are such that the reflection

coefficient Pl(p) involving the termination go on the left will have all

of its zeros in the left half of the p-plane, while the reflection coef-

ficient 1".(p) involving the termination g.,, on the right will have all

of its zeros in the right half plane.* for this reason it is seen that

the termination go at the left must be the one which is replaced by its

negative, never the termination g,.l at the right.

Let us suppose that a prototype is desired to give 15 db peak gain

with 2 db Tchebyscheff ripple. Then by Fig. 4.11-1, (LA).i. * 0.138 db,

(LA).., - 0.22 db, and the ripple of the passive filter is 0.220-0.138 -

0.082 db. The parameter d in Sec. 4.10 is then computed by use of

Eqs. (4.10-1) and (4.10-2).

An exception to this occura when e a 0 in Eq. (4.10-3) which leads to (LA).in a 0 in Fig. 4.09-2.

Then the zcra of 1(p) ad F5(p) ore all on the p a jw oxis of the p-planes.
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Next the parameter 8 is obtained as follows: compute

I'll 1
t I (L A)nx (4.11-5)

antilog10  10

IN • V' - ItI1 (4.11-6)

{cosh"1 [I-14... coah (n sinh-1d)]

e sinh (4.11-7)

and then

d-e
(4.11-8)

7T
2 sin -

2n

[Equations (4.11-5) to (4.11-8) were obtained using Eqs. (4.10-3) to

(4.10-5).] Having values for d and 8 (and having chosen a value for n)
the element values may be computed as indicated by Eqs. (4.10-6) to

(4.10-16). In some cases the designs whose element values are plotted
in Figs. 4.09-5 to 4.09-8 will be satisfactory and computations will be

unnecessary.

In some cases (such as for the low-pass prototype for the band-pass

negative-resistance amplifier example discussed in Sec. 11.10) the decre-

ment b of the prototype may be fixed, and the choice of low-pass prototype

may hinge around the question: What maximum gain value can be achieved
for the given 8 with acceptable value of pass-band gain ripple? This

question can readily be answered by use of Eqs. (4.10-1) to (4.10-5).

First, an estimate is made of the db pass-band ripple for the filter with
positive terminations which will result in an acceptable amount of pass-

band ripple in 1U'(Jw")I' vs w' when the positive termination g0 is re-
placed by a negative termination -#,. Then, having specified & and the

db ripple of the passive filter response by Eqs. (4.10-1) to (4.10-5) the

parameters H, d, e, (LA)d£, and (LA)i u (LA)..Z - (db ripple) for the
filter with S0 positive can be determined. Knowing (LA)ma , and (LA).in

for the passive filter (i.e., for g0 positive), the pass-band maximum

and minimum gain with So replaced by -So and with a circulator attached
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at the other end, can be obtained from Fig. 4.11-1. If the response is

not as desired, more desirable characteristics may be achieved by starting

with a different value of pass-band ripple for the filter with positive

terminations. Having arrived at a trade-off between peak gain and size

of pass-band gain ripple, which is acceptable for the application at hand,

the element values for the prototype are computed using the equations in

Sec. 4.10 from n, 8, d, and whatever convenient ou value is specified.

Note that the larger the number of elements n, the flatter the response

can be for a given gain. But as n g ts large the improvement in perform-

ance per unit increase in n is small. Thus, if 6 for the load and the

peak gain are both specified, it may not be possible to make the gain

ripples as small as may be desired even if the number n of reactive ele-

ments is infinite.

SEC. 4.12, CONVERSION OF FILTER PROTOTYPES TO USE
IMPEDANCE- OR ADMITTANCE-INVERTERS AND
ONLY ONE KIND OF REACTIVE ELEMENT

In deriving design equations for certain types of band-pass and band-

stop filters it is desirable to convert the prototypes in Fig. 4.04-1

which use both inductances and capacitances to equivalent forms which use

only inductances or only capacitances. This can be done with the aid of

the idealized inverters which are symbolized in Fig. 4.12-1.

An idealized impedance inverter operates like a quarter-wavelength

line of characteristic impedance K at all frequencies. Therefore, if it

is terminated in an impedance Z, on one end, the impedance Z. seen looking

in at the other end is

K 2
Z a - (4.12-1)

Z b

An idealized admittance inverter as defined herein is the admittance

representation of the same thing, i.e., it operates like a quarter-

wavelength line of characteristic admittance J at all frequencies. Thus,

if an admittance Y, is attached at one end, the admittance Y. seen

looking in the other end is

j2
Y, - (4.12-2)
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29IMa As indicated in Fig. 4.12-1, an
PASE SHIFT inverter may have an image phase

shift of either ±90 degrees or an

zo"  odd multiple thereof.• Zb

,_ _ Because of the inverting.

IUPIOANCE action indicated by Eqs. (4.12-1)
INVERTIR

(a) and (4.12-2) a series inductance'
with an inverter on each side looks

190o.IMA( I like a shunt capacitance from its

PHASE SHIFT exterior terminals. Likewise, a

shunt capacitance with an inverter

Vo. -k
' *'  on both sides looks like a series

inductance from its external ter-

AOMITTANCE minals. Making use of this prop-
IvEmvE erty, the prototype circuits in

Wb) ,,-,sm-M,,, Fig. 4.04-1 can be converted to

SOURCE: Fiail Report. Contract DA S6-09 either of the equivalent forms in
SC-748S2, Stafeoed Research F 1wiicth,
reprlted mIRE Tow.. PGOr?,e, Fig. 4.12-2 which have identical
Ref. I of Capter 0, byG. L. Matthaei). transmission characteristics to

FIG. 4.12.1 DEFINITION OF IMPEDANCE those prototypes in Fig. 4.04-1.
INVERTERS AND As can be seen from Eqs. (4.12-1
ADMITTANCE INVERTERS

and (4.12-2), inverters have the

ability to shift impedance or admittance levels depending on the choice

of the K or J parameters. For this reason in Fig. 4.12-2(a) the sizes

of RA, R , and the inductances L . may be chosen arbitrarily and the

response will be identical to that of the original prototype as in

Fig. 4.04-1 provided that the inverter parameters K,.,+l are specified
as indicated by the equations in Fig. 4.12-2(a). The same holds for the

circuit in Fig. 4.12-2(b) only on the dual basis. Note that the g, values

referred to in the equations in Fig. 4.12-2 are the prototype element values

as defined in Fig. 4.04-1.

A way that the equations for the K,., + and Ji,,,+ can be derived
will now be briefly considered. A fundamental way of looking at the

relation between the prototype circuits in Figs. 4.04-1(a), (b) and the

corresponding circuit in, say, Fig. 4.12-2(a) makes use of the concept

of duality. A given circuit as seen through an impedance inverter looks

like the dual of that given circuit. Thus, the impedances seen from

140



inductor L.1 in Fig. 4.12-2(a) are the same as those seon from inductance

L, in Fig. 4.04-1(b), except for an impedance scale factor. The imped-

ances seen from inductor Le. in Fig. 4.12-2(a) are identical to those

seon from inductance L2' in Fig. 4.04-1(a), except for a possible impedance

scale change. In this manner the impedances in any point of the circuit

in Fig. 4.12-2(a) may be quantitatively related to the corresponding

impedances in the circuits in Fig. 4.04-1(a), (b).

Figure 4. 12-3(a) shows a portion of a low-pasns prototype circuit

that has been open-circuited just beyond the capacitor C1,,. The dual

circuit is shown at (b), where it should be noted that the open circuit

RA La Lot Lon

Ka s /' .Kk,t Il . ~ ~ I f.n1- 7
took Of to -1211+

(a) MODIFIED PROTOTYPE USING IMPIDANCE INVIENTERS

GA

ait Ca ,/ a ChjIi..j ' Jn,ni ,l * .ng

Jol ~ ~ h. In~:.: Ia-I

(b) MODIFIED PROTOTYPE USING ADMITTANCE INVERTERS

SOURCE: Final Report. Contract DA 36-039 SC-74862, Stanford Research Institute,
reprinted in IRE Trans.. PCmTT (see Rot. I of Chapter 10, by G. L. Matthaei).

FIG. 4.12.2 LOW-PASS PROTOTYPES MODIFIED TO INCLUDE
IMPEDANCE INVERTERS OR ADMITTANCE INVERTERS
The go, gl, ... o gn+ 1 are obtained from the original
prototype as in Fig. 4.04-1, whIle the R A, L 1, ... , Len
and RB or the G A, C.P... Con end G8 may'hiechosen
as desired.
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Lk4S%., Lhsk L4~

KOINCIRCUIT

ta)

Lk.I 8Ok-1 Lk., S 
5
1il

SNORT CIRCUIT

LkLak Lo.1 LO

FIG. 4.12-3 SOME CIRCUITS DISCUSSED IN SEC. 4.12
A lacder circuit is shown at (a), and its dual is shown at (b). The
analogous K-Investor form of thoe" two circuits is shown at (c).

shown at (a) becomes a short circuit in the dual case. The corresponding

circuit using all series inductors and A' inverters is shown at (c). The

circuits in Fig. 4.12-3 will be convenient for deriving the formula for

K,,,in terms of L6 , L* ..1. and the prototype element Values gh and

g1 The open- and short-circuits are introduced merely to simplify

the equations.

Rieferring to Fig. 4.12-3, in the circuit at (a),

h. a + - (4.12-3)

Meanwhile in the circuit at (c)

Zk as+ (4.12-4)
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Now Z,' must be identical to Z4 except for an impedance scale change of
L /Lk. Therefore

*e LO L46k• z, . a~ +,Air'6+ (4.12-5)

Equating the second terms in Eqs. (4.12-4) and (4.12-5) gives, after

some rearrangement,

L L (4.12-6)

Since L, - g, and C,+, - gk ,, Eq. (4.12-6) is equivalent to the equation

for Kb A*1 given in Fig. 4.12-2(s). It is easily seen that by moving the

positions of the open- and short-

circuit points correspondingly, the Ln, e

same procedure would apply for calcu-

lation of the K's for all the in- "

verters except those at the ends.

Hence, Eq. (4.12-6) applies for k -1, II
2, ...,n. -n . Z, Zn.,

(a)
Next consider Fig. 4.12-4. At

(a) is shown the last two elements of Lon

a prototype circuit and at (b) is

shown a corresponding form with a K Kn,n"i

inverter. In the circuit at (a)

Z j L , +i (4.12-7) (b)

FIG. 4.12-4 ADDITIONAL CIRCUITS

while at (b) DISCUSSED IN SEC. 4.12

The end portion of a

K2  prototype circuit is shown

+ M"+1 4 at (a) while at (b) is shown
(4.12-8) the corresponding end

portion of a circuit with
K-inverters.

Since Z; must equal Z. within a scale

factor LN/L ,,
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L_ aL
z s z a j eah + -L G(4.12-9)

Equating the second terms of Eqs. (4.12-8) and (4.12-9) leads to tha

result

Knn+ 1  L :.+ 21(4.12-10)

Substituting g. and g.+, for L. and G.+,, respectively, gives the equation

for K.,.+1 shown in Fig. 4.12-2.

The derivation of the equations for the Jkk+l parameters in

Fig. 4.12-2(b) may be carried out in like manner on the admittance (i.e.,

dual) basis.

SEC. 4.13, EFFECTS UF DISSIP4TIVE ELEMENTS IN PROTOTYPES
FOR LOW-PASS, BAND-PASS, OR HIGH-PASS FILTERS

Any practical microwave filter will have elements with finite Q's,

and in many practical situations it is important to be able to estimate

the effect of these finite element Q's on pass-band attenuation. When a

filter has been designed from a low-pass prototype filter it is convenient

to relate the microwave filter element Q's to dissipative elements in the

prototype filter and then determine the effects of the dissipative elements

on the prototype filter response. Then the increase in pass-band attenu-

ation of the prototype filter due to the dissipative elements will be the

same as the increase in pass-band attenuation (at the corresponding fre-

quency) of the microwave filter due to the finite element Q's.

The element Q's referred to below are those of the elements of a

low-pass filter at its cutoff frequency 6ol and are defined as

" Q --- or .Gk (4.13-1)

where R, is the parasitic resistance of the inductance L,, and G, is the

parasitic conductance of the capacitance C,.* In the case of a band-pass

Nen, the uspriumod L&. k , Ck, Gk . and W values are meat to apply to any low-peas filter,.
whether it is a aormaelied prototype or not. Later in this section primes will be iatroduced

to aid in distiageishiag between the low-pass prototype perameters mad these of the eorrop
epoadig bead-pass or ilh-peas filter. 144



filter which is designed from a low-pass prototype, if (Qsp)k is the mid-

band unloaded Q of the kth resonator of the band-pass filter, then the

corresponding Q of the kth reactive element of the prototype is

(. - (Qspl (4.13-2)

In this equation w is the fractional bandwidth of the band-pass filter

as measured to its pass-band edges which correspond to the (o pass-band

edge of the low-pass prototype (see Chapter 8). The unloaded Q of the

resonators can be estimated by use of the data in Chapter 5, or it can

be determined by measurements as

in Sec. 11.02.

In the case of a high-pass L! L'a As-dall

filter designed from a low-pass

prototype, the element 's of

the prototype should be made to

be the same as the Q's of the £-21.U

corresponding elements of the FIG. 4.13.1 LOW-PASS PROTOTYPE FILTER

high-pass filter at its cutoff WITH DISSIPATIVE ELEMENTS

frequency. ADDED

Figure 4.13-1 shows a por-

tion of a low-pass prototype

filter with parasitic loss elements introduced. Note that the parasitic

loss element to go with reactive element gk is designated as dkgk, where

dk will be referred to herein as a dissipation factor. Using this nota-

tion Eq. (4.13-1) becomes (4 " k g5 /(dhg5 ) " where c is the cutoff

frequency of the low-pass prototype. Thus,

dk - 6 (4.13-3)

(4

Then for a series branch of a prototype filter

Zk m jw'Lk' + R'a . (/w' + dk)gk (4.13-4)

and for a shunt branch

a jw'C + 'a (jw' + d6)g1  (4.13-5)
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A special case of considerable practical interest is that where the

Q's of all the elements are the same so that dk - d for k - I to n. Then,

as can be seen from Eqs. (4.13-4) and (4.13-5), the effects of dissipation

can be accounted for by simply replacing the frequency variable jw' for

the lossless circuit by (jO)' + d) to include the losses. For example,

this substitution can be made directly in the transfer functions in

Eqs. (4.07-1). (4.08-5) to (4.08-8) in order to compute the transfer

characteristics with parasitic dissipation included. At DC the function

(j ' + d) becomes simply d, so that if

E Pl W * a, (j &' + + a I  fO' + a0  (4.13-6)

for a dissipationless prototype, the DC loss for a prototype with uniform

dissipation d is for w' - 0

E2 I  = P,(d) • a ," + ... + a d + ao  (4.13-7)

where (E2 ,,1 il/E2 is as defined in Sec. 2.10. Usually d is small so that

only the last two terms of Eq. (4.13-7) are significant. Then it is

easily shown that

(AIA) 0  = 20 lOgl0 [C d + 1) db (4.13-8)

8.686 C d

where (LA)O is the db increase in attenuation at w' • 0 when d is finite,

over the attenuation when d = 0 (i.e., when there is no dissipation loss).*

The coefficient C. - a1/ao where a, and a0 are from polynomial P (jw')

in Eq. (4.13-6).

In the case of low-pass prototypes for band-pass filters, (AL A) is

also the increase in the midband loss of the corresponding band-pass

filter as a result of finite resonator Q's. For high-pass filters designed

For example, a diasipatiomlese, 0.S-db ripple Tbebyschef filter with a = 4 would have LA

O.S db for wf a 0. If uaiform diasipation is latroduced the 8tteouatiom for to m 0 will beeome

LA a 0. + (0t. AO db.
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from low-pass prototypes, (AL) d relates to the attenuation as w -e O.

Equation (4.13-8) applies both for prototypes such as those in Sec. 4.05

which for the case of no dissipation los have points where LA is zero,

and also for the impedance-matching network prototypes in Secs. 4.09 and

4.10 which even for the case of no dissipation have non-zero LA at all

frequencies.

Table 4.13-1 is & tabulation of the coefficients C,. for prototype

filters having maximally flat attenuation with their 3-db point at

l' - 1. Figure 4.13-2 shows the Cn coeffi- Table 4.13-1
cients for Tchebyscheff filters plotted vs db MAXIMAl.LY FLIAT ATTENUATTON
pass-band ripple. In this case the equal- ITI COEFFICIENTS C,, FOR

ripple band edge is ,o; - I. Note that above IS.EIN EQ. (4.13-8)
These coefficients are for

about 0.3 db- ripple, the curves fall for n filters with their 3-db point
even and rise for n odd. This phenomenon is at 1=I and are equal to the

group time delay in seconds as
related to the fact that a T'chebyscheff pro- 00' approaches zer

totype filter with n even has a ripple maxi- Lace Fq. (4.08-2)

mum at co' - 0, while a corresponding filter C a CM

with n odd has a ripple minimum at that fre- 1 1.00 9 5.76

quency. There is apparently a tendency for 2 1.41 10 6.39
3 2.00 II 7.03

the effects of dissipation to be most pro- 4 2.61 12 7.66

nounced at ripple minima. 5 3.24 13 8.30
6 3.86 14 8.93

Bodei9 gives an equation for AL A' the 7 4.49 15 9.57

increase in attenuation due to uniform dis- 8 5.13

sipation, as a function of the attenuation phase slope and the dissipa-

tion factor, d. fode's equation may be expressed in the form

A. A 8.686 d - dlb (4.13-9)

where

arg Aa (4.13-10)

and in this case _V.A is the increase in attenuation at, (,)', the frequency,

at which d/dco' is evaluated.' Thus, this equation provides a convenient

a
It can be sees from Iqa. (4.13-B) and (4.13-9) that the Ca coefficiests in Table 4.13-1 and

Fig. 4.13-2 are equal to tke group time delay is seconds do W' approaches Nera.
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means for estimating the effects of uniform dissipation at any frequency.

Bode's discussion19 indicates that for cases where all the inductances

have a given Q, (L, and all of the capacitances have another Q, Q/, good
results can be obtained by computing d as 2w;/((L + Q.).

Cohn20 has presented another formula which is convenient for esti-

mating the effects of dissipation loss of low-pass prototypes for o' - O.
His formula may be expressed in the form

(_LA)O a 4.343 dkgk db (4.13-11)

where the d, are given by Eq. (4.13-3), and the prototype element values

g, are specifically assumed to have been normalized so that go - I (as

has been done for all of the prototypes discussed in this chapter). Note

that this formula does not require that the dissipation be uniform.

Equation (4. 13-11) was derived by assuming that the load and source re-

sistances are both one ohm, and that the effect of each 11, or G. in

Fig. 4.13-1 at we - 0 is to act as voltage or current divider with

respect to one ohm.2 As a result, Eq. (4.13-11) can lead to appreciable

error if the load and source resistances are sizeably different, though

it generally gives very good results if the terminations are equal or at

least not very greatly different.*

Table 4.13-2 compares the accuracy of Eqs. (4.13-8), (4.13-9), and

(4.13-11) for various Tchebyscheff filters having uniform dissipation.

Cases I to 3, which are for filters with n - 4 reactive elements, have

Table 4.13-2

COMPARISON OF ACCURACY OF EQS. (4.13-8), (4.13-9), AND (4.13-11) FOR

COMPUTING (&A)0 FOIl %ARIONJS TCIIEVYS(LIIFF FII.TEhRS
HAVING UNIFORM DISSIPATION

(di o  (4kt., )o  (&.)o (,/ )
CASE a Q ACTUAL BY BY BY

RIPPLE VALUE EQ. (4.13-8) EQ. (4.13-9) EQ. (4.13-11)

1 4 0.5 100 0.236 0.232 -- 0.264
2 4 2.0 100 0.223 0.214 -- 0.346

3 4 2.0 10 2.39 1.95 -- 3.46

4 5 0.5 100 0.364 0.357 0.35 0.365

5 5 0.5 10 3.55 3.05 3.5 3.65

Equation (4.13-11) ca be ede to be more accurate for the case of unequal tersmastions by

naltiplying its fight-head Side by 4ROR 1I/(R0 + RS, 
2 kere O and "ntl ae the resistanees

of the terminations. This ean be seen free the alternate point of viee is Sec. 6.14.
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unequal terminations; hence, Eq. (4.13-11) has relatively low accuracy

if the pass-band ripples are large. Equation (4.13-8) gives reduced

accuracy if the value of Q is very low. This happens as a result of

using only the last two terms in Eq. (4.13-7). The actual value of

(cuA)0 was computed by using as many terms in Eq. (4.13-7) as was re-

quired in order to obtain high accuracy. The values computed using

Eq. (4.13-9) were obtained by computing phase slope from Fig. 4.08-1.

Note that the results are quite good, The Q = 10 values included in

Table 4.13-2 are of practical interest since in the case of low-pass

prototypes of band-pass filters the element Q's for the low-pass proto-

type can become quite low if the fractional bandwidth w of the band-pass

filter is small [see Eq. (4.13-2)].

The above discussion treats the effects of parasitic dissipation at

, 0, and the important question arises as to what the loss will be

elsewhere in the pass band. Equation (4.13-9) provides convenient means

for obtaining an approximate answer to this question. Since it says that

"A at any frequency is proportional to tite attenuation phase slope (i.e.,

the group time delay) at that frequency, we can estimate AL A across the

pass band by examining the phase slope across that band. As seen from

the examples in Fig. 4.08-1, the phase slope in typical cases is greatest

near the cutoff frequency. In i. 4.08-1 the slope near cutoff is 2.66,

1.73, and 1.49 times the slope at ,,' = 0 for the cases of 0.5-db ripple,

0.0-db ripple, and maximally flat responses, respectively. Thus ALA
near cutoff will be greater than (.LA)O at (0' - 0 by about these factors.

These results are typical and are useful in obtaining an estimate of

what to expect in practical situations.

SEC. 4.14, APPHOXIMATE CALCULA'IION OF PHOTOTYPE
STOP- BAND ATTENUATION

Cohn 20 has derived a convenient formula for computing the attenuation

of low-pass filters at frequencies well into their stop bands. This

formula is derived using the assumption that the reactances of the series

inductances are very large compared to the reactances of the shunt capaci-

tors. When this condition holds, the voltage at one node of the filter

may be computed with good accuracy from that at the preceding node using

a simple voltage divider computation.3 Cohn further simplifies his

formula by use of the assumption that (w)LkCh + - 1) k u Ch+,
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Cuhn's formula, when put in the notation of the low-pass prototype

filters in this chapter, is

ALA  20 logs0 [(W')"(g 1 g 2g 3 ... g9)]

- 10 log _ 4 ) db (4.14-1)

where go, g ..... g.+ are the prototype element values defined in

Fig. 4.04-1(a), (b) and j)' is the prototype radian frequency variable.

For this formula to have high accuracy, co' should be a number of times

as large as ,, the filter cutoff frequency.

As an example, consider a Tchebyscheff filter with n = 4 reactive
elements and 0.2 db ripple. By Table 4.05-2(a), go - 1, g, - 1.3028,

g 2 a 1.2844, g3 - 1.9761, g4 - 0.8468, g5 - 1.5386, and the cutoff fre-

quency is c = 1. By Eq. (4.14-1), to slide-rule accuracy

L A - 20 log1 0  ((',')
4(4.29)] - 10 logl0  6.15 . (4.14-2)

Evaluating Eq. (4.14-2) for ,)' = 3 gives LA = 43.1 df,. By Fig. 4.03-6

we find that the actual attenuation is 42 db. Repeating the calculation

for c,' - 2 gives LA = 28.8 db as compared to 26.5 db by Fig. 4.03-6.

1hus it appears that even for values of as small as 2, Eq. (4.14-1)

gives fairly good results. The error was +2.3 db for e,,' - 2 and +1.1 db

for &' - 3.

Equation (4.14-1) neglects the effects of dissipation in the circuit.

This is valid as long as the dissipative elements in the prototype can

be assumed to be arranged as are those in Fig. 4.13-1. This arrangement
of dissipative elements is usually appropriate for prototypes for low-

pass, band-pass, and high-pass filters. However, in the case of proto-

types for band-stop filters, the different arrangement of dissipative ele-

ments discussed in Sec. 4.15 should be assumed. For that case Eq. (4.14-1)

will be quite inaccurate in some parts of the stop band.

SEC. 4.15, PROTOTYPE REPRESENTATION OF DISSIPATION LOSS
IN BAND-STOP FILTEHS

In the case of band-stop filters, the effects of parasitic dissipa-

tion in the filter elements are usually more serious in the stop band
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than in the pass hand. The stop band usually has one or more fre-

quencies where, if the filter had no dissipation loss, the attenuation

would be infinite. However, dissipation loss in the resonators will

prevent the attenuation from going to infinity and in some cases may-re-

duce the maximum stop-band attenuation to an unacceptably low value. If

a band-stop filter is designed from a low-pass prototype, it is quite

easy to compute the effects of finite resonator Q's on the maximum stop-

band attenuation.

The solid lines in Fig. 4.15-1 shows a Tchebyscheff low-pass proto-

type response along with the response of a band-stop filter designed from

(

00
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I--.

o (II -

(a T

I

I-

Ib)

FIG. 4.15-1 A LOW-PASS PROTOTYPE RESPONSE
IS SHOWN AT (a), AND THE CORRE-

SPONDING BAND.STOP FILTER
RESPONSE IS SHOWN AT (b)
The dashed lines show the effects of
dissipation loss.
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this prototype, both for the 4s.

case of no incidental disaipa-

tion. For a typical band-stop €. C;%

filter the resonators are reso- toot

nant at the center of the stop

band (instead of at the center -s.

of the pass band as is the case

for a typical band-pass filter), FIG. 4.15-2 LOW-PASS PROTOTYPE FILTER

and as a result the loss effects WITH DISSIPATIVE ELEMENTS
ADDED AS REOUIRED FOR

are most severe at the center of COMPUTING PEAK STOP-BAND

the stop band. The dashed line ATTENUATION OFCORRE-

in Fig. 4. 15-1(b) shows how dis- SPONDING BAND-STOP FILTERS

sipation loss in the resonators

will round off the attenuation

characteristic of a band-stop

filter. The dashed line in Fig. 4.15-1(a) shows the corresponding effect

in a low-pass prototype filter.

It is easily seen that in order for resistor elements to affect the

attenuation of a prototype filter as shown by the dashed line in

Fig. 4.15-1, they should be introduced into the prototype circuit as

shown in Fig. 4.15-2. Note that in this case as u)' - 0, the reactive

elements have tiegligible influence and the circuit operates in the same

way as a ladder network of resistors. In Fig. 4.15-2 the Q of the kth

reactive element is given by*

,4 ,-Q or - (4.15-1)

(4. 15-2)

where &o is the cutoff frequency in Fig. 4.15-1(a). The unloaded Q,

(Q,,,),, of the kth resonator of the band-atop filter is related to Qk
of the prototype (at frequency wi ) by

Qk •W(QBsF)k (4.15-3)

Note that these ummul defimitioms of Q reslt from the masser is chikt the dissipative
elemts are itredeeed is each breach of the filter.
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where

V * (4.15-4)
Co

and co, w,, and wo are as defined in Fig. 4.15-1(b), By Eq. (4.15-2),

Dk WA Q(4.15-5)

and as shown in Fig. 4.15-2,

R; or G; Dk 9k 14.1. . ... (4.15-6)

where the gk are the prototype filter elements as defined in Fig. 4.04-1.

As previously mentioned, when w' - W the reactive elements in
Fig. 4.15-2 may be neglected, and the attenuation can be computed from

the remaining network of resistors. In typical cases, resistances of

the series branches will be very large compared to the resistances of
the shunt branches, and Cohn's method for computing the stop-band attenu-

ation of low-pass filters20 can be adapted to cover this case also. The

resulting equation is

(L A)® 20 logl0 U(ID 2  . )(919 2  ... 9.)]

-10 logo 4 ) db (4.15-7)d - I0 l g og0 + )~n

which is analogous to Eq. (4.14-1) for the reactive attenuation of a

low-pass filter.

As an example, let us suppose that a band-stop filter is desired

with a fractional atop-band width of w - 0.02 (referred to the 3 db

points), and that maximally flat pass bands are desired. Let us assume

further that the resonator Q's at the mid-stop-band frequency are 700

and that the maximum stop-band attenuation is to be computed. By

Eq. (4.15-3) Q, - Q2 - 0.02 (700) - 14. By Table 4.05-1(a) the elements

values of the desired n - 2 low-pass prototype are g0 - 1, g! - 1.414,

92 - 1.414, and 93 - 1. Also, w which in this case is the 3-db band-edge
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frequency, is equal to unity. By Eq. (4.15-5), Di s D2 - 14, and, to

slide-rule accuracy, Eq. (4.15-7) gives (LA)u - 45.8 db. In comparison,

using the method of Sec. 2.13 to compute the attenuation from the ladder

of resistors gives (LA)e - 46.7 db.

As is suggested by the dashed lines in Fig. 4.15-1, the effects of

dissipation in the pass band are for this case most severe at the pass-

band edge, and they decrease to zero as the frequency moves away from

the pass-band edge (within the pass band). The increase in loss due to

dissipation at the band-edge frequency can be estimated by use of the

formula

8.686 (4.15-8)A) k.1 Q4t

This formula represents only an estimate, jut should lie reasonably accurate

for cases such as when an n w 5, 0. 1-db ripple prototype is used. For

cases where very large Tchebyscheff ripples are used this equation will

underestimate the loss; when very small ripples are used it will over-

estimate the loss. For O.1-db ripple, if n were reduced to 2 or 1,

Eq. (4.15-8) would tend to overestimate the hand-edge loss. For typical

practical cases, Eq. (4.15-8) should never have an error as great as a

factor of 2.

Equation (4.15-8) was obtained from Eq. (4.13-11) by the use of two

approximations. The first is that for the arrangement of dissipative

elements shown in Fig. 4.13-1, the added loss AL A due to dissipation at

the band edge ol is roughly twice the value (A LA) 0 of the loss due to

dissipation when r,,' = 0. This was shown by examples in Sec. 4.13 to be

a reasonably good approximation for typical low-pass prototype filters,

though it could be markedly larger if very large pass-band ripples are

used. The second approximation assumes that a filter with dissipative

elements as shown in Fig. 4.15-2 can be approximated at the frequency .0

by the corresponding circuit in Fig. 4.13-1. The reactive element values

g, are assumed to have been unchanged, and also the Q's of the individual

reactive element are assumed to be unchanged; however, the manner in which

the dissipation is introduced has been changed. This approximatiou is

valid to the extent that

S
This formula is based on Eq. (4.13-11) which assames that the prototype element values have
been normalised so that go = 1.
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- jg 4 - - + J ( 1 (4.15-9)

represents a gond approximation. It is readily seen that this is a good

approximation even for Q's as low as 10. Thus to summarize the basis

for Eq. (4.15-8)-the equation as it stands gives a rough estimate of

the attenuation due to dissipation at band edge for the situation where

the dissipative elements are introduced as shown in Fig. 4.13-1. We

justify the use of this same equation for the case of dissipative elements

arranged as in Fig. 4.15-2 on the basis of the approximation in

Eq. (4.15-9). It shows that as long as the reactive elements are the

same, and the element Q's are the same, and around 10 or higher, it

doesn't make much difference which way the dissipative elements are con-

nected as far as their effect on transmission loss is concerned.
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CHAPTER 5

PROPETIES OF SOME COMN MICROWAVE FILIU JW M

SEC. 5.01, INTRODUCTION

Previous chapters have summarized a number of important concepts

necessary for the design of microwave filters and have outlined various

procedures for later use in designing filters from the image viewpoint

and from the insertion-loss viewpoint. In order to construct filters

that will have measured characteristics as predicted by these theories,

it is necessary to relate the design parameters to the dimensions and

properties of the structures used in such filters. Much information of

this type is available in the literature. The present chapter will attempt

to summarize information for coaxial lines, strip lines, and waveguides

that is most often needed in filter design. No pretense of completeness

is made, since a complete compilation of such data would fill several

volumes. It is hoped that the references included will direct the inter-

ested reader to sources of more detailed information on particular subjects.

SEC. 5.02, GENERAL PROPERTIES OF TRANSMISSION LINES

Transmission lines composed of two conductors operating in the trans-

verse electromagnetic (TEM) mode are very useful as elements of microwave

filters. Lossle.s lines of this type have a characteristic or image im-

pedance Z0, which is independent of frequency f, and waves on these lines

are propagated at a velocity, v, equal to the velocity of light in the

dielectric filling the line. Defining R, L, G, and C as the resistance,

inductance, conductance and capacitance per unit length for such a line,

it is found that Z. and the propagation constant y, are given by

Z I__- , ohms (5.02-1)

*t + j,8 + +YC (5.02-2)



where w 277f. When the line is lossless, at is sero and

W3 * o radians/unit length (5.02-3)

SI.- distance/second (5.02-4)

Z0  V -I a vL ohms (5.02-5)

In practice a line will have some finite amount of attenuation

a, • a + ad  (5.02-6)

where a. is the attenuation due to conductor loss and ad the attenuation

due to loss in the dielectric. For small attenuations

R A (5.02-7)a6 -. ., - nepers

G _ t At,/ad - neper (5.02-8)
2YO 2Q4  2 tan

where Q. xcL/R, Qd u aC/G, and tan 8 is the loss tangent of the

dielectric material filling the line. The total Q of the transmission

line used as a resonator is given by

I - I + (5.02-9)

Q QC Qd

These definitions are in agreement with those given in terms of the
resonator reactance and susceptance slope parameters in Sec. 5.08. For

a slightly lossy line the characteristic impedance and propagation

constant become

b somvert asp,. to decibels, mdtiply by I.60.

10



. 1 + + (5.02-10).4QQ Qd 8Q!, 8Q2-

Z°• L1+ (5.02-11)

The TEM modes can also propagate on structures containing more than two

conductors. Examples of such structures with two conductors contained with-

in an outer shield are described in Sec. 5.05. Two principal modes can

exist on such two-conductor structures: an even mode in which the currents

in the two conductors flow in the same direction, and an odd mode in which

the currents on the conductors flow in opposite directions. The velocity of

propagation of each of these modes in the lossless case is equal to the

velocity of light in the dielectric medium surrounding the conductors. How-

ever, the characteristic impedance of the even mode is different from that

of the odd mode.

SEC. 5.03, SPECIAL PROPEBTIES OF' COAXIAL LINES

The characteristic impedance Z0 of a coaxial line of outer diameter

b and inner diameter d, filled with a dielectric material of relative

dielectric constant e., is

60 6
zo  i In ohms (5.03-1)

This expression is plotted in Fig. 5.03-1. The attenuation a. of a copper

coaxial line due to ohmic losses in the copper is

a € - 1.898 x 10 4  v b/d1  db/unit length (5.03-2)

where fG, is measured in gigacycles. (Here the copper is assumed to be

very smooth and corrosion-free.) The attenuation is a minimum for b/d

of 3.6 corresponding to V'T- Z0 of 77 ohms.

The attenuation ad of the coaxial line (or any other TEM line) due

to losses in the dielectric is

27.3 V r tan 8
db/unit length (5.03-3)
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where tan 6 is the loss tangent of the dielectric, and A is the free-space

wavelength. The total attenuation a, is the sum of a. and 01.. The at-

tenuation of a coaxial line due to ohmic losses in the copper is shown in

Fig. 5.03-2.

The Q of a dielectric-filled coaxial line may be expressed as

I I I
_ - + - (5.03-4)
Q V, Qd

where V. " iW 1A, depends only on the conductor lose and Qd depends only

on the dielectric loss. The Q of a dielectric-filled coaxial line is

independent of er and is given by the expression
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Q 1.215 x 10' b In in b/d
(I ( + b/d] (5.03-5)

where b and d are measured in inches. The value of Qj for the coaxial

line or any TEM line is

1
Q t (5.03-6)

The values of QV for a copper coaxial line are plotted in Fig. 5.03-2.

Breakdown will occur in an air-filled coaxial line at atmospheric

pressure when the maximum electric field E. reaches a value of approxi-

mately 2.9 x 104 volts per cm. The average power P that can be trans-

mitted on a matched coaxial line under these conditions is

P ..., b2In b/d

P a - b2  watts (5.03-7)
480 (b/d)2

When the outer diameter b is fixed, the maximum power can be transmitted

when b/d is 1.65, corresponding to Z0 of 30 ohms.

The first higher-order TE mode in a coaxial line will propagate when

the average circumference of the line is approximately equal to the wave-

length in the medium filling the line. The approximate cutoff frequency,

f. (in gigacycles), of this mode is

7.51
)C' a 7' (b + d) (5.03-8)€r

where b and d are measured in inches.

SEC. 5.04, SPECIAL PROPERTIES OF STRIP LINES

The characteristic impedance of strip line can be calculated by

conformal mapping techniques; however, the resulting formulas are rather

complex. Figure 5.04-1 shows the characteristic impedance, Z., of a

common type of strip line with a rectangular center conductor,14 for

various values of t/b < 0.25, and 0.1 1 w/b < 4.0. The values shown are

exact for t/b a 0 and are accurate to within about I percent for other
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The theoretical attenuation a. due to ohmic losses in a copper strip

line filled with a dielectric of relative dielectric constant e,., is

shown in Fig. 5.04-3. The attenuation a. due to the dielectric loss is

given by Eq. (5.03-3). As in the case of the coaxial line, the total

attenuation a, is the sum of a9, and a..

The Q of a dielectric-filled strip line is given by Eq. (5.03-4).

The Q, of a dielectric-filled line is shown plotted in Fig. 5.04-4."

As in the case of the coaxial line, Qj is the reciprocal of tan S.
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The average power, I' (measured in kw), that can be transmitted along

a matched strip line having an inner conductor with rounded corners is

plotted in Fig. 5.04-5. In this figure the ground plane spacing b is

measured in inches, and the breakdown strength of air is taken as

2.9 X 10' volts/cm. An approximate value of Z0 can be obtained from
Figs. 5.04-1 and 5.04-2.

The first higher-order mode that can exist in a strip line, in which

the two ground planes have the same potential, has zero electric-field

strength on the longitudinal plane containing the center line of the strip,

and the electric field is oriented perpendicular to the strip and ground

plane. The free-space cutoff wavelength, X€ of this mode is
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where d ia a function of the cross section Table 5.04-1

of the strip line. If t/b - 0 and THE QUANTITY 4d/b we. b/Xe

w/b > 0.35, then 4d/b is a function of FO l w/b > 0.35 AND t/b 0

b/X alone and is given in Table 5.04-1. 6/A9 4d/b

0.00 0.8820.20 0.917

SEC. 5.05, PARALLEL-COUPLED LINES AND 0.30 0.968
ARRAYS OF LINES BETWEEN 0.35 1.016

0.40 1.070
GIAOUNLD PLANES 0.45 1.1800.50 1.586

A number of strip-line components

utilize the natural coupling existing between parallel conductors.

Examples of such components are directional couplers, filters, baluns,

and delay lines such as interdigital lines. A number of examples of

parallel-coupled lines are shown in Fig. 5.05-1. The (a), (b), and (c)

configurations shown are primarily useful in applications where weak

coupling between the lines is desired. The (d), (e), (f), and (g) con-

figurations are useful where strong coupling between the lines is

desired.

The characteristics of these coupled lines can he specified in
terms of Z , and , , their even and odd impedances, respectively. Z ..

is defined as the characteristic impedance of one line to ground when

equal currents are flowing in the t,'o lines. Z.. is defined as the

characteristic impedance of one line to ground when equal and opposite

currents are flowing in the two lines. Figure 5.05-2 illustrates the

electric field configuration over the cross section of the lines shown

in Fig. 5.05-1(a) when they are excited in the even and odd modes.

Thin Strip Lines--i'he exact even-mode characteristic impedance of

the infinitesimally thin strip configuration of Fig. 5.05-1(a) is
4

30 K(k;)

K(k) ohms (5.05-1)

where

k, w tanh ( ')tanh ) (5.05-2)

k, (5.05-3)

a a
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and E, is the relative dielectric constant of the medium of propagation.

The exact odd-mode impedance in the same case is
i

307 K(k) ohms (5.05-4)

00 V77 K(k)

where

k a tanh ( • •coth + - ) (5.05-5)

* - - (5.05-6)
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and K is the complete elliptic integral of the first kind. Convenient

tables of K(k')/K(k) have been compiled by Oberhettinger and Magnus.$

Nomographa giving the even- and odd-mode characteristic impedances are

presented in Figs. 5.05-3(a) end (b).

Thin Lines Coupled Through a Slot -The thin-strip configuration

shown in Fig. 5.05-1(b) with a thin wall separating the two lines has a

value of Z., 0 Z0, which is the characteristic impedance of an uncoupled

line as given in Sec. 5.04. The even-mode characteristic impedance Z.,

is given approximately by

- +-~- (5.05-7)

where

Z 30 K~.kS ) (5.05-8)
ViE K(k)

17w
cosh-1

k 7- (5.05-9)

bb

and

V - V - k2  . (5.05-10)

Bound Wires-The even- and odd-mode characteristic impedances of

round lines placed midway between ground planes as shown in Fig. 5.05-1(c)

are given approximately by

aL In coth 17 (5.05-11)Zo-*O Vre7 26

Z + Z 0 120 46L (.5-2

of. ** Vei7 ird(5012

These should give good results, at least when d/b < 0.25 and

#/6 3 dli.
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Thin Lines Vertical to the Ground Planes-The even- and odd-mode

characteristic impedances of the thin coupled lines shown in Fig. 5.05-1(d)

are given approximately by the formulas 6

188.3 K()z,, . k(k,) (5.o5-13)

z 296.1 1 (5.05-14)

cos "1 k + In* k

In these formulas k' is a parameter equal to -k', and K is the com-

plete elliptic integral of the first kind. The ratio w/b is given by

ks

The inverse cosine and tangent functions are evaluated in radians between

0 and i /2. To find the dimensions of the lines for particular values of
and one first determines thk value of the k from Eq. (5.05-13)

and the tables of K(k)/K(k') vs. & in Hef. 5. Then b/s is determined
from Eq. (5.05-14) and finally v/b is determined from Eq. (5.05-15).

Equations (5.05-13) through (5.05-15) are accurate for all values of v/b
and s/7, as long as k/s is greater than about 1.0.

Thin Lines Superimposed-The formulas for the even- and odd-mode

characteristic impedance s of the coupled lines shown in Fig. 5.05-1(e)

reduce to fairly simple expressions when (v/ )/( - s/b) E 0.35.6 It is

found that

Zfo E w/b (5.0516)

1 -s/b E

188. 3/Vi"7
E. ,/ , C a. (5.05-17)

1-"a/b a £
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The capacitance C;. is the capacitance per unit length that must be added

at each edge of each strip to the parallel plate capacitance, so that the

total capacitance to ground for the even mode will be correct. C;.* is
the corresponding quantity for the odd mode and er is the relative

dielectric constant. The even- and add-mode fringing capacitances are

plotted in Fig. 5.05-4.
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Interleaved Thin Linoe-The configuration of coupled strip lines

illustrated in Fig. 5.05-1(f), in which the two lines of width c are

always operated at the same potential, is particularly useful when it is

desired to obtain tight coupling with thin strips that are supported by

a homogeneous dielectric, of relative dielectric constant e,, that com-

pletely fills the region between the ground planes.2 The dimensions of

the strips for particular values of Zee and Z can be determined with

the aid of Figs. 5.05-5 through 5.05-8. For this purpose one needs the

definitions that

V-Ze-376.6e (5.05-18)

376.6e
vZ c (5.05-19)

where C.. and C.. are the total capacities to ground per unit length of

the strips of width c or the strip of width a, when the lines are excited

in the even and odd modes, respectively. The absolute dielectric constant

e is equal to 0.225 e, pf per inch. Using the values of Ze, and Z.. which

are assumed to be known, one then computes tAC/e from

tAC 188.3 [ 2 I ~ - (5. 05-20)

Values of b and g are then selected and d/g is determined from Fig. 5.05-5.

Next, values of C:./e and C',/e are read from Figs. 5.05-6 and 5.05-7.

These quantities, together with the value of C**/e from Eq. (5.05-18),

are then substituted in Eq. (5.05-21) to give c/b:

c/b = I -g/b 1 C../e - C,./e - C:,/e (5.05-21)

Finally, CG*/e is found from Fig. 5.05-8 and substituted in Eq. (5.05-22)

to give a/b: / ! - C- / - 0.44 (5.05-22a)

Thus all the physical dimensions are determined.
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These formulas are exact in the limit of a and >> b so that fringing

fields at opposite edges of the strips do not interact. They are accurate to

within 1.24percentwhena/b > 0.3Sand [(c/b)/(l - g/b)) > 0.35. If these

conditions are not satisfied, itis possible tomake approximate corrections

based on increasing the parallel plate capacitance to compensate for the loss
of fringing capacitance due to interaction of the fringing fields. If an

initial value al/b is found to be less than 0.35, a new value, a3 /b, can be used
where

a, 0.07 + a/b(

b 1.20

provided 0.1 < a./b < 0.35. A similar formula for correcting an initial

value c1l/b gives a new value c3/b, as

[0.07(1 - g/b) + c/b]
1 (5.05-22c)b 1.20

provided g/b is fairly small and 0.1 < (c2/b)/(l - g/b).

When the strip of width a is inserted so far between the strips of width c

that d/g> l.0theeven-modevaluesC° /e andC' ./e, do not change from their
values at d/g - 1.0. However the value of AC/e does change and it can be found
simply by adding 4(d/g- 1) to the value of C/e at dg - 1.0. For spacing be-
tween the strips of width c greater than gib - 0.5, or for a separation dig <
-2.0, someof the configurations shown in Fig. S.05-1(a), (b), or (c) are

probably more suitable.

Thick Rectangular Bars-The thick rectangular bar configuration of

coupled transmission lines, illustrated in Fig. 5.05-1(g) can also be

conveniently used where tight coupling between lines is desired.n The

dimensions of the strips for particular values of Z.. and Z, can be de-

termined with the aid of Figs. 5.05-9 and 5.05-10(a),(b). A convenient

procedure for using the curves is as follows. First one determines AC/C

from Eq. (5.05-20), using the specified values of Z., and Z..' Next a

convenient value of t/b is selected and the value of a/b is determined

from Fig. 5.05-9. The value of w/b is then determined from the equation

15(0-23)
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FIG. 5.05-10(b) NORMALIZED FRINGING CAPACITANCE FOR AN ISOLATED RECTANGULAR BAR

The value of Co. to use is determined frm the specified value of Z

using Eq. (5.05-18). The fringing capacitance C', for the even modecan
I-e read from Fig. 5.05-9, and C can he determined from Fig. 5.05-10(b).

The curves in Fig. 5.05-10(a) allow one to determine C' directly.
fe

The various fringing and parallel-plate capacitances used in the

above discussion are illustrated in Fig. 5.05-11. Note that the odd-mode

fringing capacitances C'.o correspond to the fringing capacitances between

the inner edges of the bars and a metallic wall halfway between the bars.

It is seen that the total odd mode capacitance of a bar is



C°"" - .2 - + + (5.05-24)

and the total even mode capacitance of a bar is

Co.• C Ct •

+ + (5.05-25)E

The normalized per-unit-length parallel plate capacitance
C,/e 2w/(b - t), and e a 0.225e r pf per inch.

C'. -T i ?

C'fo

SOURCE: Quarterly Report 2, Contract DA 36-039 SC-87398, SRI;
reprinted in IRE Trans.. PGmTT (see Ref. 33, by
W. J. Getsinger).

FIG. 5.05-11 COUPLED RECTANGULAR BARS CENTERED BETWEEN
PARALLEL PLATES ILLUSTRATING THE VARIOUS
FRINGING AND PARALLEL PLATE CAPACITIES

The even- and odd-mode fringing capacitances C' /e and C;./6 were

derived by conformal t.apping techniques and are exact in limits of

[v/b/(I - 1b)I - O. It is believed that when (w/b/(1 - t/b)) > 0.35

the interaction between the fringing fields is small enough no that the
values of C /l and C. /e determined from Eqs. (5.05-24) and (5.05-25)

are reduced by a maximum of 1.24 percent of their true values.

In situations where an initial value, w/b is found from Eq. (5.05-23)

to be less than 0.35 [1 - (t/b)] so that the fringing fields interact, a

new value of v'/b can be used where
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{0.07 [~-]+.}
1 2 - (5.05-26)b 1.20

provided 0.1 < (w'/b)/[l - (t/b)) < 0.35.

Unsymmetrical Parallel-Coupled Lines-Figure 5.05-12 shows an un.

symmetrical pair of parallel-coupled lines and various line capacitances.

Note that C. is the capacitance per unit length between Line a and ground,

Cob is the capacitance per unit length between Line a and Line b, whileC

is the capacitance per unit length between Line b and ground. When C. is

not equal to Cb, the two lines will have different odd- and even-mode ad-

mittances as is indicated by Eqs. (1) in Table 5.05-1. In terms of odd- and

even-mode capacitances, for Line a
C: - C. + 2C , Co, - C. (5.05-27)

while for Line b

C6 a C6 + 2C, . C . (5.05-28)

- C . . c
fT. - Cob I T

LINE aLINE b

FIG. 5.05-12 AN UNSYMMETRICAL PAIR OF
PARALLEL-COUPLED LINES
Co, Cob, and Cb are line capaci-
tances per unit length.

For symmetrical parallel-coupled lines the odd-mode impedances are

simply the reciprocals of the odd-mode admittances, and analogously for
the even-mode impedances and admittances. However, as can be demonstrated

from Eqs. (2) in Table 5.05-1, this is not the case for unsymmetrical

parallel-coupled lines. For unsymmetrical lines, the odd- and even-mode
impedances are not simply the reciprocals of the odd- and even-mode

Is$



Table 5.0S-1

RELATIONS BETWEEN LINE ADMITTANCES, IMPEDANCES, AND
CAPACITANCES PER UNIT LENGTH OF UNSYMETRICAL

PARALLIls-COUPLED LINES

v a velocity of light in media of propagation

a 1.18 X 1010/V- inches/sec.

0 a intrinsic impedance of free space = 376.7 ohms

a dielectric constant - 0.225 er /df/inch

*: "C. s v(C + 2C6G
y:.• c. o " (. ,) } (1)

Y6 • C6 , C+, 2C.6)

Cb + 2C.6 ':, 4Zl.. V , z:.• -

C~ +~i~k 2C C

where F * CC + CC& + Cb~C

-m A )
(3)

C~ 6 71Y C " 0 Y6

co 702Z.". Cob. . 0 -', .
V -

* */(,- 2 .

(4)

* .e - . . . a
wherel . ' Z. *

*. so so 19



admittances. The reason for this lies in the fact that when the odd- and

even-mode admittances are computed the basic definition of these ad-

mittances assumes that the lines are being driven with voltage& of

identical magnitude with equal or opposite phase, while the currents in

the lines may be of different magnitudes. When the odd- and even-mode

impedances are computed, the basic definition of these impedances assumes

that the lines are being driven by currents of identical magnitude with

equal or opposite phases, while magnitudes of the voltages on the two

lines may be different. These two different sets of boundary conditions

can be seen to lead to different voltage-current ratios if the lines are

unsymmetrical.

Some unsymmetrical parallel-coupled lines which are quite easy to

design are shown in Fig. 5.05-13. Both bars have the same height, and

both are assumed to be wide enough so that the interactions between the

ELECTRIC WALL FOR OD MOOE

.- MAGNETIC WALL FOR EVEN MODE

r~ C; Cf4 Cf c; rC;I . bT

FIG. 5.05-13 CROSS.-SECTION OF UNSYMMETRICAL,
RECTANGULAR-BAR PARALL EL-
COUPLED LINES

fringing fields at the right and left sides of each bar are negligible,

or at least small enough to be corrected for by use of Eq. (5.05-26). On

this basis the fringing fields are the same for both bars, and their

different capacitances C. and C, to ground are due entirely to different

parallel-plate capacitances C and C'. For the structure shown

Co a 2(C; + cj +1 C,*)

Ca- (CI, -C;.)(5

1  2(C + Oc +C,)
C6GAB 

R

COPE INES



To design a pair of lines such as those in Fig. 5.05-13 so as to

have specified odd- and even-mode admittances or impedances, first use

Eqs. (3) or (4) in Table 5.05-1 to compute Ca/e, C6 ,/e, and C6/e. Select

a convenient value for t/b, and noting that

AC C' b

-- - - (5.05-30)

use Fig. 5.05-9 to determine s/b, and also C;./e. Using t/b and

Fig. 5.05-10(b) determine C,/e, and then compute

w - 1 " (5.05-31)

- " 2 1 -E •(5.05-32)

Knowing the ground-plane spacing b, the required bar widths w. and wb
are then determined. This procedure also works for the thin-strip case

where tib 0 0. If either w,/b or u6 /b is Jess than 0.351 - 0],

Eq. (5.05-26) should be applied to obtain corrected values.

Arrays of Parallel-Coupled Lines--Figure 5.05-14 shows an array of

parallel-coupled lines such as is used in the interdigital-line filters

discussed in Chapt. 10. In the structure shown, all of the bars have the

same t/b ratio and the other dimensions of the bars are easily obtained

2 401C12C1 C34~ V,
2 T 2

WO 60-0 W1 -04 ~- 61 U 2 -44- 23-4. W3 -1 34

SOURCE: Quarterly Progress Report 4. Contract DA 36-039 SC-87398, SRI;
reprinted in the IRE Trans. PGMTT (ser Ref. 3 of Chapter 10.
by G. L. MNatthaei)

FIG. 5.05-14 CROSS SECTION OF AN ARRAY OF PARALLEL-COUPLED
LINES BETWEEN GROUND PLANES
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by generalizing the procedure described for designing the unsymmetrical

parallel-coupled lines in Fig. 5.05-13, In the structure in Fig. 5.05-14

the electrical properties of the structure are characterized in terms of

the self-capacitances C, per unit length of each bar with respect to

ground, and the mutual capacitances Ch,l+, per unit length between ad-

jacent Lars P' and k + 1. This representation is not necessarily always

highly accurate because there can conceivably be a significant amount of

fringing capacitance in some cases between a given line element, and, for

example, the line element beyond the nearest neighbor. However, at least

for geometries such as that shown, experience has shown this represen-

tation to have satisfactory accuracy for applications such as interdigital

filter des irn.

For design of the parallel-coupled array structures discussed in

this look, eluations will be given for the normalized self and mutual
capacitances (:,,e and ckk+I/i per unit length for all the lines in the

structure. Then the cross-sectional dimensions of the bars and spacings

between them are determined as follows. First, choose values for t and

b. Then, since

= k (5.05-33)
~E

Fig. 5.05-9 can be used to determine s k, .,l I. In this manner, the

spacings s1 ,k~ l letween all the bars are obtained. Also, using

Fig. 5.05-9, the normalized fringing capacitances (CG)h 1 +i/E associated

with the gaps sb A between bars are obtained. Then the normalized

width of the kth bar is

. - -) [ (Ck k (C; + ] (5.05-34)
b 2 b

In the case of the bar at the end of the array (the bar at the far left
in Fig 5.05-14), C;,/E for the edge of the bar which has no neighbor

must be replaced by C;/e which is determined from Fig. 5.05-10(b). Thus,

for example, for Bar 0 in Fig. 5.05-14,

b (1 (7) c (C(5.05-35)

b 2L
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If W, < 0.35[l - t '6] for any of tile bars, the width correction given

in Eq. (5,05-26) should be applied to those bars where this condition

exists.

SE'C. 5.06, SPECIAL PlIOPEI CIES OF l0AVE(ilUI)ES

A waveguide consisting of a single hollow conductor that can propa-

gate electromagnetic energy above a certain cutoff frequency, f,, is also

a very useful element in mnicrowave filters. A waveguide can propagate an

infinite number of modes, which can be characterized as being either TE

(transverse electric) or "r1l (transverse magnetic). The TE modes have a

magnetic field but no electric field in tire direction of propagation,

while T1 modes have an electric field but no magnetic field in the di-

rection of propagation. Usually a waveguide is operated so that it propa-

gates energy in a single mode, and under this condition it can be described

as a transmission line with a propagation constant Y, and a characteristic

impedance Z 0 . The propagation constant for a waveguide is iniquely de-

fined. The characteristic impedance of a waveguide can be considered to

be the wave impedance of the guide, Z (i.e., the ratio of the transverse

electric to the transverse magnetic field in the guide), multiplied by a

constant. The value of the constant depends on what definition of charac-

teristic impedance is employed (i.e., vo!tage-curr.ent, voltage-power, or

current-power). Thus it is seen that the characteristic impedance of a

waveguide is not a unique quantity, as it is in the case of a TEM trans-

mission line. However, this lack of uniqueness turns out to be unimportant

in waveguide filter calculations because one can always normalize all

waveguide equivalent circuit elements to the characteristic impedance of

the guide.

In a lossless waveguide filled with dielectric of relative dielectric

constant E,, the guide wavelength &1, free-space wavelength A, wavelength

in the dielectric Al, and cutoff wavelength t¢, are related as

1 Cr 1 1
I. . . . + (5.06-1)
A,2  X.2  k 2  x 2

I S

The characteristic impedance that we shall assume for convenience to equal

the wave impedance is
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377 X f/1  TE modes

z 0 (5.06-2)

377 / A TNI modes
/7

The propagation phase constant /, is

.3, u radians/unit length (5.06-3)
A.I

The most common form of waveguide for use in microwave filters is a

rectangular waveguide of width a and height 6 operating in a TEI0 mode.

TE. 0 modes have cutoff wavelengths

2a
&C = - (5.06-4)

M

The index m equals the number of half-waves of variation of the electric

field across the width, a, of the guide. The cutoff frequency f,

(measured in gigacycles) is related to tile cutoff wavelength in inches as

f =• 1 . / (5.06-5)A¢ r

C

The dominant mode, that is, the one with the lowest cutoff frequency, is

the TEI0 mode.

The dominant mode in circular waveguide of diameter D is the TE11

mode. The cutoff wavelength of the T1I mode is 1.706D.

The attenuation of these modes due to losses in the copper conductors

are for TEt0 modes in rectangular guide

J90+ lb (.fT 1
).go0X 10-4 '1 ] l "b'

f* db/unit length (5.06-6)
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and for the TEll mode in circular guide

3.80 x 10-' VT I'] + 0.42
~ D f 0 db/unit length (5.06-7)

where f is measured in gigacycles. These values of attenuation are

plotted in Fig. 5.06-1.

The attenuation caused by losses in the dielectric in any waveguide

mode is

27.3 tan 8/s

2 ad db/unit length (5.06-8)

where tan b is the loss tangent of the dielectric. The unloaded Q, of
a waveguide" is

1 1 + (5.06-9)

Q Qd Q,

where Qd depends only on losses in the dielectric and is given by

1
= tan 8 (5.06-10)

and Q, depends only on the ohmic losses in the waveguide walls and is
given by

7TXQ, = (5.06-11)

Additional dimeuosion rlevanst to the use of wmvelide es resomstors will be lomd in
See. 5.0.
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For rectangular copper waveguides operating in the TE., mode, we have

Q.(TE. 0) a 1.212 x 10' b V(506-12)
1 + 2 b r fc-a

where a and b are measured in inches, and f in gigacycles. For a cir-

cular waveguide operating in the TEll mode, we have

0.606 x 10' D vT (5.06-13)

0.420 + ()

where D is measured in inches and f in gigacycles. These expressions

for Q, are plotted in Fig. 5.06-2.

The power-handling capacity P.Jx of air-filled guides, at atmospheric

pressure, assuming a breakdown strength of 29 kvlcm, for the TE.0 mode in

rectangular guide is

P,,,(T, = 3.6 ab - megawatts . (5.06-14)

and for the TE11 mode in circular 1;uide

Pmax(Tt1 1 ) = 2.7 D2 - megawatts (5.06-15)

where P.. is average power in megawatts and the dimensions are in inches.

In a rectangular waveguide operating in the TE1 0 mode, with an aspect

ratio b/a of 0.5 or 0.$5, the next higher-order mode is the TE2 0 with cut-

off wavelength X, = a. Next come the TEl1 or TM, modes each of which has

the same cutoff wavelength, X, u 2ab//a_"F'+ . In the circular waveguide,

the next higher-order mode is the TM01 mode, which has X' a 1.305 D.
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SEC. 5.07, COMMON TIANSMISSION LINE DISCONTINUITIES

This section presents formulas and curves for some of the common

discontinuities in transmission lines. Other more complete results are

to be found in the literature..
9,1,1,U

12. 13

Changes in Diameter of Coaxial Lines-When a change is made in the

diameter of either the inner or outer conductor of a coaxial line, or in both

conductors simultaneously, the equivalent circuits can be represented as shown in

Fig. 5.07-1.IOi The equivalent shunt capacity, Cd, for each of these

cases is given in Fig. 5.07-2. These equivalent circuits apply when the

operating frequency is appreciably below the cutoff frequency of the next

higher-order propagating mode.

Changes in Aidth of Center Conductor of a Strip Line-The change in

width of the center conductor of a strip line introduces an inductive

reactance in series with the line. 12 In most situations this reactance

is small and can be neglected. The approximate equivalent circuit for

this situation is shown in Fig. 5.07-3.

Compensated Iight-Angle Corner in Strip Line -A low-VSWB.right-angle

corner can be made in strip line if the outside edge of the strip is

beveled. Figure 5.07-4 shows the dimensions of some matched right-angle

corners for a plate-spacing-to-wavelength ratio, b '&, of 0.0845. These

data were obtained for a center strip conductor having negligible thick-

ness; however, the data should apply with acceptable accuracy for strips

of moderate thickness.

Fringing Capacitance for Semi-Infinite Plate Centered Between

Parallel Ground Planes-The exact fringiig .,p it.ancP, C;, from one

corner of a semi-infinite plate centered between pa,-.l!el ground planes

is

C; 2 - uo.f/inch

where c = 0.225 er micromicrofarads per inch and e, is the relative

dielectric constant of the material between the semi-infinite plate and

the ground planes. Fringing capacitance, C', is plotted in Fig. 5.07-5.
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SOURCE: IRE Tras.. PGMTT (see Ref. 12, by A. A. Olin.r).

FIG. 5.07.3 STRIP-LINE STEP EQUIVALENT CIRCUIT
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FIG. 5.07.4 MATCHED STRIP-LINE CORNER
The parameter ., Is the effective
length around the corner.
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FIG. 5.07-5 EXACT FRINGING CAPACITANCE FOR A SEMI-INFINITE PLATE
CENTERED BETWEEN PARALLEL GROUND PLANES
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Strip-Line T-Junctions -A symmetrical strip-line T-junction of the

type illustrated in Fig. 5.07-6(a) can be represented by the equivalent

circuit shown in Fig. 5.07-6(b). A short-circuit placed in turn in each

of the three arms, at distances equal to multiples of one-half wavelength

from the corresponding reference planes labeled PI and PV, will block

transmission between the other two arms of the junction.

Measured values obtained for the equivalent circuit parameters of

sixteen different strip-line T-junctions are shown in Figs. 5.07-7,

5.07-8,.and 5.07-9. The thickness, t, of the strips used in these meas-

urements was 0.020 inch, while the ground-plane spacing was 0.500 inch.

The widths of the strips having 35, 50, 75, and 100 ohms characteristic

impedance were 1.050, 0.663, 0.405, and 0.210 inches, respectively.

Measurements carried out in the frequency band extending from 2 to 5 Gc,

corresponding to values of b/K varying from 0.085 to 0.212. It was found

that the reference plane positions were almost independent of frequency

for all sixteen T-junctions, and therefore only the values corresponding

to b/ of 0.127 are shown in Fig. 5.07-7. It is seen from, an inspection

of Fig. 5.07-8 that A, the equivalent transformer turns ratio squared, is

sensitive to frequency and has a value approximately equal to unity for

b/N very small, and decreases considerably for larger values of b/N. The

values of the discontinuity susceptance, B , vary considerably from one

junction to another, and in some instances are quite frequency-sensitive.

It is believed that Bd is essentially capacitive in nature. Thus positive

values of Bd correspond to an excess of capacitance at the junction, while

negative values correspond to a deficiency.

Although the data presented in Figs. 5.07-7, 5.07-8, and 5.07-9 are

for T-junctions with air-filled cross section and with the ratio

t/b - 0.040, these data may be applied to other cross sections. For in-

stance, it is expected that these data should hold for any strip-thickness

ratio, t/b, up to at least 0.125 if the same characteristic impedances are

maintained.

In the case of a dielectric-filled section, c, > 1, the data are ex-

pected to apply with good accuracy if one divides the characteristic

impedances Z and Z0 by VW and multiples b/N and B /¥ by v'i7.

Change in Height of a Rectangular Waveguide-The equivalent circuit

of the junction of two waveguides of different height but the same width,

which are both operating in the TE1 0 mode can be represented as shown in
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Fig. 5.07-10. The normalized ausceptance BX,/'Yob is plotted in

Fig. 5.07-11 for various values of b/A , and is accurate to about

I percent for b/k ' 1.

SEC. 5.08, TRANSMISSION LINES AS RESONATORS

In many microwave filter designs, a length of transmission line

terminated in either an open-circuit or a short-circuit is often used

as a resonator. Figure 5.08-1 illustrates four resonators of this type,

together with their lumped-constant equivalent circuits. It is to be

noted that the resonators in Fig. 5.08-1(a) and 5.08-1(b) each have

lengths which are multiples of one-half guide wavelength, and that the

lumped-constant equivalent circuit of the transmission line which is

short-circuited at one end is the dual of the equivalent circuit of the

transmission line with an open-circuit termination. Similarly, the

resonators in Fig. 5.08-1(c) and 5.08-1(d) have lengths which are odd

multiples of one-quarter guide wavelength, and their lumped constant

equivalent circuits are also duals of one another. The quantities a,,

X60 and A0 are the attenuation of the transmission line in nepers per

unit length, the guide wavelength at the resonant frequency, and the

plane-wave wavelength at the resonant frequency, respectively, in the

dielectric medium filling the resonator.

The equivalence between the lumped constant circuits and the micro-

wave circuits shown was established in the following fashion. The values

of the resistance, R, and conductance, G, in the lumped-constant equiva-

lent circuits were determined as the values of these quantities for the

various lines at the resonance angular frequency, w.. The reactive

elements in the lumped-constant equivalent circuits were determined by

equating the slope parameters (defined below) of the lumped-element

circuits to those of the transmission-line circuits which exhibited the

same type of resonance. The general definition of the reactance slope

parameter %, which applies to circuits that exhibit a series type of

resonance, is

W ohms (5.08-1)0I2 dT we

where X is the reactance portion of the input impedance to the circuit.

The susceptance slope parameter 4, which applies to circuits that exhibit

a parallel type of resonance, is
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2 dB mhos (5.08-2)

2 dO

where B is the susceptance component of the input admittance of the

circuit.

The above general definitions for slope parameters provide a con-

venient means for relating the resonance properties of any circuit to a

simple lumped equivalent circuit such as those in Fig. 5.08-1. The

reactance slope parameter - given by Eq. (5.08-1) is seen to be equal to

W0L - 1, (c0C) for the equivalent, series, lumped-element circuit, while

the susceptance slope parameter 4 is equal to c - 1/ (O0L) for the

equivalent, parallel, lumped-element circuit. Considerable use will be

made of these parameters in later chapters dealing with band-pass and

band-stop microwave filters.

It should be noted in Fig. 5.n8-1 that the use of reactance or sus-

ceptance slope parameters also leads to conveiient expressions for Q,

and for the input impedance or admittance of the circuit in the vicinity

of resonance. For narrow-band microwave applications, the approximate

equivalence

( )-> 2 () (5.08-3)

is often convenient for use in the expressions for input impedance or

admittance.

SEC. 5.09, COUPLED-STiIP-TliANSMISSION-LINE FILTER SECTIONS

The natural electromagnetic coupling that exists between parallel

transmission lines can be used to advantage in the design of filters and

directional couplers. 14' 1 '.' 1 9' In this section, formulas are given

for filter sections constructed of parallel-cojpled lines of the types

illustrated in Fig. 5.05-1. Several cases involving unsymmetrical

parallel-cdupled lines as in Figs. 5.05-12 and 5.05-13 are also considered.

The ten coupling arrangements that can be obtained from a pair of
symmetrical, coupled transmission lines by placing open- or short-circuits

on various terminal pairs, or by connecting ends of the lines together,
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are illustrated in Fig. 5.09-1. In this figure, schematic diagrams of

single sections of each type are shown, together with their image pa-

rameters and either their open-circuit impedances or their short-circuit

admittances. In addition, equivalent open-wire transmission-line

circuits for eight of the coupled transmission line sections are shown

beneath the corresponding schematic diagram.

In the schematic diagrams of the coupled-transmission-line sections

in Fig. 5.09-1, the input and output ports are designated by small open

circles. The image impedance seen looking into each of these ports is

also indicated near each port. Open-circuited ports of the coupled lines

are shown with no connection, while short-circuited ports are designated

with the standard grounding symhol. In the equivalent transmission-line

circuits shown beside the schematic diagrams, a two-wire line represen-

tation is used. In each case, tiie characteristic impedance or admittance

of the lengths of transmission line is shown, together with the electrical

length, &. The equivalence between the parallel-coupled line sections and

the non-parallel-coupled line sections shown is exact.

Figure 5.09-2 shows the same parallel-coupled sections as appear in

Figs. 5.09-1(b). (c), (d), but for cases where the strip transmission

lines have unsymmetrical cross sections.* The line capacitances C" , Gb,

and C per unit length are as defined in Fig. 5.05-12. It is interesting

to note that in the case of Fig. 5.09-2(a) the line capacitances per unit

length for the left and right shunt stub in the equivalent open-wire

representation are the same as the corresponding capacitances per unit

length between Line a and ground, and Line b and ground, respectively.

Meanwhile, the capacitance per unit length for the connecting line in the

open-wire circuit is the same as the capacitance per unit length between

Lines a and b of the parallel-coupled representation. In Fig. 5.09-2(b)

the dual situation holds, where L and L, are the self-inductances per

unit length of Lines a and b in the parallel-coupled representation, while

L,4 is the mutual inductance per unit length between the parallel-coupled

lines. Since the line capacitances are more convenient to deal with, the

line impedances of the equivalent open-wire circuit are also given in

terms of C., C.,, and C,, for all three cases in Fig. 5.09-2. The

quantity v indicated in Fig. 5.09-2 is the velocity of light in the

medium of propagation.

The resals in Fig. 5.09-2 and mime thee* in Fise. S.09-3 and 5.09-4 were obtained by
eutensiom of the reselts in Nem. 19 and 20.
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In the cases of the circuits in Figs. 5.09-2(a), and (b), if the

parallel-coupled sections are properly terminated, their equivalent

open-wire line circuit simplifies in a very interesting and useful way.

This is illustrated in Fig. 5.09-3(a) and (b). Note that when the indi-

cated constraints a're applied, the equivalent open-wire circuit reduces

to simply an ideal transformer and a single stub. In spite of the con-

straint equations which are enforced in these circuits, there are still

sufficient degrees of freedom so that for specified Y and G. or Z. and

f r, a wide range of YA or ZA' respectively, can be accommodated. For

this reason these two structures will prove quite useful for use with

certain types of band-pass filters for the purpose of effectively real-

izing a series- or shunt-stub resonator, along with obtaining an impedance

transformation which will accommodate. some desired terninating impedance.

In a somewhat more complex way, the circuit in Fig. 5.09-2(c) will also

prove useful for similar purposes.

Figure 5.09-4 shows the parallel-coupled section in Fig. 5.09-1(i)

generalized to cover the case where the two strip lines may be of dif-

ferent widths. At (a) is shown the structure under consideration, while

at (b) and (c) are shown two open-wire line structures which are identi-

cally equivalent electrically to the strip-line structure at (a). As

previously indicated, parallel-coupled structures of this sort are all-

stop structures as they stand, but when properly used with lumped

capacitances, they become the basis for the comb-line form of filter

discussed in Sec. 8.13.

SEC. 5.10, IIIS-COIPLED WAVEGUIDE JUNCTIONS

Bethe l22 '23.'24 has developed a general perturbation technique for

calculating the scattering of power by small irises connecting one trans-

mission line with another. The theory is applicable even though the two

transmission lines have different cross sections and operate in different

modes; however, it applies rigorously only to infinitesimally thin irises

whose dimensions are small in terms of the operating wavelength. These

irises should be located far from any corners, in a transmission-line

wall whose radius of curvature is large in terms of wavelength. In

practice it is found that the theory holds reasonably well even when the

irises are located relatively close to sharp corners in transmission-line

walls of fairly small radii of curvature. For irises of finite thickness,

it is found that Bethe's theory is still applicable except that the
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trannmission through the iris is reduced. 5 In many instances it is

posa1..e to use Cohn's frequency correction25 where the iris dimensions

are not negligibly small with respect to a wavelength.

Bethe's original derivations 3' 5,s appeared in a series of MIT

Radiation Laboratory Reports, copies of which are quite difficult to

obtain. Recently Collin6 has derived some of Bethe's results using a

different approach, and these results are readily available. Marcuvitzs

recast much of Bethe' work and derived many equivalent circuits for

iris-coupled transmission lines, many of which are presented in the

Waveguide Handbook. 8 A paper by Oliner" contains some additionsl circuits

for iris-coupled lines.

Bethe's calculation of the scattering of power by small irises

actually consists of two distinct steps. The first step is the compu-

tation of the ejectric dipole moment, p, and the magnetic dipole moment,

a, induced in the iris by the exciting fields. The next step is the

calculation of the fields radiated by the electric and magnetic dipole

moments.

Figure 5.10-1 illustrates two parallel-plane transmission lines con-

nected by a small iris. The electric field, Ell, in the bottom line will

couple through the iris in the manner shown in Fig. 5.10-1(a). To a

first-order approximation, the distorted field within the iris can be

considered to arise from two electric dipole moments, each of strength p,

induced in the iris by the exciting electric field E.. as shown in

Fig. 5.10-1(b). The electric dipole moment in the upper line is parallel

to E.., while the electric dipole moment in the lower line is oppositely

directed.

Si P I

I I

(a) (b) a-,,,

FIG. 5.W1 ELECTRIC DIPOLE MOMENTS INDUCED IN AN IRIS BY AN ELECTRIC
FIELD NORMAL TO THE PLANE OF THE IRIS

226



Figure 5.10-2 illustrates the magnetic field coupling through an

iris connecting two parallel-plane transmission lines. Again the dis-

torted magnetic field within the iria can be considered to arise from

two magnetic dipole momenta each of strength ;, induced in the iris by

the exciting tangential magnetic field, H,,. The magnetic dipole moment

in the upper line is directed anti-parallel to f. while that in the

lower line is oppositely directed and parallel to 11.,.

(a) (b)

FIG. 5.10-2 MAGNETIC DIPOLE MOMENTS INDUCED IN AN IRIS BY A MAGNETIC
FIELD TANGENTIAL TO THE PLANE OF THE IRIS

1he s'trength, of the electric dipole mnomnt p, is proportional to

the product (of the electric polarizu~ility P' ol the iris and the exciting

field. E Its value in inks units is

where E, g885t , 10-12 farads meter. andi n is a unit vector di rected

away from the i ris~ on the sidt opposite' fronm tli exci ting field.

Trhe stLrenk~t.h of, Cie mgntiet. ic dipole moment is proportional to the

product of the 'tm'ritic jtnlarizaitilit), .;, of the iris and exciting

tangent ial miariet. i f itd e ItI C. I-or the usual type o t iris that has axes

of symmetry, tlhe mra,retic dipole moment is, in inks units,

-a * M1 II0.u + ,t121100V (5.10-2)

In this expres.sion the unit vectors U and v lie in the plane of the iris

along theeaxes of' symmetry, II/ and . are the mahnetic polarizabilities,
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and H,. and H., the exciting magnetic fields along the u and ; axes,

respectively.

The electric dipole moment, p, set up in an iris by an exciting

electric field, will radiate power into a given mode in the secondary

waveguide only when the electric field of the mode to be excited has a

component parallel to the dipole moment, p. Similarly the magnetic

dipole moment ; set up in the aperture by an exciting magnetic field

will radiate power into a given mode in the secondary waveguide only

when the magnetic field of the mode to be excited has a component

parallel to the magnetic dipole moment a.

In order to be able to apply lBethe's theory, it is necessary to

know the electric polarizability P and the magnetic polarizabilities

M, and M2 of the iris. Theoretical vdlues of the polarizabilities can

only be obtained for irises of simple shapes. For example, a circular

iris of diameter d has a value of M, a V 2 = d3/6 and P - d3/12. k long,

narrow iris of length I and width w has P - M2 ' 17/16) IW2 , if the ex-

citing magnetic field is parallel to the narrow dimension of the slit

(the v direction in this case), and the exciting electric field is per-

pendicular to the plane of the slit. The polarizabilities of elliptic3l

irises have also been computed. In addition, the polarizabilities of

irises of other shapes that are too difficult to calculate have been

measured by Cohn 2 'l° in an electrolytic tank. The measured values of the

polarizaoility of a number of irises are shown ir Figs. 5.10-3 and

5.10-4(a),(b), together with the theoretical values for elliptical irises.

Circular irises are the easiest to machine, but sometimes elongated irises

are required in order to obtain adequate coupling between rectangular

waveguides.

For many applications the equivalent-circuit representation of iris-

coupled transmission lines is more convenient than the scattering repre-

sentation. Figures 5.10-5 to 5.10-12 contain the equtivalent-circuit

representations of several two- and three-port waveguide junctions coupled

by infinitesimally thin irises. Most of the information in the figures is

self-explanatory. It is to be noted that in each case the reference

planes for the equivalent circuits are at the center of gravity of the

iris. The symbol K used in some circuits stands for an impedance inverter

as defined in Sec. 4.12. Also included in each figure is the power trans-

mission coefficient through the iris, expressed as the square of the

magnitude of the scattering coefficient. (Sec. 2.12).

228



0.14

0 02 04 06 O

FIG. 0 ... 0...

SOURE Pw IR (me Re 30,by B Ch If
5.10-3 MEASURED~~~ ELETRI POA IAII SORECTANGULARgqm RONED RSS NDUBBL-SAPDSLT

22lit



0.2500

H w
4

0.2000

................................... ...........
I flniuqHii IM M IIHEII

IN

... ... .. ... :11: it .!I inin nq::, it!.... ... .... .... I I H4". 11 -.. , j -. ................ .. ;-IT1"T::T.1:::g:! ::!:.,. ::: I::!!:: ui:... .... ...... .... ... .... Jim
0.1500 ...... ..... .. it: till;.... .... .. .... ... ... ..... ... .... ... .... .... ....

::!:!1.. 3: .:3 :W !:;: I it. I.: jI::j;i:iJ:::
... ...... ....44
.... .... .... I.:!

.... .... ...... .... RW
It I III 111111il HE

... 

... ... 
.

:-: it::A Tilif It 11,
.. .... ....

0.1000 .... . . .... .... ... I ad Hi

:if If I t Til
M:it

Im

114h
I it00500 it:3: 1.

ZF 11 it :it::::::!: t:;jHill IN
Ilill. Ms -T

00 0.1 02 0.3 0.4 0.5 0.6 0.7 0.9 0.9 1.0

i -- 9.34it-"

SOURCE: Pme. IRE (see Rot. 29, by S. B. Cohn).

FIG. 5.1"o) MAGNETIC POLARIZABILITIES OF RECTANGULAR, ROUNDED-END,
AND ELLIPTICAL SLOTS

230



MaNi .......... ...... ... .. . .. ..

-0 1 __*1 w... . .... .... .... .... .. ..... .... .. ... ..... .... .... .... .... ... ...... .... ....... ..... .... ...
W 5 ... ... .... .... .... ....

R- w

... ... 
...

ml
..... .... ...

.. . ....... .
.... .... .. .
... .... ... .... ..

. .... ... .... ... in...... .... .... .... .... .... .... ....

.
... 

.....

0.10 
3", . ... .... .. .... .. .... ....... ... .. .....

..... .... 
.. .... ... ... .... ..... . :..:!! .... ... ..

tz-.t

.... ......

oil
... ... ... ....

H is .. ...... .. it
+.1177 i xi

qm.;
.. ......... .

... ... ....0.05 16" FRiu*0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0

A-511RIP-1111

SOURCE: i-roc. IRE (see Ref. 29, by S. B. Cohn).

FIG. 5.10-4(b) MAGNETIC POLARIZABILITIES OF H-, CROSS., AND
DUMBBELL-SHAPED APERTURES

231



T910 MODE
I 2

r T T

CROSS SECTIONAL VIEW SIDE VIEW EQUIVALENT CIRCUIT

B abA6  M M, MC052 ,+ M2 in 2. p 8

F0 4WN a i 2 !-,i J) I

2 64i72M
2 sin 4 '7

1S121 2 ,0 a

Adapted from the Vaveade Handbook (see Ref. 8 edited bY N. Mercuvite)

FIG. 5.10.5 IRIS CONNECTING RECTANGULAR WAYEGUIDES OF THE
SAME CROSS SECTION

TE10 MODE

T2

fT

CROSS SECTIONAL VIEW SIDE VIEW EQUIVALENT CIRCUIT

4y2 647,2M
2 

5j
2 .2.. si2 iT

IS12 1
2  0 Y;1 a0 a'bAA

A *i C09 0 +I Mo2  
2 sin2 ~ '

r; x96sna a ebX

a ~f 4WM sin2  
&-Ul-0

Adapted from the U'avsulde, Handbook (see Ref. 8 edited bY N. Mareuvitul

FIG. 5.1046 IRIS CONNECTING RECTANGULAR WAYEGUIDFS
OF DIFFERENT CROSS SECTIONS



TI 1 MOM

c YOIs i

T T

2R T

CROSS SECTIONAL VIEW SIDE VIEW EQUIVALENT CIRCUIT

i 2 4y 64772M2 X

12 1812 9Rl4Xk

B O.95S(7wR 2)X.

M~ - iC0 2 1, 1 2 S'l 2PYO 417M

Adopted from the Waveguide Ilandbook (see Ref. 8 edited by N. Marcuvit2) ~ .I"44

FIG. 5.10-7 IRIS CONNECTING CIRCULAR WAVEGUIDES OF THE SAME RADIUS
TEII MODE

/ -. 0,

IE YOYO

//T T

OR T
go -2RO

CROSS SECTIONAL VIEW SIDE VIEW EQUIVALENT CIRCUIT

Y;= Rt2 k a.95(,R

131 1 2 -0 _ S 4w

Adopted from the Fat'eguide Handbex'k (see Ref. 8 edited by N. Mareuvits)

FIG. 5.10-8 IRIS CONNECTING CIRCULAR WAYEGUIDES OF DIFFERENT RADII

233



ct T-'-
GE

T"

T

GENERAL VIEW SIDE VIEW

C ~ ~ ~ ~ j /IX6 0

1I K c o

FIG. 510.9 ISCOUPEUTVTLENT CIRCTAGLRUIEPLN

ls,312 12 , 2 54 0 ,2'M 02n



Tell mowsl

,_ ..

0
e4

T

tm

GENERAL VIEW SIN v.W

T 

3

YO /' IX y
is,

4 '0

C 4
£4 QUIVAL9T CIRCUIT

K2 20 Z 4, #, v 2M ' co 2 K2.

•12  1 X2 - 8 a K 2o
Is l Is214= Z2 ,* IX12 26,3b, z° o,-

IS,31' . 3 1 16v a"1o .
Yo IB612 3R2ob A I 0 4ffM Sia R

a

, , sin 2  -- --

Y;3 GO,,, 3R2k xo;

YO 3R2, sin2 lfx ZO 66A ZO r3" RAN' co2 Is

20~ ~~~ ab1 ~ i on

N' • N1 sin 2 p + M2 co
2 I Ni cOS' + N2 8in

Adapted from the avegaue de Handbook (see Ref. 8 edited by N. Morcuvita) 0-NMV149

FIG. 5.10-10 IRIS-COUPLED T-JUNCTION OF RECTANGULAR AND CIRCULAR GUIDES

235



TE10 MODE

b IE

L...b.J IT E

T

GENERAL VIEW SIDE VIEW

TY0  113

ho yo

TT

EQUIVALENT CIRCUIT

1s 13 y; y Y 2  1672M2 i.1

0o IB612 aa'bbX 1K,\

& ab 217,\P 7 k

B 6 1\ a -c s 2 - -9 0 2

YO 417M ,i2 YO abX 2  a 2.~b

a6K~ ________X

Ko __21 , - 7 ______

Adopted from the Wave guide Handbook (see Ref. 8 edited by N. Niareuvitz)

FIG. 5.1011 IRIS-COUPLED SERIES T.JUNCTION IN RECTANGULAR G-UDw3

236



El I
T

GENERAL VIEW SIDE VIEW
3

z o

x; X4

T T
EQUIVALENT CIRCUIT

x 2  
Z0  ZO

2  
t2M

2

';)2 K2 "<2 0

z23 Z 7 X, 2  A'n'b'a 3 b
LI

x a ,3 , z ; X ' ' '
m 00 M20 ab

K 2a

(A2 4 A-/2a
h-I1l?-I@

Adapt..d from th, ,'.tgirl; IIilrndb,,, (94-; |,'f. 8 f.lit,. k N. Nlarr'uvit A

FIG. 5.10-12 IRIS-COUPLED SHUNT T-JUNCTION IN RECTANGULAR GUIDE,
H-PLANE

237



When the irises are not small with respect to free-space wavelength,

it is found that the equivalent circuits of Figs. 5.10-5 to 5.10-12 apply

with good accuracy if the static magnetic polarizability M1 given in

Fig. 5.10-4 is replaced by the magnetic polarisability NM. The expression

for MN is

MN-' (5. 10-3)

where he is the free-space wavelength a, the cutoff frequency for the

lowest-order mode in a waveguide having the same cross section as the

iris, and X is the free-space wavelength at the frequency of operation.

For long, thin irises of length 1, he is approximately equal to 21.

The finiLe thickness, t, of an iris reduces the transmission through

it. It is found that the total attenuation a of a thick iris is pre-

dicted with reasonable approximation as the sum of the attenuation as of

a thin iris and the attenuation al of a length of transmission line having

a length equal to the iris thickness. Thus,

1

a0  • 10 1og 10  1- db (5.1O-)

and

54.6tA - db (5.10-5)

where A is an empirically determined constant approximately equal to one

for a round hole.2 For an elongated slot of length I in a wall t thick,

A is about 3 if t < 0.02 1, but A decreases in size as t becomes larger.3

The information in Eqs. (5.10-3), (5.10-4), and (5.10-5) can be com-

bined to yield an equivalent polarisability M,, for a thick iris whose

cross-sectional dimensions are not small in terms of a wavelength. The

expression is
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SEC. 5.11, RESONANT FREQUENCIES AND UNLOADED Q
OF WAVEGUIDE RESONATORS

Two important characteristics of a waveguide resonator that are

useful in the design of waveguide filters are the resonant frequency of

the resonator and its unloaded Q, Q.. This section presents curves and

formulas yielding these quantities for completely closed cavities of the

rectangular and cylindrical varieties. When a small coupling iris is cut

in a cavity its resonant frequency and Q. will be nearly the same as

those of the unperturbed cavity.

Rectangular Waveguide Resonators-Rectangular resonators are

probably used more often in waveguide filters than any other type. An

example of such a resonator is illustrated in Fig. 5.11-1(a). The modes

that can exist in tfis resunator are conveniently divided into two sets,

the transverse electric TE-modes and the transverse-magnetic TM-modes.

The TE-modes have no electric field components, E, along the z axis and

the TM-modes have no magnetic field components, H, along the z axis.

The two types of modes are further specified in terms of the integers

1, a, and n. These are defined as

I - number of half-period variations of E and H along x

a - number of half-period variations of E and H along y

n - number of half-period variations of E and H along z.

For a given set of integers a mode is completely specified, and the modes

are designated as either TE1 ,,, or TMI., ,

The resonant frequencies are given by the equation

f2AB - 34.82 12 + ± a2 + A n (5.11-1)JA! B L2

where A, B, and L are measured in inches, and f is expressed in gigs-
cycles. Figure 5.11(a) also contains a mode chart in which f2A2 is

plotted as a function of A2/L for all of the TE- and TM-modes having
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1a, n 9 2 in a cavity in which B/A a 1/2. In this figure, all dimensions

are in inches, and frequency is measured in gigacycle.

The unloaded Q of a cavity is most conveniently tabulated in the
dimensionless form Q.8/X where 8 is the akin depth and X is the free apace

wavelength. Table 5.11-1 presents values of S/X for various metals having

polished, corrosion-free surfaces.

Table S.11-1

VALUES OF S/X FOR VARIOUS METALS
The Values Given Are For Po lished, Corrosion-Free Surfaces.

The Frequency fc Ia I n Gigacycies.

Silver, 6/h 6.76 x 10-1 Iv77

Copper, S/X 6.95 x 10'1 17.

Aluminum, 3/k 8.70 x( 10-6 1'7-

Brass, $/X *13.4 x~ 10 V7c

For TE-modes we find that Q.(b/X) is given by:31

4

(p2 + q1) (p2 + q' + r')3A

AL[pr 2 + (P2 +q2)2] +BL(,72r2+ (p2 + q2)2] +ABr 2 (p + q2 )

(5. 11-2)

for (I and n) >' 0;

Q1, ABL(92+ r)3 for 1 - 0 ;(5.11-3)
SX 2 q2L (B + 2A) + r 311(L + 2A)

and

8 ABL (p3 + rl)' 4
, fra 0 (.14

Qu ~2 p 2L (A + 2B) + r2 A(L-+2B o

where p l /A, q - x/B, r -nfL. Figure 5.11-1(b) shows a chart of QC(S/x)

versus AIL for various aspect ratios k a A1B for the TE ,, mods.
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Right.Circular-Cylinder Resonators-Cylindrical resonators of the

type illustrated in Fig. 5.11-2 also have normal modes that can be

characterised as TE-modes when there are no electric field components, 1,

along the z axis, and as TM-modes when there are no magnetic field com-

ponents, H, along the z axis. The individual TE- and TM-modes are further

identified by means of the three integers 1, m, and n, which are defined
as follows:

I - number of full-period variations of E, with respect to 6

a - number of half-period variations of E. with respect to r

n - number of half-period variations of E, with respect to 2

z

L

-

SOURCE Tecinique of Miem Me. urwern..a, see Ref. 31
by C. G. Montgomery

FIG. 5.11-2 RIGHT-CIRCULAR-CYLINDER
RESONATOR

where E. and Be are the field components in the r and 8 directions. As

in the case of the rectangular cavity modes the right circular cylinder

modes are also designated as TE,.*3 or TMI... The resonant frequencies

of these modes are given by the expression51

fs/)D a 139.3 + () . (5.11-7)
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In this expression f is measured in gigacycles, the dimensions D and L

are measured in inches. The quantities x 1,w are

x,, - th root of J'1 (x) - 0 for the TE-modes

xi. - nth root of J1 (z) - 0 for the TM-modes

Values of a few of these roots are given in Table 5.11-2.

Table 5.11-2

ROOTS OF J (xW AN4)J1W

TE-mod. Rio TM-mod. 'in

uln 1.841 01n 2.40S

21n 3.054 11n 3.832
Oln 3.832 21n 5.136
31n 4.201 02m 5.520
41n 5.318 31a, 6.380
l2n 5.332 12,. 7.016
Sin 6.415 41n 7.588
22n 6.706 22n 8.417

02n 7.016 03n 8.654

61n. 7.501 Sin 8.772
32n. 8.016 32n. 9.761

13n 8.536 61ua 9.936

71n 8.57R 13,. 10.174

42. 9.283

81,. 9.648

23m. 9.970
03. 10. 174

Source: Technique of Microwave.
heeauresenta, see Re(. 31,
by C. G. Montgomery.

Figure 5.11-3 is a mode chart in which f2D2 is plotted as a function

of D2/L2, for several of the lower-order TE- and TM-modes. In this figure

all dimensions are in inches and frequency is measured in gigacycles.

Values of Q., for right-circular-cylinder copper resonators are

plotted for 'rE-modes in Figs. 5.11-4 and 5.11-5, and for IM-modes in

Fig. 5.11-6.
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CHAPTER 6

STEPPED-IMPEDANCE TItANSFOIIERS AND FILTER PROTOTYPES

SEC. 6.01, INTRODUCTION

The objective of this chapter is to present design equations and

numerical data for the design of quarter-wave transformers, with two

applications in mind: the first application is as an impedance-matching

device or, literally, transformer; the second is as a prototype circuit,

which shall serve as Lhe basis for the design of various band-pass and

low-pass filters.

This chapter is organized into fifteen sections, with the following

purpose and content:

Section 6.01 is introductory. It also discusses applications,
and gives a number of definitions.

Sections 6.02 and 6 03 deal with the performance characteristics
of quarter-wave transformers and half-wave filters. In these
parts the designer will find what can be done, not how to do it.

Sections 6.04 to 6.10 tell how to design quarter-wave transformers
and half-wave filters. If simple, general design formulas were
available, and solvable by nothing more complicated than a slide-
rule, these sections would be much shorter.

Section 6.04 gives exact formulas and tables of complete designs
for Tchebyscheff and maximally flat transformers of up to four
sections.

Section 6.05 gives tables of designs for maximally flat (but not

Tchebyscheff) transformers of up to eight sections.

Section 6.06 gives a first-order theory for Tchebyscheff and
maximally flat transformers of up to eight sections, with
explicit formulas and numerical tables. It also gives a general
first-order formula, and refers to existing numerical tables
published elsewhere which are suitable for up to 39 sections,
and for relatively wide (but not narrow) bandwidths.

Section 6.07 presents a modified first-order theory, accurate
for larger transformer ratios than can be designed by the
(unmodified) first-order theory of Sec. 6.06.
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0 Section 6.08 deals with the discontinuity effects of non-ideal
junctions, and first-order corrections to compensate for them.

. Sections 6.09 and 6.10 apply primarily to prototypes for filters,
since they are concerned with large impedance steps. They
become exact only in the limit as the output-to-input impedance
ratio, R, tends to infinity. Simple formulas are given for any
number of sections, and numerical tables on lumped-constant
filters are referred to.

Note: Sections 6.09 and 6.10 complement Secs. 6.06 and 6.07, which give

exact results only in the limit as B tends to zero. It is pointed out

that the dividing line between "small R" and "large R" is in the order

of [2/(quarter-wave transformer bandwidth)] 2
4, where n is the number of

sections. This determines whether the first-order theory of Secs. 6.06

and 6.07, or the formulas of Secs. 6.09 and 6.10 are to be used. An

example (Example 3 of Sec. 6.09) where R is in this borderline region,

is solved by both the "small R" and the "large R" approximations, and

both methods give tolerably good results for most purposes.

Sections 6.11 and 6.12 deal with "inhomogeneous" transformers,

which are not uniformly dispersive, since the cutoff wavelength

changes at !ach step.

Section 6.13 describes a particular transformer whose performance

and over-all length are simila- to those of a single-section
quarter-wave transformer, but which requires only matching sections
whose characteristic impedances are equal to the input and

output impedances.

Section 6.14 considers dissipation losses. It gives a general

formula for the midband dissipation loss.

Section 6.15 relates group delay to dissipation loss in the pass

band, and presents numerical data in a set of universal curves.

Quarter-wave transformers have numerous applications besides being

impedance transformers; an understanding of their behavior gives insight

into many other physical situations not obviously connected with

impedance transformations. The design equations and numerical tables

have, moreover, been developed to the point where they can be used

conveniently for the synthesis of circuits, many of which were

previously difficult to design.
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Circuits that can be designed using quarter-wave transformers as a

prototype include: impedance transformers 16 (as in this chapter);

reactance-coupled filters74 (Chapt. 9); short-line low-pass filters

(Sec. 7.06); branch-guide directional coupler 10 (Chapt. 13); as well

as optical multi-layer filters and transformers, L and acoustical

transformers. 13.1

The attenuation functions considered here are all for maximally

flat or Tchebybcheff response in the pass band. It is of interest to

note that occasionally other response shapes may be desirable. Thus

TEM-mode coupled-transmission-line directional couplers are analytically

equivalent to quarter-wave transformers (Chapt. 13), but require

functions with maximally flat or equal-ripple characteristics in the

stop band. Other attenuation functions may be convenient for other

applications, but will not be considered here.

As in the design of all microwave circuits, one must distinguish

between the ideal circuits analyzed, and the actual circuits that

have prompted the analysis and which are the desired end product.

To bring this out explicitly, we shall start with a list of

definitions: 15

Homogeneous transformer- a transformer in which the ratios of

internal wavelengths and characteristic impedances at different
positions along the direction of propagation are independent
of frequency.

Inhomogeneous transformer- a transformer in which the ratios of

internal wavelengths and characteristic impedances at different
positions along the direction of propagation may change with
frequency.

Quarter-wave transformer- a cascade of sections of lossless,
uniform* transmission lines or media, each section being
one-quarter (internal) wavelength long at a common frequency.

A uaiform transmission line, medium. ate., is here defined as one in which he hical and electrical
heacterlstics do aot he with distance alas e directioa of propegatt is is a generalistion

of the IM definition of uniform weveg.id. (see ef. 16).
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Note: Hiomogeneous and inhomogeneous quarter-wave transformers are now

defined by a combination of the above definitions. For instance, an

inhomogeneous quarter-wave transformer is a quarter-wave transformer in

which the ratio., of internal wavelengths and characteristic impedances

taken between different sections, may change with frequency.

Ideal junction-the connection between two impedances or trans-
mission lines, when the electrical effects of the connecting
wires, or the junction discontinuities, can be neglected. (The
junction effects may later be represented by equivalent reactances
and transformers, or by positive and negative line lengths, etc.)

Ideal quarter-wave transformer-a quarter-wave transformer in
which all of the junctions (of guides or media having different

characteristic impedances) may be treated as ideal junctions.

Half-wave filter-a cascade of sections of lossless uniform
transmission lines or media, each section being one-half
(internal) wavelength long at a common frequency.

Synchronous tuning condition- a filter consisting of a series of
discont~nuities spaced along a transmission line is synchronously
tuned if, at some fixed frequency in the pass band, the reflections
from any pair of successive discontinuities are phased to give
the maximum cancellation. (A quarter-wave transformer is a
synchronously tuned circuit if its impedances form a monotone
sequence. A half-wave filter is a synchronously tuned circuit
if its impedances alternately increase and decrease at each step
along its length.)

Synchronous frequency- the "fixed frequency" referred to in the
previous definition will be called the synchronous frequency.
(In the case of quarter-wave transformers, all sections are
one-quarter wavelength long at the synchronous frequency; in the
case of half-wave filters, all sections are one-half wavelength
long at the synchronous frequency. Short-line, low-pass filters
may also be derived from half-wave filters, with the synchronous

frequency being thought of as zero frequency.)

The realization of transmission-line discontiniities by impedance

steps is equivalent to their realization by means of ideal impedance in-

verters (Sec. 4.12). The main difference is that while impedance steps

can be physically realized over a wide band of frequencies (at least for

small steps), ideal impedance inverters can be approximated over only

limited bandwidths. As far as using either circuit as a mathematical

model, or prototype circuit, is concerned, they give equivalent results,

as can be seen from Fig. 6.01-1.
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FIG. 6.01-1 CONNECTION BETWEEN IMPEDANCE STEP
AND IMPEDANCE INVERTER

SEC. 6.02, THE PERFORMANCE OF HOMOGENEOUS
QUARTER- WAVE TRANSFORMERS

This section summarizes the relationships between the pass-band

and stop-band attenuation, the fractional bandwidth, w9 , and the

number of sections or resonators, n. Although the expressions obtained

hold exactly only for ideal quarter-wave transformers, they hold

relatively accurately for real physical quarter-wave transformers and

for certain filters, either without modification or after simple

corrections have been applied to account for junction effects, etc.

A quarter-wave transformer is depicted in Fig. 6.02-1. Define

the quarter-wave transformer fractional bandwidth, v , by

UP 2Q 1 : :) (6.02-1)

2 a 5 +
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FIG. 6.02-1 QUARTER-WAVE TRANSFORMER NOTATION

where k 1 and N'1 2 are the longest and shortest guide wavelengths,

respectively, in the pass band of the quarter-wave transformer. The

length, L, of each section (Fig. 6.02-I) is nominally one-quarter

wavelength at center frequency and is given by

x I & g2 KI0 (6.02-2)

2 ( I & )  4

where the center frequency is defined as that frequency at which the

guide wavelength X K is equal to X.O'

When the transmission line is non-dispersive, the free-apace wave-

length K may be used in Eqs. (6.02-1) and (6.02-2), which then become

S-k+x 2 (6.02-3)

and
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L u h_ (6.02-4)"2(XI + "2)" 4

where f stands for frequency.

The transducer loss ratio (Sec. 2.11) is defined as the ratio of

Pa,,ii' the available generator power, to PL' the power actually

delivered to the load. The "excess loss," kis herein defined by

Pa-ai] (6.02-5)
PL

For the maximally flat quarter-wave transformer of n sections and

over-all impedance ratio R (Fig. 6.02-1) is given by

(B- 1)2 cos 2" 6 - E, cos2" 2 (6.02-6)

where

17 X8o (6.02-7)
2 X

hgo being the guide wavelength at band center, when 7 / '/2; and where

,.(R - 1) 2

4H (6.02-8)

is the greatest excess loss possible. (It occurs when 0 is an integral

multiple of n, since the sections then are an integral number of half-

wavelengths long.)

The 3-db fractional bandwidth of the maximally flat quarter-wave

transformer is given by

V , 3db " -sin l  12 (6.02-9)

I(R -1)

The fractional bandwidth of the maximally flat quarter-wave

transformer between the points of x-db attenuation is given by

",,,db 44 ina148 ,ntilog (xl0) - 1i 1/2M
d * Si ( - I . . (6.O210)
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For the Tchebyscheff transformer of fractional bandwidth wq,

(1 - 1)2 T!(cos 01U0)

4R T,€l/i 0)

(6.02-11)

a &ST 2(cos /o) J
where

40 sin \4W (6.02-12)

T is a Tchebyscheff polynomial (of the first kind) of order n, and

where the quantity

( it - 1 2  1 a,) C(6.02-13)

4 B T 2( 11 40 ) 7 -2( 1/ a0 )

is the maximum excess loss in the pass band. [Compare also Eq. (6.02-18),

below.) The shape of these response curves for maximally flat and

Tchebyscheff quarter-wave transformers is shown in Fig. 6.02-2. Notice

that the peak transducer loss ratio for any quarter-wave transformer is

P,,, ai! ('R + P)
- + 1 (R (6.02-14)

and is determined solely by the output-to-input impedance ratio, R.

For the maximally flat transformer, the 3-db fractional bandwidth,

Wq,3db' is plotted against log R for n z 2 to n = 15 in Fig. 6.02-3.

The attenuation given by Eq. (6.02-6) can also be determined from the

corresponding lumped-constant, low-pass, prototype filter (Sec. 4.03).

If w is the frequency variable of the maximally flat, lumped-constant,

low-pass prototype, and w; is its band edge, then

W* Cos&- C(6.02-15)

1 h0
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(bI TCNEBYSCHEFF

VSWR

o 2 3
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A-SSliP-19

SOI RCE: Quarterly Progress Report 4, Contract DA 36-039 SC-87398. SRI;
reprinted in IRE Trans. PG.VTT (See Ref.- 36 by L.. Young)

FIG. 6.02.2 QUARTER-WAVE TRANSFORMER CHARACTERISTICS

where P0t is defined by Eq. (6.02-12), and w.(which occurs in the

definition of ji*) is the fractional bandwidth of the Maximally flat

quarter-wave transformer between points of the same attenuation as

the attenuation of the maximally flat low-pass filter at wD' -Ul

This enables one to turn the graph of attenuation versus W'/.'j in

Fig. 4.03-2 into a graph of attenuation versus Cos 0 of the quarter-

wave transformer, using Eq. (6.02-15).

For the Tchebyscheff transformer,

-=T,?(I/M 0) _ M(n,w,) (6.02-16)
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[alie 6.02-

INq 0.1 0.2 0.3 0.4 0.i 0.6 0.7 0.8 0.9 1.0

2 0.1049 * 6 0.6517 * 4 0.1274 4 0.397H * 0.1,01 " 3 0.7575 2 0.4M 1 * 2 0.2293 " 2 0.1400 * 2 0.9000 4 1
3 0.795 " 8 0.1052 " 7 0. j$t * 5 0.1144 * O 0.4V3 " 4 0.1 IM 4 0.4 072 * 3 0.2130 3 0.9966 * 2 0.5000 * 2

4 0.4402 *11 0.16W9 * 0 0.6491 ' 7 0.6313 * 6 0.102) * 6, 0.2265 • 5 (.6246 " 4 0.2013 * 40.7291 * 3 0.290 * 3

5 0.2851 "14 0.2742 *1l 0.434 * ((.2517* H 0.2578 * 7 r0.3930 * 6 0.7852 * 5 0.190 * 5 0.5353 * 40.1682 * 4

6 0.1847 '17 0.4U27 1 13 0.330R '11 ,.10013 *10 0.,56l" * 60. W119 " 7 0.41172 * 6 0.1806 • 6 0.3933 * S 0.9801 " 4

7 0.11% '20 0.7149 115 0.23 1 '13 0.341N 11 0.1 4A "10 0.1183 1 9 0.1241 * 8 0.1710 7 0.2890 0 6 0.5712 5

8 0.7751 '22 0.1154 *in 0. 01h85 '15 0.151o4 *13 0.4 0,2 11 0.2052 '10 0.1560 * 10 0.1620 ' 8 0.2123 * 7 0.3329 * 6
9 0.5021 '25 0, 1)3 '20 0.1203 '17 (0.6355 "14 0.1(152 113 4.3561 '11 0.1961 010 0.1535 * 9 0.1560 * 8 0.1940 * 7

10 0.3252 *28 0.'008 122 0.8590 1 I 0.25.13 1I1, 0.265k "14 0.6178 '12 0.24#,o '11 0.1454 '10 0.1146 * 9 0.1131 * 8
11 0.2107 031 0.4S66 *24 fl' 132 120 0. 1010 *18 0.6720 '15 0.1072 '14 0.3100 *12 0.1377 '11 0.8422 * 9 0.6592 * 8

12 0.136S '34 0.7U10 '26, C.4377 '22 0.4026 '1V) 0. 1 18 17 0.1860 "15 0.3898 *13 0.1304 '12 0.6188 *10 0.3842 * 9
13 (.8842 *1' 0. 1266 '21 0.3124 '24 (I. 1.05 '21 0 420i2 '18 0.3227 '16 0.4901 014 0.1235 '13 0.4547 "11 0.2239 '10

14 0.5728 '39 0.20141 '31 0.2230 *21, (:.e.,:V7 '2210. W('4 *20 0.5598 '17 0.610 *15 0.1170 014 0.3340 012 0.1305 '11
15 0.3710 .42(0.329 '330.1542 1'2.257A '241(0.2742 *21 0. 9712 '18 0.7746 016 0.1108 'IS 0.2454 '13 0.7607 '11

1di,. '.02-1 courc I uide

1 . .3 (4 I 1.6 1.7 1.8 1.9 1.1)

2(0.6h046 1 0(. 4226 '1 0.30146 1 0.2308 * 1 0. 11104 * 1 0. 1467 '1 0. 1243 * 1 0.1103'* 1 0.1024 * 1 1.0

3 0.2h54 2 0.147 ' 2 0.9611 1 0.5234 '1 (.3331 ' 1 0.2236 "1 0.161 * 1 0.1241 * 1 0.1056 * 1 1.0
410.1230 3 0.5553 ' 20.2634 2 0.1308 0. 602. 1 0.373) 1 0.2213 * 1 0.1454' 1 0.1102 0 1 1.0

5 0.5771 3 0.2125 3 0.82118 •2 (0.3398 2 0.1459 * 2 0.0010 1 0.3219 0 1 0.1762 $ 1 0.1162 * 1 1.0
6 0.2713 ' 4 (,8170 3(0.2631 3 3 0.8% ;5 2 0.3U)6 ' 2 0.1206 ' 2 0.4853 * 1 0.2197 0 1 0.1239 * 1 1.0
7 0.1276' 5 0.3145' 4 0.8380 3 3 0.237) 3 0.7120 * 2 0.2239 ' 20.7490 1 0.2802' 1 0.1334 * 1 1.0

80. ,006f 50.1211 5 0.26 71 * 4(0.6327 3 0.158 • 30.4197 2 0,1174. 20.3639 10.140 * 1 1.0
9 0.2826 6 0.4,,6, 510.8B515' 40.1(,84 40.3552' 30.7907"2 0.1858' 2 0.4790' 10.1590. 1 1.0

1010.1329 '70.1797 • ,0.2715 5 0.4-W3 ' 410.71150 1 3 0.1493 ' 310.2959'2 0.6371 * 1 0.1756 ' 1 1.0
11 0.6257 • 7 0.6923 ' 6 0.8656 .0.1194 •5 0.1780 • 4 0.2825 30.4730 2 0.8542 * 1 0.1954 * 1 1.0

120.29 4 8 0.2 M7 ' 7 0.2760 •6 0.3179 5 0.3986 * 4 0.5347 310.7581 * 2 0.1152 • 2 0.2187 0 1 1.0

13 0.135 •90.1027 8 8. oo 6 0.8465 5 0.8928 4 0.1012 410.1216 30.1560 * 2 0.2463 * 1 1.0
1410.6518 • 90.3956 8 80.2F0, 7 0.2254 6 0.1999 " 5 0.1918 4 0.1954 30.2120' 2 0.2V87 1 1.0

15 0.3067 '10 0.1524 9 0.8947 7 7 0.6003 * 6 0.4478 1 5 0.3632 4 40.3142 " 3i0.2888 " 2 0.3167 * 1 1.0

'4 memn "multiply by 104." &nd so on.

• q(.F.: (uarterly Progress Report 4, Contract PA 36-030 SC.R7398, ill; reprinted in IRE Trans. PGTT
(see 11ef. 36 by .. Young)
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Equation (6.02-17) is accurate to better than about 1 percent for

v less than 0.1.

The attenuation given by Eq. (6.02-11) for the Tchebyscheff

quarter-wave transformer can also be determined from the graphs in

Figs. 4.03-4 to 4.03-10 for the corresponding lumped-constant, low-pass,

prototype filter [as already explained for the maximally flat case in

connection with Eq. (6.02-15)] by using the same Eq. (6.02-15) except

that now u) is the Tchebyscheff (equal-ripple) band edge of the

low-pass filter.

In the design of transformers as such, one is interested only in

the pass-band performance for small R (usually less than 100), and

this is expressed in terms of maximum VSWR rather than maximum

attenuation. Tables 6.02-2 through 6.02-5 give directly the maximum

VSWR inside the pass band for transformers with output-to-input

impedance ratios, R, of less than 100, and fractional bandwidths, wq

up to 120 percent, for transformers of n = 1, 2, 3, and 4sections
4

For all other cases, the maximum VSWi may be worked out from Table 6.02-1,

using the relation

S (V -1)(6.02-18)

4V,

where Vr is the ripple VSWIi (maximum VSWR in the pass band), together

with Eqs. (6.02-8) and (6.02-16).

Example 1- Determine the minimum number of sections for a trans-

former of impedance ratio R = 100 to have a VSWR of less than 1.15

over a 100-percent bandwidth (wq = 1.0).

From Eq. (6.02-18), for Ir = 1.15,

- 0.00489 (6.02- 19)

and from Eq. (6.02-8), for R - 100,

= 24.5 (6.02-20)
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Table 6.02-2 Table 6.02-3

MAXIMUM VSWR FOR SINGLE-SECTION MAXIMUM VSWR FOR TWO-SECTION
QUARTER-WAVE TRANSFORIERS QUARTER-WAVE TRANSFORMERS

IMPEDANtE BANDWIDTH, wq IMPEDANCE BANDWIDTH, uRATIO. ATIO. 7 _r
A 0.2 4 0.6 0.8 1.0 1.2 B 0.2 0.4 0.6 0.8 1.0 1.2

1,25 1.03 1.07 1.11 1,14 1.17 1.20 1.25 1.00 1.01 1.03 1.05 1.08 1,11
1,50 1.06 1.13 1.20 1.27 1.33 1.39 1.50 1.01 1.02 1.05 1.09 1.15 1.22
1.75 1.09 1.19 1.30 1.39 1.49 1.57 1.75 1.01 1.03 1.07 1.13 1.21 1.32
2.00 1.12 1.24 1.38 1.51 1.64 1.76 2.00 1.01 1.04 1.08 1.16 1.27 1.41
2.50 1.16 1.34 1.53 1.73 1.93 2.12 2.50 1.01 1.05 1.12 1,22 1.37 1.58

3.00 1.20 1.43 1.68 1.95 2.21 2.47 3.00 1.01 1.06 1.14 1.27 1,47 1.74
4.00 1.26 1.58 1.95 2.35 2.76 3.15 4.00 1.02 1.08 1.19 1.37 1.64 2.04
5,00 1,32 1.73 2.21 2.74 3.30 3.83 5.00 1.02 1.09 1.23 1.45 1.80 2.33
6.00 1.37 1.86 2.45 3.12 3.82 4.50 6.00 1.03 1.11 1.26 1.53 1.95 2.60
8.00 1.47 2,11 2.92 3.86 4.86 5.84 8.00 1.03 1.13 1.33 1.67 2.23 3.13

10.00 1.55 2.35 3.37 4.58 5.88 7.16 10.00 1.04 1.15 1.38 1.80 2.50 3.64
12.50 1.65 2.63 3.92 5.47 7.15 8.81 12.50 1.04 1.18 1.45 1.95 2.82 4.27
15.00 1.75 2.90 4.47 6.36 8.41 10.46 15.00 1.05 1.20 1.51 2.09 3.13 4.89
17.50 1.84 3.17 5.01 7.25 9.67 12.10 17.50 1.05 1.22 1.57 2.23 3,44 5.50
20.00 1,92 3.43 5.54 8.11 10.93 13.74 20.00 1.05 1.24 1.62 2.36 3.74 6.11

25.00 2.08 3.95 6.60 9.86 13.44 17.02 25.00 1.06 1.27 1.72 2.62 4.33 7.32
30.00 2.24 4.45 7.65 11.60 15.95 20.30 30.00 1.07 1.30 1.82 2.87 4.91 8.52
40.00 2.54 5.45 9.73 15.07 20.96 26.85 40.00 1.06 1.36 2.0( 3.36 6.06 10,91
50.00 2.82 6.43 11.81 18.54 25.97 33.40 50.00 1.09 1.41 2.17 3.83 7.20 13.29
60.00 3 10 7.40 13.88 22.00 30.98 39.95 60.00 1.10 1.46 2.34 4.30 8.33 15,66

80 00 3.63 9.34 18.02 28.92 40.98 53.04 80,00 1.12 1.55 2.65 5.21 10.57 20.41
100.00 4.16 11.27 22.15 35.83 50.98 66.13 100.00 1.13 1.63 2.96 6.11 12.81 25.15

SI0 CEI Ntt 1'ma. llPOW (see Rof. 4 by L. Young)

Table 6.02-4 Table 6.02-5

MAXIMUM VSWR FOR THREE-SECTION MAXIMUM VSWR FOR FOUR-SECTION
QUARTER-WAVE TRANSFOIERS QUARTER-WAVE TRANSFORME S

IMPEDANCE BANDWIDTH, IMPEDANCE BANDWIDTH,
RATIO, - RATIO. -

R 0.2 0.4 0.6 0.8 1.0 1.2 A 0.2 0.4 0.6 0.8 1.0 1.2

1.25 1.00 1.00 1.01 1.02 1.03 1.06 1.25 1.00 1.00 1.00 1.00 1.01 1.03
1.50 1.00 1.00 1.01 1.03 1.06 1.11 1.50 1.00 1.00 1.00 1.01 1.02 1.06
1.75 1.00 1.00 1.02 1.04 1.08 1.16 1.75 1.00 1.00 1.00 1.01 1.03 1.08
2.00 1.00 1.01 1.02 1.05 1.11 1.20 2.00 1.00 1.00 1.00 1.02 1.04 1.10
2.50 1.00 1.01 1.03 1.07 1.14 1.28 2.50 1.00 1.00 1.01 1.02 1.06 1.14

3.00 1.00 1.01 1.03 1.08 1.18 1.35 3.00 1.00 1.00 1.01 1.03 1.07 1.17
4.00 1.00 1.01 1.04 1.11 1.24 1.47 4.00 1.00 1.00 1.01 1.03 1.09 1.22
5.00 1.00 1.01 1.05 1.13 1.29 1.59 5.00 1.00 1.00 1.01 1.04 1.11 1.27
6.00 1.00 1.02 1.06 1.15 1.33 1.69 6.00 1.00 1.00 1.01 1.05 1.13 1.31
8.00 1.00 1.02 1.07 1.18 1.42 1.88 8.00 1.00 1.00 1.02 1.06 1.16 1.39

10.00 1.00 1.02 1.08 1.21 1.49 2.06 10.00 1.00 1.00 1.02 1.07 1.18 1.46
12.50 1.00 1.03 1.09 1.25 1.58 2.28 12.50 1.00 1.00 1.02 1.08 1.21 1.54
15.00 1.00 1.03 1.11 1.28 1.66 2.48 15.00 1.00 1.00 1.02 1.08 1.24 1.62
17.50 1.00 1.03 1.12 1.31 1.73 2.68 17.50 1.00 1.00 1.03 1.09 1.26 1.69
20.00 1.00 1.03 1.12 1.34 1.81 2.87 20.00 1.00 1.01 1.03 1.10 1.28 1.76

25.00 1.00 1.04 1.14 1.39 1.95 3.25 25.00 1.00 1.01 1.03 1.11 1.33 1.88
30.00 1.01 1.04 1.16 1.43 2.08 3.62 30.00 1.00 1.01 1.04 1.13 1.36 2.01
40.00 1.01 1.05 1.19 1.52 2.33 4.34 40.00 1.00 1.01 1.04 1.15 1.43 2.24
50.00 1.01 1.06 1.21 1.60 2.57 5.05 50.00 1.00 1.01 1.05 1.17 1.50 2.46
60.00 1.01 1.06 1.23 1.68 2.60 5.75 60.00 1.00 1.01 1.05 1.18 1.56 2.67

80.00 1.01 1.07 1.28 1.82 3.25 7.13 80.00 1.00 1.01 1.06 1.22 1.67 3.08
100.00 1.01 1.08 1.31 1.95 3.69 8.51 100.00 1.0 1.01 1.07 1.25 1.78 3.48

SMICE: IfN Trims. P077 (se Ibr. 4 by L. Youn) S00lACE I&# ftie. POM (see lbi. 4 by L. Tom 8 )
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flimce, E-q. (6.02-16) gives

.41n,. a) T 2~(1/,p0 ) U 0.501. x 10' (6.02-21)

From Table 6.02-1, in the column w.* 1.0, it is seen that this value

of 31(n,w q ) falls between n - 5 and n u6. Therefore, the transformer

must have at least six sections. (See also Example I of' Sec. 6.07)

SE(:-. 6.03, TH4E PIIIFORMANCE OF HOOENEI,01S
hIALF - "AV FT lTERS

The half-wave filter was defined in Sec. 6.01. It is shown in

Fig. 6.03-1. Its fractional handwidth w. is defined [compare

Eqj. (6.02-1 )] by

h 2Q:S :2) (6.03-1)

ELECTRICAL ie~~-'-
LENGTHS.
PHYSICALL

NIORMALIZED
IMPEDANCES;

z 8 zi Z;Z

JUNCTION VSWR'S:
V, v? V3  , V.

REFLECTION
COEFFICIENTS.

; r, ,F ar, - rn ;r,,

V. 211 , V., 7

s(1f I :F Quarterly Progress Report 4, Contract nA 3I6-0lQ SC-R739II, SRI;
repriaaed in IRE Trans. I'GmTT (see Rol. 36 by L.. Young)

FIG. 6.03.1 HALF-WAVE FILTER NOTATION
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and the length L' of each section [compare Eq. (6.02-2) is

L A 81 62 'k go (6.03.2)
AI + X 2 2

where X.1 and kS2 are the longest and shortest wavelengths, respectively,

in the pass band of the half-wave filter. This can be simplified for

non-dispersive lines by dropping the suffix "g," as in Eqs. (6.02-3)

and (6.02-4). A half-wave filter with the sae junction VSWRs V,
(Figs. 6.02-1 and 6.03-1) as a quarter-wave transformer of bandwidth

w has a bandwidth

qq

w - (6.03-3)
2

since its sections are twice as long and therefore twice as frequency-

sensitive. The performance of a half-wave filter generally can be

determined directly from the performance of the quarter-wave

transformer with the same number of sections, n, and junction VSWRs

, by a linear scaling of the frequency axis by a scale-factor of 2.

Compare Figs. 6.03-2 and 6.02-2. The quarter-wave transformer with

the same n and V. as the half-wave filter is herein called its

prototype circuit.

In the case of the half-wave filter, R is the maximum VSWR, which

is no longer the output-to-input impedance ratio, as for the quarter-

wave transformer, but may generally be lefined as the product of the

junction VSWRs:

R - Vl V (6.03-4)

This definition applies to both the quarter-wave transformer and the

half-wave filter, as well as to filters whose prototype circuits they

are. (In the latter case, the V, are the individual discontinuity

VSWRs as in Chapter 9.)

The equations corresponding to Eqs. (6.02-6) through (6.02-18) will

now be restated, wherever they differ, for the half-wave filter.
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SOURCE Quartly Progess Report 4. Contract DA4 36-039 SC-87398, SRI;
reprinted in IRE Trons. PGmT (se Ref. 36 by L. Young)

FIG. 6.03-2 HALF-WAVE FILTER CHARACTERISTICS

For the maximally flat half-wave filter of n sections,

. (R - 1)2 sin 2" 9 .1 sin 2" ' (6.03-5)

4B

where

6'. (6.0?-6)

instead of Eq. (6.02-7), so that 0' - r (instead of & - n'/2) at

band center. The 3-db bandwidth of the maximally flat half-wave

filter is

U h3db I 1,3db (6.03-7)
2
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and the bandwidth between the points of x.db attenuation is

U, , db (6.03-8)
2

which can be obtained from Eqs. (6.02-9) and (6.02-10).

For the Tchebyscheff half-wave filter,

S= (i - I)2 T2(sin O'/ 0 )

(6.03-9)

= F,7T2(sin t"/ o

wht re

i0 ( s in ' sin ((6.03-10)

The quantities S, S,, and the maximum transducer loss ratio are

still given by Eqs. (6.02-8), (6.02-13), and (6.02-14). For maximally

flat half-wave filters, the graph of Fig. 6.02-3 can again be used,

1but with the right-handI scale.

The lumped-constant, low-pass, prototype filter graphs in

Figs. 4.03-2 and 4.03-4 to 4.03-10 may again be used for both the

maximally flat and Tchebyscheff half-wave filters by substituting

sin L(6.03-11)

'0

for Eq. (6.02-15), where i0 is given by Eq. (6.03-10).

Equation (6.02-16) and Table 6.02-1 still apply, using Eq. (6.03-3)

to convert between w. and ,h

Example I-Find R for a half-wave filter of six sections having a

Tchelyscheff fractional bandwidth of 60 percent with a pass-band

ripple of I db.
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Here, w, 0.6, or w, W 1.2 . From Eq. (6.02-13),

antilog (0.1) - 1 - (R- 1)2 1 (6.03-12)
4B T2( i//ho)

and from Table 6.02-1 for w = 1.2,

1.259 - - (R - 1)2 1

4B 817

Hence, I = 850.

SEC. 6.04, EXACT TCHEBYSCHEFF AND MAXIMALLY FLAT SOLUTIONS
FOR UP TO FOUH SECTIONS

Enough exact solutions will be presented to permit the solution

of all intermediate cases by interpolation for Tchebyscheff and

maximally flat transformers and filters having up to four sections.

The solutions were obtained from Collin's formulas. 2 With the

notation of Fig. 6.02-1, they can be reduced to the expressions

given below. The equations are first given for maximally flat

transformers and then for Tchebyscheff transformers.

For maximally flat transformers with n - 2, 3, and 4:

n-2 V -

(6.04-1)

V2 . R /2

n 3 V2 + 2B1/
2V 2R/=0

1 Y(6.04-2)

V 2 R V /V J
n .4 v, A. Aq /

V) " A"" (6.04-3)

v, R 4 /A 1

me



where

-A2)• 2 (6i.04-3)R 1/4 + c a ntd

For Tchebyscheff Transformers with n - 2, 3, and 4:

n2V2 . /C7+R C

n= a 2/1
V2  1 /V

where (6.04-4)

(R - ),2
c 0

2(2 -4' )

and uo is given by Eq. (6.01-12).

2VIR 3~o(-1
n___3 V2 + 2v"V 1 , 4 - 1)

V ~ 1  V'2A

(6.04-5)

V2  a R1 AI/VI

n-4 V {R [ B + 2+-

V2

(6.04-6)
A 'R

V 2
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where

A 1 1 - 1/ft - 1f) /2

A2 2 +2tIt 2  4 2R2

B 1(A) [ (A) -( A2 ) - 2A +

(6.04-6)
and (cantd.)

24'2

2 v2
0

A difference between typical quarter-wave transformers, and half-

wave filters suitable for use as prototypes for microwave filters, is

that, for the former, R is relatively small (usually less than 100)

and only the poss-lsnd performance is of interest; for the latter, R

is relatively large, and the performance in both pass band and stop

band is important. Two sets of tables are presented for n = 2, 3,

and 4. The first set (Tables 6.04-1 to 6.04-4) cover R from 1 to 100.

Since these tables are most likely to be used in the design of

transformers, the impedances ZI and Z2 (Fig. 6.02-1) are tabulated;

the remaining impedances are obtained from-the symmetry relation,

which can be written (for any n)

ftZ1.i a R (6.04-7)

(where the Z, are normalized so that Z 0 2 1), or

VY - V +2= (6.04-8)

r r +2 . (6.04-9)
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Table 6.04-1

Zi FOI IO-SE;TION QIAITEH-WAVE TIANSFOHMERLS

(For w. 2A. Z w Z2 :Vf

I MPI OAN 1ANI, l ITII,
HIAT 10, -- - -

RI 0.0 0,2 0 3 0.6 . 3.0 1.2 1.4 1.6 1.8

1. 00 1. 000010 . 00000 1. 0000 1. 000(0 1. 000 1. 000011))1.00000 1. 000 1.000 1.000

1.25 1.05737 1.051110 1.(6034 1.06418 1. 06979 1. 07725 1.086,50 1.096 1.107 1.115
1.50 1. 106013 1. 104011 1. 11236 1. 11973 . ,305! 1. 14495 1. 16292 1.183 1.203 1.218
1.75 1.1501,. 1.3521 1.!5937 1.16404 1.1 Nl,9 '.20572 1.23199 1.261 1.291 1.314
2.00 1. 10'21 1. 1,!311 1. 197 1. 21:0,0 1.2 33811 1.26122 1.29545 1.334 1.373 1.402

2.5.0 1. 2S743 1. 2# 11: 1.27247 1.29215 1.32117 1 36043 1.40979 1.406 1.522 1.564
3.00 1.31160)7 1.32079 1.3352t, 1.3,042 1.397641.44It) 1.51179 1.584 1.656 1.711
4.110 1.4!421 1.420M10 1.44105 1. 47640 1.52892 1.60049 1.69074 1.793 1.894 1.971

5.00 1.49535 1.50.36(1, 1.52125 1.57405 1.640114 1.73205 1.84701 1.977 2.105 2.200
6.00 1.5#6011 1.57501 1. 605)3 1.65937 1.73970 1.84951 1.98768 2.143 2.295 2.407
8.0(0 1.613179 1.01473 1.7347511.80527 1.9110712.05579 2.2.3693 2.439 2.633 2.775

10.00 1.771128 1.79402 1.84281 1.92906 2.05879 2.23007 2.4543 2.700 2.931 3.100
12.50 1.88030 1.89434 1. 10584t 2.0334 2.22131) 12.4368  2.70282 2.994 3.266 3.463

15.00 1.96799 1.94014 2.05909 2.18171 2.36,7212. 61818 2.92611 3.259 3.568 3.791

17.50' 2.04531 2.070412. 148110o2.28850 2.491,38 2.78500 3.13212 3.505 3.847 4.093
20.00 2.11474 2.14275 2.230111,2.38t40 2.62224 2.94048 3.32447 3.733 4.107 4.374

25.00 2.236(7 2. 2,955 2.3743,# 2.56229 2.89580 3.22539 3.67741 4.152 4.583 4.888

30.00 2.34035 2.37403 2.50 ,12.71863 3.04734 3.48399 3.99798 4.533 5.013 5.353
40.00 2.51487 2.56334 2.71f1412.9917 3.40449 3.94578 4.57017 5.210 5.779 6.179

50.00 2.6.5915 2.71681 2.89921 3.22888 3.72073 4.35536 5.07697 5.808 6.454 6.907

60.00 2.78316 2.84956 3.06024 3.44157 4.00711 4.72769 5.53691 6.350 7.065 7.565

80.00 2.99070 3.07359 3.33788 3.81h81 4.51833 5.39296 6.35680 7.314 8.150 8.733

100.00 3.16228 1.26067 3.575,5 4. 14625 4.97177 5.98279 7.08181 8.164 9.107 9.763

CI

Z2 is given by

Z2  - fiZz

S(•WE.: IME Trans. PCIT (see Hef. 4 by I. Young)
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Table t.04-2

z OIt TIIREE-S:'CTION QUAIIEIR- WAV. TIMANSOINDIF3(

(For v q 2.0. Z1 = Z2 = 73

IMPEDANCE ItANIA IIITII ,
RATIO. 17

A 0.0 0.2 0.1 11.6 .. 1.2 I .'s 1.6 1.8

( W .000 !.0flo0o I .OOoO 1)1 . (10000 l.(} 1.00000) 1. 004)00 1. o)000 I.o00 1.000 1.o)00

1.25 1. 02H29 1.)210143 1.03051 1. , .335u 1- 343 1. 0456711.056341 1.071 1.091 1. 109

1.50 1.05202 1.0 5 703 1. Olt.!. I1. 04, 1io. 1. 0709j2 1 .014t.5 I. If4M 1. 134 1. 170 1.207
1.75 1.07255 . 073 h 1.078:1,, 1.0 ,.iti 1.099331 . 11  .92 1.14805 1.89 1.243 1.298
2.00 1. 09068 1. 09247 !. 091108 .1(130 1. 124fh 1. 14966 1. 18702 1.240 1.310 1.382
2.50 1.12177 1.12422 1.13142 1.14000 I. 1'8.,2 1.20344 1.25594 1.332 1.434 1.535
3.0) 1.14793 1.150I 1. 1050 1.17799 1.20.21 1.24988I. 31621 1.413 1.543 1.673
4.0 1.19071 1.1947t 1.2074#v 1.23087 1.26891 1.32837 1.41972 1.556 1.736 1.917

5.00 1.22524 1.23013 1.24557 1.27412 I. 320781.39428 1.50824 1.679 1.907 2.133

6.00 1.25439 1.2,,o.03 1.2770 1.31105 1.36551 1.45187 1.58676 1.70 2.060 2.329
8.D0 1.30219 1.3016 1.33128 1.37253 1.44091 1.55057 1.72383 1.985 2.333 2.677

10. 00 1. 340RI, 1. 34900 1.37482 1.42320 1.50397 1.63471 1.84304 2.159 2.577 2.984
12.50 1.3811) 1.3904H 1.42031) 1.47674 1.57157 1.72651 1.97543 2.354 2.849 3.329
15.00 1.41512 1.42564 1.45424 1.52282 1.63055 1.80797 2.09480 2.532 3.098 3.640

17.50 1.44475 1.45630 1.4932H 1.5355 I.n8331 1.88193 2.20457 2.698 3.325 3.92,
20.00 1.4710 1.48351) 1.52371 1.60023 1.73135 1.95013 2.30687 2.848 3.541 4.191
25.00 1.51650 1.53075 1 . 57661 1.,.4 1.111693 2.07364 2.49446 3.129 3.934 4.678
30.00 1.55498 1.57080 1.62184 1.72040 1.892210 2.18447 2.66499 3.384 4.288 5.124
40.00 1.61832 1,63691 1.697191 1.81471 2.02249 2. 34028 2.97034 3.845 4.920 5.909

50.00 1.66978 1.69080 1.75924 1.89378 2.13434 2.55256 3.24219 4.249 5.480 6.600
60.00 1.71340 1.73661 1.81246 1.96266 2.23376 2.70860 3.49018 4.616 5.987 7.226

80.00 1.78522 1.81232 1.90144 2.08004 2.40750 2.98700 3.93524 5.286 6.896 8.338
100.00 1.84359 1.87411 1.97500 2.17928 2.55856 3.23420 4.33178 5.870 7.700 9.318

Z2 and Z3 are given by
Z2 =

23 Af I

sou":cE iA! Tm,.,. "GITr (see Ref. 4 by IL. Youal)
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Tabie 6.04-3

Z1 F F(Iflis-S*:CT1N QUAirrmI4AVI: THANSFORMERS.

(For w. a 2.0, Z, z 2 " 3 - z  ar)

110tF.DANCiE IBANIWIITH. Wq
RATIO.

8 0.0 0.2 O.A - l.6 0.6j 1.0 1.2 1.4 1.6 1.1

1.00 1.00000 1.00000 1.00000 1.00000 1.0000011.00000 1.0000011.000 1.000 1.000
1.25 1.01405 1.01440 1.01553 1.01761 1.02106 1.02662 1.360 1.050 1.073 1.102
1.50 1.02570 1.02635 1.02842 1.03227 1.03860 1.04898 1.06576 1.903 1.137 1.193
1.75 1.03568 1.0365911.03949 1.04488 1.05385 1.06838 1.09214 1.131 1.194 1.277
2.00 1.0444t 1.04558 1.04921 1.05598 1.06726 1.08559 1.11571 1.165 1.247 1.354
2.50 1.05933 1.060 88 1.0,577 1.07494 1.09026 1.11531 1.15681 1.226 1.342 1.495
3.00 1.07176 1.07364 1.07963 1.09086 1.10967 1.14059 1.19218 1.280 1.426 1.622
4.00 1.09190 1.09435 1.1021h 1.1185 '.14159 1. 18259 1.25182 1.371 1.574 1.847

5.00 1.10801 1.11093!!.12026 1. 13784 1.16759 1.21721 1.30184 1.450 1.703 2.045

6.00 1.12153 1. 1248): 1. 13549 1. 15559 1.18974 1.24702 1.34555 1.520 1.820 2.225
8.00 1.14356 1.147581.1604311.18482.1.2254 1.29722 1.4205411.642 2.028 2.545
10.00 1.16129 1.1hS88i1.1800' 1.208031.25683 1.33920 1.48458 1.74912.213 2.828
12.50 1.1796 1 18483'1.2015t, 1.2335311.28883 1.38421 1.55461 1.86912.420 3.146

15.00 1.1950, 1. 20 0 82 11 *2 19 31 1.2547511.31638 1.42350 1.61690 1.97712.609 3.433
17.50 1.2084711.2147111.23478 1.273351 .34074 1.45869 1.67357 2.07712.784 3.699
20.00 1.22035 1.2270311.24854 1.28998!1.36269 1.49074-1.72593 2.170 2.948 3.946
25.00 1.24078 1.24824 1.27232 1.31891!1.40125 1.547911.82099 2.342 3.249 4.399
30.00 1.25803 1.26618 1.29251 1.34367:1.43467 1.59831 1.90654 2.498 3.524 4.809
40.00 1.28632 1.2564 1.32587 1.38498 1.49127 1.68552 2.05820 2.780 4.015 5.538
50.00 1.30920 1.31953 1.35308i1.4190511.53879 1.76055 2.19214 3.031 4.451 6.182
60.00 1.32853 1.33974 1.37624 1.44833!1.58022 1.8273212. 31378 3.261 4.848 6.765
80.00 1.36025 1.37297 1.41455 1.497361.65091 1.94412 2.53156 3.674 5.556 7.801
100.00 1.38591 1.39992 1.44587 1.53798il.71073 2.04579 2.72559 4.043 6.183 8.715

See Footnote, Table 6.04-4

SrOI E: IRE Trans. PCMTT (see Ref. 4 by L. Young)
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Table 6.04-4

Z2 FOR FOUR-SECTION QUARTER-WAVE TRANSFORIE S.

(For .q a 2.0, Z, Z2 a Z3 -  ' )

IMPEDANCE0 RwA!1IDITIIF
RATIO, - -

A 0.0 0.2 0.4 0.6 10.8 1.0 1.2 1.4 1.6 1.6

1.00 1.00000 1.00000 1. 00000 .00000j1.00000 1.004100 1.00000 1.000 1.000 1.000

1.25 1.07223 1.07260 1.07371 1.075591 1.07830 1.08195 1.08683 1.093 1.102 1.112

1.50 1.13512 1.13584 1.13799 1.14162 1.14685 I.15394 1. 16342 1.176 1..193 1.214
1.75 1.19120 1.19224 1.19537 1.20065 1.20827 1.21861 1.23248 1.251 1.277 1.307
2.00 1.24206 1.24340 1.24745 1.25431 1.26420 1.27764 1.29572 1.320 1.354 1.393
2.50 1.3320411.33396 1.33974 1.34954 !.36370 1.38300 1.4007 1 445 1.494 1.551
3.00 1.4'051 1.4129611.42036 1.43290 1.45105 1.47583 1.50943 1.556 1.620 1.694
4.00 1.544.7 1.54760 1.55795 1.57553 1.601.02 1.63596 1.68360 1.750 1.842 1.947

S.00 1.05686 1.66118 1.67423 1.to9642 1.72864 1.77292 1.83358 1.918 2.037 2.170

6.00 1.75529 1.76043 1.77600 1.80248 1.4098 1.8440! 1.96694 2.069 2.212 2.371

8.00 1.92323 1.929o0 1.95009 !.9844f) 2.03453 2.10376 2.19954 2.335 2.524 2.730
10.00 2.06509 2.073!512.075. 2.13415 2.19984 2.28397 2.40096 2.568 2.798 3.046

12.50 2.21803 2. 2277o 2. 25(,98 12. 30,91 2. 37988 2.48134 2.6f2317 2.826 3.105 3.399
15.00 2. 35186 2. 3630.1 2.398t 12.45455 12.53898 2.65O67 2.82190 3.059 3.383 3.719
17.50 2.471641 2.48426 2. 52237 12O739. 682h4 2.8157013.00321 3.273 3.639 4.014
20.00 2.58072 2.594tP3 2..3,81 2.7088012.81433)2.96208 3. 17095 3.472 3.878 4.288

25.00 2.774471 2.7908' 2.84060 2.11257513.05065 3.22609 3.47548 3.836 4.315 4.789
30.00 2.94423 2.,46249 1.0,0119 3.17!2i3.2008 13.46148 3.74905 4.165 4.711 5.243

40.00 3.23492!3.2578t 3.32792 3.44754 3.02377 3.87328 4.23198 4.750 5.415 6.049
SO.00 3.48136 3.5083513.50021 3.73029 3. 4370414.23091 4.65555 5.2t A 6.038 6.759
60.00 3.6,752 3.721f,'3 112111 3. 98025 j4.21547 14. 55096 5.03760 5.734 6.601 7.401
80.00 4.06810 4.I1054414.21877 4.41293 4.70063 5.11329 5.71502 6.568 7.603 8.543

100.00 4.3823 4.42(1014.55802 4.78420 5.1200315.60394 6.31175 7.304 6.487 9.548

*

zi is gives in Table 6.04.3, Z3 and Z. are given by

z3 a 8/Z2

Z4 * 8/ZI

SOKCE: IRE Trans. PGTT (see Ref. 4 by L. Youg)
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The characteristic impedances, Zj , are obtained from the junction

VMSl, Vi, using Fig. 6.02-1 for the quarter-wave transformer and

Fig. 6.03-1 for the half-wave filter. It is convenient to normalise

with respect to Z., and as a result, the values of Z 1, Z1 , ... given

in the tables are for Z0 a 1. The tables giving the Z1 all refer to

quarter-wave transformers. To obtain the Z: of half-wave filters,

obtain the Vi from Fig. 6.02-1, and use these V8 to obtain the Z'

from Fig. 6.03-1. This gives the half-wave filter with the same

attenuation characteristics as the quarter-wave transformer, but

having a bandwidth Y, a sw,. (Compare Figs. 6.02-2 and 6.03-2.)

The solutions of Eqs. (6.04-1) to (6.04-6) for larger values of
Bt are presented in the second set of tables (Tables 6.04-5 to 6.04-8).

They give the values of V2 and V, for n - 2, 3, and 4. The remaining
values of V are obtained from Eq. (6.04-8) and

V1V2 ... V,11+1• R (6.04-10)

which, for even n, reduces to

(VIV2 ... V,/ 2 )2V(,/,)+ • R (6.04-11)

and for odd n, reduces to

(V1V2 ... V(,l)/2 ) 1 (6.04-12)

Equations (6.04-7) to (6.04-12) hold for all values of n

Tables 6.04-5 to 6.04-8 give the step VSWfs for R from 10 to G

in multiples of 10. Note that for Tchebyscheff transformers V. V .

V. and VI/(R)% - V,.1 /(R)% tend toward finite limits as R tends toward

infinity, as can be seen from Eqs. 6.04-1 to 6.04-6 for n up to 4, by

letting R tend toward infinity. (For limiting values as R tends

toward infinity and n > 4, see Sec. 6.10.) The tables give fractional

bandwidths, Y., from 0 to 2.00 in steps of 0.20. [The greatest

possible bandwidth is Y9*M 2.00, by definition, as can be seen from

Eq. (6.02-1).]
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When interpolating, it is generally sufficient to use only the

two nearest values of V or Z. In that case, a linear interpolation

on a log V or log Z against log R scale is preferable. Such

interpolations, using only first differences, are most accurate for

small R and for large R, and are least accurate in the neighborhood

R ()c (6.04-13)

In this region, second- or higher-order differences may be used (or a

graphical interpolation may be more convenient) to achieve greater

accuracy.

Example I-Design a quarter-wave transformer for R - 2.5, to have

a VSWR less than 1.02 over a 20-percent bandwidth.

Here, R - 2.5 and tv a 0.2. From Table 6.02-2, it can be seei

that one section is not enough, but Table 6.02-3 indicates that two

sections will do. From Table 6.04-1, we obtain Z, a 1.261, and

from Eq. (6.04-7), Z2 a 1.982.

Example 2-Find the step VSWRs V1. V2, 3. and V4 for a three-

section quarter-wave transformer of 80-percent bandwidth and R * 200.

Also, find the maximum pass-band VSWR.

Here, n - 3 and w. 0.8. For P - 100, from Table 6.04-6,

V2 a 3.9083

log V2 a 0.5920

For R w 1000,

V2 a 5.5671

. log V2 a 0.7456

Now, for f - 200,
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log R w 2.301

Interpolating linearly,

log V 2  0.5920 + 0.301(0.7456 - 0.5920)

a 0.6382

V2 " 4.347 - V3 also

From Eq. (6.04-10) or (6.04-12),

(VIV 2 )2 . R

V1 - V4 a 2.086

The maximum pass-band VSWR, V., is found from Eqs. (6.02-8), (6.02-13),
and Table 6.02-1, which give 2, a 0.23, and then Eq. (6.02-18)
determines the maximum pass-band VSWR, V, - 2.5.

SEC. 6.05, EXACT MAXIMALLY FLAT SOLUTIONS FOR UP
TO EIGHT SECTIONS

Enough exact solutions will be presented to permit the solution

of all intermediate cases by interpolation, for maximally flat trans-

formers with up to eight sections.

The solutions were obtained by Riblet's method. 3 This is a tedious
procedure to carry out numerically; it requires high accuracy, especially
for large values of R. In the limit as R becomes very large, approximate
formulas adapted from the direct-coupled cavity filter point of view
in Chapter 8 become quite accurate, and become exact in the limit, as
R tends to infinity. This will be summarized in Sec. 6.09. For our
present purposes, it is sufficient to point out that, for maximally
flat transformers, the ratios
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A, * A n+1 : /' ft,*TI

A I2n

te nd to finite limits as Bt tends to infinity (s. .e,'. . ll).

Tal, le 6.0.5-I gives the iml'VlanCes z1 t ( l*i :. o.0Z-I) of

maxima l Iv flat luarter-wavf. tra insformer of 5, , , and 8 sections

for values of It up to 100. Th,- inii,e(iin'es ,of Iaxii II v fI at. t l s-

formers of' 2, 3, and 4 s,-ctions s.re alrad% ;,ivvn in I'al IIes 6.04-I

to 6.01t- t ( cai s v of u = 0). lhe rvina iiii n;. i m!njd'ailI, nout P i 'en in

these tal- l es are ,let e rmi neti from l'(I, t 6. 01-7).

Tal le 6. 05- 2 giv es the A 9 de fi ned in I.I, (6.05-II for maximally

flat transformers of from 31 to 8 set tions for %a lues of' It from I to J

in multile es of 10. 'Ih e .I chanur, relativel little over the infinite

rane of R, thus permitting w, r% arcurat tI. interpolat ilon. The 1 are

then oit-ained from L.qs. (6.05-1), (6.0l-8), and (6.0ji- 10). Tieh case

n = 2 is not tal,ulated, since the formulas inl !'q. (6.0 -I) are so simple.

S1'C. 6.06, %PPIIOXI MtTF 1Wsl; \ IIII1 I, Is ,S" ..I.

First-Order Theory-Exact numerical Tchebyscheff solutions for

n > 4, corresponding to the maximally flat solutions up to n - 8 in

Sec. 6.05 have not yet .I-en computed. 'Ahen the output-to-input

impedance ratio, ft, approaches unity, the reflection coefficients of

the impedance steps approach zero, and a first-order theory is

adequate. The first-order theory assumes that each discontinuity

(impedance step) sets up a reflected wave of small amplitude, and

that these reflected waves pass through the other small discontinuities

without setting up further second-order reflections. This theory

holds for "small R" as defined by

t < (2  (6.06-1)

and can be useful even when Rt approaches (2/w 9)" , particularly for large

bandwidtha. [Compare with Eqs. (6.07-2) and (6.09-1).]
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Denote the reflection coefficients of an n usection transformer

or filter by

, where i - 1, 2, ... ,n + I

to give a Tchebyscheff response of bandwidth, w.. Let

C . Cs(6.06-2)

The quantity c is related to uOof Eq. (6.02-12) I-y

C2 + j,2 (6.06-3)0

Then, for n-section 'Icheiysclaeff transformers, the following ratio

formulas relate the reflection coefficients up to n 8.

For n - 2,

F' 1:25 c6.62
(6.624

Fo r n - 3,

r 1 -2 1:3c5 (6.06-5)

F'or n 4

F~ ',:L ka :r 2 :2c2 (2 + c') .(6.06-6)

For n - 5

r ' I*:F, F3 U l5c 2: 5c 2(1 + c2 ) (6.06-7)

F'or na - 6,

F' :F:F':F *1:6c :3c (2 + 3c'):2c2 (3 + 6c C) . (6.06-8)

For n *7,

rI:F 2 : 1 3 :F 4 . l:7c2 : 7c 2 (1 + 2c 2 ):7c 2 (1 + 3 C2 + C4 ) . (6.06-9)

For n - 8,

r,:r2:r, :r 4 :r, a 1:8c 2:4c2(2 + 5c2):8c'(1 + 4C2 + 2C4):

2c2(4 + ISO + 12c C4 +c6) .(6.06-10)
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Table 6.06-1 tabulates the F /ri for all fractional bandwidths in

steps of 20 percent in w., for transformers of up to eight sections.

The Fs are obtained from the appropriate one of the above equations,

or from Table 6.06-1, together with Eq. (6.04-9) and the specified

value of R (see Example I of Sec. 6.06). When w9 a 0 (maximally flat

case), the rs reduce to the binomial coefficients. (A general formula

for any n will be given below.)

fange of Validity of First-Order Theory-For a transformer of given

bandwidth, as R incredses from unity on up, the Ft all increase at the

same rate according to the first-order theory, keeping the ratios 1'/r,

constant. Eventually one of the F would exceed unity, resulting in a

physically impossible situation, and showing that the first-order

theory has been pushed too far. To extend the range of validity of the

first-order theory, it has been found advantageous to substitute log V,

for F,. This substitution, 17 which appears to be due to W. W. Hansen,1

might be expected to work better, since, first, log V. will do just

as well as F, when the F, are small compared to unity, as then

log Vi a log 1 (6.36-11)

M constant x F J
and, second, log V. can increase indefinitely with increasing log R and

still be physically realizable.

The first-order theory generally gives good results in the pass

band when log V, is substituted for F,, provided that f is "small" as

defined by Eq. (6.06-1). (Compare end of Sec. 6.10.)

Example 1-Design a six-section quarter-wave transformer of

40-percent bandwidth for an impedance ratio of A a 10. (This trans-

former will have a VSWR less than 1.005 in the pass band, from

Eqs. (6.02-8) and (6.02-18) and Table 6.02-1.]

Here (2/y.)R/2 _ 125, which is appreciably greater than R a 10.

Therefore, we can proceed by the first-order theory. From Table 6.06-1,
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log V1 :Iog V2:log V3 :log V4 4 1:5.4270:12.7903:16.7247

log VI log V 1

logR 
0.01813lolog 1(, 55. 1593

Since log R - log 10 a 1,

V I a V7  a antilog (0.01813) N 1.0426

V2 2 0 6 a antilog (5.4270 x 0.01813) - 1.254

(3 a vs a antilog (12.7903 x 0.01813) - 1.705

and

V4  a antilog (16.7247 x 0.01813) * 2.010

Hence

Z u" * = 1.0426

Z2 a V 2 I - 1.308

Z 3 a VSZ 2  a 2.228

Z a 0 VZ 3 4.485

Z s a VsZ 4 a 7.65

.6 a v 6Z5 a 9.60

R - Z7 . V1Z6 A 10.00

Relation to Dolph-Tchebyscheff Antenna Arrays-When R is small,

numerical solutions of certain cases up to n - 39 may be obtained

through the use of existing antenna tables. The first-order

Tchebyacheff transformer problem is mathematically the same as Dolph*&

solutionleof the linear array, and the correspondences shown in

Table 6.06-2 may be set up.

2"6



Table 6.06-2

TRANSFOM~EII-ARRAY CORRESPODENCES

TCHEBYSCHEFF TRANSF~fMZR DOLPtI-TCHIDscIIEFF ARRAY

First-order theory optical diffraction theory

Synchronous tuning Uniform phase (or linear phase taper)
Frequency Angle in space
Trans former length Array length
Pass band Side-lobe region
Stop band Main lobs

Reflection coefficient Radiation field

Number of steps (ii + 1) Number of elements

N(flw 9) Side-lobe ratio

10 l 1011 Side-lobe level in db

log Vi Elment currents, 1,

4N1.10F: Quarterly Progress Report 4. Costract DA 36-039 SC-87398,
SRI; reprinted in IRE Trans. PTT (see Ref. 36 by L. Younng)

The calulation of transformers from tables or graphs of array

solutions is best illustrated by an example.

Example 2-Design a transformer of impedance ratio R a 5 to have a

maximum VSuR, V,, of less than 1.02 over a 140-percent bandwidth

qW a 1.4).

It is first necessary to determine the minimum number of sections.

This is easily done as in Example 1 of Sec. 6.02, using Table 6.02-1,

and is determined to be n - 11.

Applying the test of Eq. (6.06-1)

*so

whereas R is only 5, and so we may expect the first-order theory to

furnish an accurate design.

The most extensive tables of array solutions are contained in

Ref. 19. (Some additional tables are gives in Hof. 20.) We first work
out M from Eqs. (6.02-8). (6.02-18), and (6.02-16), and find M a 8000.

Hence the side-lobe level is

10 log10N a 39.0 4b

01



From Table II in Ref. 19, the currents of an n + I - 12 element array

of side-lobe level 39 db are respectively proportional to 3.249, 6.894,

12.21, 18.00, 22.96, 25.82, 25.82, 22.96, 18.00, 12.21, 6.894, and
3.249. Their sum is 178.266. Since the currents are to be proportional

to log Vd, and since R - 5, log R a 0.69897, we multiply these currents by

0.69897/178.266 - 0.003921 to obtain the log V, . Taking antilogarithms

yields the V, and, finally, multiplying yields the Zi (as in Example 1).

Thus Z0  through R are respectively found to be 1.0, 1.0298, 1.09505,

1.2236, 1.4395, 1.7709, 2.2360, 2.8233, 3.4735, 4.0861, 4.5626, 4.8552,

and 5.0000. The response of this transformer is plotted in Fig. 6.06-1,

and is found to satisfy the specifications almost perfectly.

In antenna theory, one is usually not interested in side-lobe ratios
in excess of 40 db; this is as far as the antenna tables take us. Only

fairly large bandwidths can be calculated with this 40-db limit. For

12-
04

0 0.2 04 06 01 1.0 1.2 1.4 I.s 1. 2.0
NORMALIZED FREQUENCY

SOURC:E Quarterly Prooese Report 4. Contract DA 36-039 SC-87398, SRI;
reprinted in IRE Trana. PGMTT (See Ref. 36 by I.- Young)

FIG. 6.06-1 ANALYZED PERFORMANCE OF TRANSFORMER
DESIGNED IN EXAMPLE 2 OF SEC. 6.06
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example, Table 6.02-1 shows that for n - 2 this limits us to

Wq > 0.18; for n a 4, to wq > 0.67; for n a 8, to w > 1.21; and

for n - 12, to w. > 1.52. A general formula for all cases has been

given by G. J. Van der Maas,21 which becomes, when adapted to the

transformer,

r n 1-2 /nt+l 2/ C2\ rl
F n + 1-i r+I r

1 p30
(6.06-12)

for 2 :S i _ (n/2) + 1, where c is given by Eq. (6.06-2), and (b) are
the binomial coefficients

b!(a ! b)!(6.06-13)(, b!(a -hi

SEC. 6.07, APPROXIMATE DESIGN FOR UP TO MODERATELY LARGE R

lodified First-Order Theory-In Sec. 6.06 a first-order theory was

presented which held for "small" values of R as defined by Eq. (6.06-1).
In Sec. 6.00, there will be presented formulas that hold for "large"

values of It as defined by Eq. (6.09-1). This leaves an intermediate

region without explicit formulas. Since exact numerical solutions for

maximally flat transformers of up to eight sections have been tabulated

(Tables 6 05-1 an|d 6.05-2), these might be used in conjunction with

either ti:e "small B" or the "large H" theories to extend the one upward

or the other downward in H, aiid so obtain more accurate solutions for

Tchebyscheff transformers with H in tis intermediate region. This idea

is applied here to the first-order ("small It") theory only, as will be

explained. It extends the range of the first-order theory from the

upper limit given by Eq. (6.06-1) up to "moderately large" values of R

as defined by

R (6.07-1)

289



and gives acceptable results even up to the square of this limit,

R < -(6.07-2)

(Compare with Eqs. (6.06-1) and (6.09-1).] Of course, when R is less

than specified by Eq. (6.06-1), there is no need to go beyond the

simpler first-order theory of Sec. 6.06.

The first step in the proposed modification of the first-order

theory is to form ratios of the F,, which will be denoted by y,, with

the property that

RI "j M 7 (6.07-3a)

Tchobysehoff maximally flet
transformer transformer

The y, are functions of n (the same n for both transformers) and w9

(0the bandwidth of the desired Tchebyscheff transformer). The
n+1

substitution of log . for F. will again be used, and therefore r.9 a iml I

is replaced by log R, according to Eq. (6.04-10). If now we choose

R to be the same for both the Tchebyscheff transformer and the

corresponding maximally flat transformer, then Eq. (6.07-3) reduces to

(log V.) a y. (log V ) (6.07-3b)
i'Thebyacheff 'maximally flat
transformer transformer

The modification to the first-order theory now consists in using the

exact log V of the maximally flat transformer where these are known

(Tables 6.05-1 and 6.05-2). The Y1 could be obtained from Eq. (6.07-3)

and Table 6.06-1, but are tabulated for greater convenience in

Table 6.07-1. The numbers in the first row of this table are, by

definition, all unity. The application of this table is illustrated

by an example given below.
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Range of Validity of the Modified first-Order Theory-The analyzed

performance of a first-order design, modified as explained above and

to be illustrated in Example 1, agrees well with the predicted

performance, provided that R satisfies Eq. (6.07-1) or at least

Eq. (6.07-2). (In this regard, compare the end of Sec. 6.10.)

As a rough but useful guide, the first-order modification of the

exact maximally flat design generally gives good results when the

pass-band maximum VSWH is less than or equal to (I + w2), where w

is the equal-ripple quarter-wave transformer bandwidth [Eq.(6.02-1)).

By definition, it becomes exact when w 0.

Example 1--In Example 1 of Sec. 6.02, it was shown that a quarter-

wave transformer of impedance ratio I? - 100, fractional bandwidth w - 1.00,

and mraAlmum pass-band VS'H of less than 1.15 must have at least six

sections (n - 6). Calculate the normalized line impedances, Z., of this

quarter-wave transformer. Predict the maximum pass-band VSII, 1'.. Then,

also find the bandwidth, w., and normalized line impedances, ', of the

corresponding half-wave filter.

First, check that R is small enough for the transformer to be

solved by a first-order theory. Using Eq. (6.06-1),

2' 8 .(6. 07-4)

9

Therefore the unmodified first-order theory would not be expected to

give good results, since R - 100 is considerably greater than 8.

Using Eqs. (6.07-1) and (6.07-2),

64

(6.07-5)

2048
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Therefore the modified first-order theory should work quite well,

although we may expect noticeable but not excessive deviation from

the desired performance since R - 100 is slightly greater than

(2/wq)' - 64.

From Table 6.05-1 and Fig. 6.02-1, or from Table 6.05-2 and

Eq. (6.05-1), it can be seen that a maximally flat transformer of

six sections with R - 100 has

V, a V7 0 1.094 . log V, - 0.0391

V2 a V6 a 1.610 log V2 - 0.2068
(6.07-6)

VS a V5 - 2.892 . log V 3 a 0.4612

V a 3.851 .. log V 4 a 0.5856

The log VSWs of the required 100-percent bandwidth transformer are

now obtained, according to Eq. (6.07-3b), multiplying the log Vs in

Eq. (6.07-6) by the appropriate values of 7 in Table 6.06-2:

log V1 - 0.0391 x 2.586 - 0.1011

log V2 a 0.2068 x 1.293 - 0.2679 (6.07-7)

log V3 = 0.4612 1 0.905 - 0.4170

log V4 - 0.5856 x 0.808 a 0.4733

• .I  W 7  - 1.262

V2 a V6 a 1.853
(6.07 8)

V3 a VS a 2.612

V4 a 2.974

Now this product V1V2 ... V7 equals 105.4. instead of 100. It is

therefore necessary to scale the V slightly downward, so that their

product reduces to exactly 100. The preferred procedure is to reduce

VI and V7 by a factor of (100/105.4)"A 2 while reducing V2 ... 1 V6

by a factor of (100/105.4) 1/6 . [In general, if R' and R are respectively

29



the- trial and de.sired impedance ratios, then for an n-section trans-

former, the scaling factor is (8/10') 1 / n for V2* .3 .... , and

(le,11')I/2n for V ' and V.,1 .] It can lbe shown [see Example 2 of See. 6.09
adI iq. (6.09-2)] that this type of scaling, where V and are

s(aled by the square root of the scaling factor for V2 , ... , V., has

as its princ'ipal effect a slight increase in bandwidth while leaving

the. pass-I and ripple almost unaffected. Since the approximate

desizns generally fall slightly short in Ibandwidth, while coming very

c lose, to, or even improving on, the specified pass-band ripple, this

rn't, hod of scaling is preferable. Subtracting 0.0038 from log V1

and 0.0076 from the remaining log V in Eq. (6.07-7) gives the new V.

=- 1 1.251

V V h 1 .821
2 }. (6.07-9)

3 V a 2. 566

V a 2.9224

anu for t it- corre,;ponding normali zed I in. impedances of the quarter-

wave. t' an former (Pig. 6.02-1),

Z( a 1.0

Z, = V I . 1.251

Z 2  I 7V2 - 2.280

7 2 VA , .5.850 (6.07-10)

X 4  - 7 1V= = 17.10

75 . Z7Vs = 43.91

Z, . ZVh = 79.94

i .7,.V 7  - 100.00

%v note in passing that the product of the VSWIIs before reduction was

105.4 iist.ad of the sp(e-i fled I00. if the discrepancy between these

two numbers exceeds about 5 to 10 percent, the predicted performance

will usually not ip realized very closely. This provides an

additional internal check on the accuracy of the design.
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The maximum transducer attenuation and VSWR in the pass band

predicted from Eq. (6.02-16) and Table 6.02-1 are

Er 0.0025 ,or 0.011 db

Therefore by Eq. (6.02-18) ,(6. 07-11)

Vp - 1.106

The computed plot of V against normalized frequency, /., of this

transformer (or against X,0/X, if the transformer is dispersive) is

shown in Fig. 6.07-1. The bandwidth is 95 percent (compared to

100 percent predicted) for a maximum pass-band VSWII of 1. 11.

14-

12-

NORWALIZE FREQUENCY
6. WI'Ml

SOURCE Quaulerty Progress Report 4, Coumuect DA 36-039 SC-S7396, SRI;
reprinted in IRE Truna,. PCMTT (see Red. 36 by L. Young)

FIG. 6.07-1 ANALYZED PERFORMANCE OF TRANSFORMER
DESIGNED IN EXAMVPLE 1 OF SEC. 6.07
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(Notice that the response has equal ripple heights with a maximum VSWR

of 1.065 over an 86-percent bandwidth.)

The bandwidth w. of the half-wave filter for a maximum VSWR of

1.11 will be just half the corresponding bandwidth of the quarter-wave

transformer, namely, 47.5 percent (instead of the desired 50 percent).

The normalized line impedances of the half-wave filter are (see

Fig. 6.03-1):

Z0 N 1.0 (input)

Z; 1 V, - 1.251

Z; . Z!/V 2  - 0.6865

za Z. z;V 3 1.764
(6.07-12)

Z * - Z3/V4  . 0.604

Z; = Z' V5 - 1.550

S 6

Z' - Z; V7 - 1.065 (output)

It should be noticed that the output impedance, Z;, of the half-

wave filter is also the VSWR of the filter or transformer at center

frequency 9 (Fig. 6.07-1).

In this example it was not necessary to interpolate from the

tables for the Vi or Zi. When R is not given exactly in the tables,

the interpolation procedure explained at the end of Sec. 6.04 should

be followed.

SEC 6.08, CORRECTION FOR SMALL-STEP
DISCONTINUITY CAPACITANCES

A discontinuity in waveguide or coaxial-line cross-section cannot

be represented by a change of impedance only--i.e., practical

junctions are non-ideal (see Sec. 6.01). The equivalent circuit for

a small change in inner or outer diameter of a coaxial line can be

represented by an ideal junction shunted by a capacitance, and the

same representation is possible for an E-plano step in rectangular

2%



waveguide. 3 This shunt capacitance has only a second-order effect

on the magnitude of the junction VSWR, since it contributes a smaller

component in quadrature with the (already small) reflection

coefficient of the step. Its main effect is to move the reference

planes with real r out of the plane of the junction. Since the

spacing between adjacent and facing reference planes should be one-

quarter wavelength at center frequency, the physical junctions should

be moved the necessary amount to accomplish this. Formulas

have been given by Cohn.' The procedure outlined here is equivalent

to Cohn's formulas, but is in pictorial form, showing the displaced

reference planes, and should make the numerical working of a problem

a little easier. The necessary formulas are summarized in Fig. 6.08-1

which shows the new reference plane positions. The low-impedance end

is shown on the left, the high-impedance end on the right. There are

two reference planes with real r associated with each junction, one

seen from the low-impedance side, and one seen from the high-impedance

side (Fig. 6.08-1). When the two "terminal-pairs" of a junction are

situated in the appropriate reference planes, it is equivalent to an

ideal junction. The following results can be shown to hold generally

when the step discontinuity can be represented by a shunt capacitance:

(1) The two reference planes associated with any junction are
both in the higher impedance line (to the right of the
junction in Fig. 6.08-1).

(2) The two reference planes associated with any junction are
always in the order shown in Fig. 6.08-1--i.., the
reference plane seen from the higher impedance line is

nearer to the junction.

(3) As the step vanishes, both reference planes fall into
the plane of the junction.

(4) The reference plane seen from the higher impedance line
(the one nearer to the junction) is always within one-
eighth of a wavelength of the junction. (The other
reference plane is not so restricted.)

The spacing between junctions is then determined as shown in Fig. 6.08-1.

It is seen that the 90-degree lengths overlap, and that the separation

between junctions will therefore generally be less than one-quarter

wavelength, although this does not necessarily always hold (#.g., if

X1 > X3 ).

297



go _LOW ADM ITTANCE.
HNIGH IMPEDANCE END

HI1GH ADMITTANCE,
LOW IMPEDANCE END

ADMITTANCE$: vo2 3 Y YV, y+

NEAREST
REFERENCE -*----

wicm r

2i j{ARC TAN ( -2, -ARC TAN (tL)}

WHERE 11i 1S THE EQUIVALENT SHUNT SUSCEPTANCE AT THE STEP.

FIG. 6.06.1 LENGTH CORRECTIONS FOR DISCONTINUITY CAPACITANCES

Example I- Design a transformer from 6.5- by 1.3-inch rectangular
waveguide to 6.5- by 3.25-inch rectangular waveguide to have a VSWB

less than 1.03 from at least 1180 to 1430 megacycles.

Here R - 2.5

1\1a15.66 inches X g2 10.68 inches

From Eq. (6.02-2),

X0a12.68 inches ,and 80 3.17 inches

while Eq. (6.02-1) gives 3q a 0.38. From Tables 6.02-3 and 6.02-4,

it can be seen that at least three sections are needed. We shall

select *r 0.50, which still meets the specification that the pass-band

VSWH be less than I.Cq (see Table 6.02-4). From Table 6.04-2, the

b dimensions of such a transformer are

2"



*o 1.300 inches

II 1.479 inch..

b 2  E 2.057 inches

b 3  a 2.857 inches

b4a 3.250 inches

Make all the steps symmetrical (as in Fig. 6.08-2), since in this case

the length corrections would be appreciable if the steps were unsym-

metrical.

SECTIONS:
1-0 1 2 3 4

jUNCTIOMS
a 3 4

HIGHTS: .3 in, 1479 in. 2.0571" 1.9671m. SM ia,

SECTION LENGTH$: L3,93In 3.0 5in OO 5 In .

WAVEGUIDE WIDTH a 4.500 In.
A- m I?-so$

FIG. 6.08-2 SOLUTION TO EXAMPLE 1 OF SEC. 6.06 ILLUSTRATING
LENGTH CORRECTIONS FOR DISCONTINUITY
CAPACITANCES



Now make up a talle am followb:

SECTION 0R JUNCTION No.

_____(see Fig- 6.08.2)

QUIANTITY 1 2 3

Itb/Ak 0.117 0.162 0.225 0.256

h l/b. - V'901 1  0.88 0.72 0.72 0.88

(! L) (from Fiys. 5,07-10 and -11) 0.06 0.26 0.26 0.06

H.,Y. 0.007 01.0421 0.0585 0.0154

0.0062 0.0303 0.0421 0.0135

rni0.052 0.108 0.150 0.113

1-V k/Yi-

B/V s-I

1+0.0033 0.0176 j0.0245 0.0072

ele1ctrical degraes 1. .5 3.60 5.00 3.45Sfroat Fig. 6.08-1)

Xelectrical degreesa 1.40 2.59 3.60 3.03

(X 0 z ) electrical degrees 2.20 2.41 0 .1is

xg (xi - x. inches 0.077 10.085 -4).005
360 I ,

The last line subtracted from 3.17 inches gives the section

lengths. The first two sections are somewhat- shorter than one-quarter

wavelength, while the third section is slightly longer. The final

dimensions are shown in Fig. 6.08-2.

SEC. 6.09, APPROXIMATE DESIGN "IEN B IS LARGE

Theory-Riblet's procedure,3 while mathematically elegant and

although it holds for all values of P, is computationally very

tedious, and the accuracy required for large Rt can lead to difficulties
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e~en with a large digital computer. .Collin's formulas 2 are more

convenient (Sec. 6.04) but do not go beyond n - 4 (Tables 6.04-1 to

6.04-8). l-i},let's procedure has been used to tabulate maximally

flat transformt.rs up to n - 8 (Tables 6.06-1 and 6.06-2). General

solutions applicalle only to "small It" have been given in Secs. 6.06

and 6.07, and are tabulated in Tables 6.06-1 and 6.07-I. In this

part, cnnvenient formulas will be given which become exact only

when I is "large," as defined by

>> (. (6.09-1)

These solutions are suitable for most practical filter applications

(but not for practical transformer applications). [Compare with

Eqs. (6.06-1) and (6.07-2).j

For "large R" (or small w q ), stepped impedance transformers and

filters may be designed from low-pass, lumped-constant, prototype

filters (Chapter 4) whose elements are denoted by g, (i - 0, 1, ...

n * 1).* The transformer or filter step VSWlis are obtained from

4 g0gwli
V , V ,1  7 W

12

16 ; 2
V 1 1 _Igj ,when 2 < i 5 n (6.09-2)

fT 2 W2

9

(V i  large, wq small)

where w' is the radian cutoff frequency of the low-pass prototype and

Wq is the quarter-wave transformer fractional bandwidth [given by

Eq. (6.02-1) for Tchebyscheff transformers and Eqs. (6.02-9) or (6.02-10)

for maximally flat transformers]. Again, the half-wave filter band-

width, wh P is equal to one-half r q (Eq. (6.03-3)].

$Note: Hote it is asaumed that in the prototypes defined in Fig. 4.04-1 the Girenst is
symmetric or eantimetric (see Sec. 4.05).
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The V and r, are symmetrical about the center in the sense of

Eqs. (6.04-8) and (6.04-9), when the prototype is symmetrical or

antimetrical as was assumed.

With Tables 4.05-1, 4.05-2, 4.06-1, 4.06-2, ana 4.07-1,

it is easy to use Eq. (6.09-1). One should, however, always verify

that the approximations are valid, and this is explained next.

Procedures to be used in borderline cases, and the accuracy to be

expected, will be illustrated by examples.

lange of Validity-The criteria given in Eqs. (6.06-1) and (6.07-1)

are reversed. The validity of the design formulas given in this part

depends on B being large enough. It is found that the analyzed perfor-

mance agrees well with the predicted performance (after adjusting R,

if necessary, as in Examples 2 and 3 of this section) provided that

Lq. (6.09-1) is satisfied; B should exceed (2/wq)" by preferably a

factor of about 10 or 100 or more. (Compare end of Sec. 6.10.) The

ranges of validity for "small It" and "large h" overlap in the region

between Eqs. (6.07-2) and (6.09-l), where both procedures hold only

indifferently well. (See Example 3 of this section.)

For the maximally flat transformer, Eq. (6.09-1) still applies

fairly well, when & q.3db is sufstituted for wq.

As a rough but useful guide, the formulas of this section generally

result in the predicted performance in the pass Land when the pass-band

maximum VSAiH exceeds about (I + w2 ). This rule must be considered

indeterminate for the maximally flat case (wq . 0), when the following

rough generalization may be substituted: The formulas given in this

Fection for maximally flat transformers or filters generally result in

the predicted performance when the maximally flat quarter-wave trans-

former 3-db fractional bandwidth, wq,3db' is less than about 0.40.*

The half-wave filter fractional bandwidth, w A3db' must, of course, be

less than half of this, or 0.20.

After the filter has been designed, a good way to check on whether

it is likely to perform as predicted is to multiply all the VSWRs,

VIV 2 ...V,+11 and to compare this product with R derived from the per-

formance specifications using Table 6.02-1 and Eq. (6.02-13). If they

S

Larger 3-db fractional bandwidth@ can be designed accurately for smail a , for GXGRp1. up to
about Wq.,3db M 0.60 for a a 2.
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agree within a factor of about 2, then after scaling each V so that

their VSWR product finally equals A, good agreement with the desired

performance may be expected.

Three examples will be worked out, illustrating a narrow-band and

a wide-band design, and one case where Eq. (6.09-1) is no longer

satisfied.

Example I -Design a half-wave filter of 10-percent fractional

bandwidth with a VSWR ripple of 1.10, and with at least 30-d6

attenuation 10 percent from center frequency.

Here w. - 0.1, .. v9 a 0.2. A VSWR of 1.10 corresponds to an

insertion loss of 0.01 db. From Eqs. (6.03-12) and (6.03-10), or

(6.02-17) and (6.02-12),

17w A

A0 - sin - - sin 9 ° - 0.1564

At 10 percent from center frequency, by Eq. (6.03-11),

sin 0' sin 1720

0.. 1.975W, U0 0.1564

From Fig. 4.03-4, a 5-section filter would give only 24.5 db at a

frequency 10 percent from band center, but a six-section filter will

give 35.5 db. Therefore, we must choose n a 6 to give at least 30-db

attenuation 10 percent from center frequency.

The output-to-input impedance ratio of a six-section quarter-wave

transformer of 20-percent fractional bandwidth and 0.01-db ripple is

given by Table 6.02-1 and Eq. (6.02-13) and yields (with Ev * 0.0023
corresponding to 0.0]-db ripple)

R - 4.08 x 10'0 (6.09-3)

Thus R exceeds (2/v )" by a factor of 4 x 104, which by Eq. (6.09-1)

is ample, so that we can proceed with the design.
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From Table 4.05-2(a), for n a 6 and 0.01-db ripple (corresponding

to a maximum VSWR of 1.10), and from Eq. (6.09-2)

V, a V7 a 4.98

V u V6 u 43.0I2 a 6 a (6.09-4)
V3 6 VS a 92.8

V4 a 105.0

This yielded the response curve shown in Fig. 6.09-1, which is very

close to the design specification in both the pass and stop bands.

The half-wave filter line impedances are

*I a 1.0 (input)

0

Z * - V, a 4.98

Z * Z /V 2  a 0.1158

Z; - Z' V3 • 10.742 (6.09-5)

Z4 * - Z3/V 4 - 0.1023

Z; - Z 4 V S - 9.50

Z6 - Z/V 6  * 0.221

Z 7 ' Z; V7 ' 1.10 (output)

Note that Z, - 1.10 is also the VSWR at center frequency

(Fig. 6.09-1).

The correspunding quarter-wave transformer has a fractional

bandwidth of 20 percent; its line impedances are

Z 0  a 1.0 (input)

Z1 a V1  a 4.98

Z 2 a Z V2 - 2.14 X 102

Z * = Z 2V3  a 1.987 x 104 (6.09-6)

Z 4  Z 3 V4 a 2.084 x 106

Z5 M Z 4Vs M 1.9315 x10

Z 6 N ZsV6 N 8.30 x 10'

A a Z 7 a Z 6 V * 4.135 x 1010 (output)

3.4



70-

00'.

NORMALIZED FREQUENCY

401107-1

~~330



which is within about 1 percent of R in Eq. (6.09-3). Therefore we

would expect an accurate design, which is confirmed by Fig. 6.09-1.

The attenuation of 35.5 db at f - 1.1 is also exactly as predicted.

Example 2-It is required to design a half-wave filter of 60-percent

bandwidth with a 2-db pass-band ripple. The rejection 10 percent

beyond the band edges shall be at least 20 db.

Here w, a 0.6, .'. w9 W 1.2. As in the previous example, it is

determined that at least six sections will be required, and that the

rejection 10 percent beyond the band edges should then be 22.4 db.

From Eq. (6.02-13) and Table 6.02-1 it can be seen that, for an

exact design, 11 %ould be 1915; whereas (2/w9 )f is 22. Thus R exceeds

(2/w 9)" by a factor of less than 100, and therefore, by Eq. (6.09-1),
we would expect only a fairly accurate design with a noticeable

deviation from the specified performance. The step VSWRs are found

by Eq. (6.09-2) to be

V, a V7 a 3.028

V2  a V6  a 2.91 (6.09-7)

V3 0 V5 a 3.93

V4 a 4.06

Their product is 4875, whereas from Eq. (6.02-13) and Table 6.02-1,

R should be 1915. The V. must therefore be reduced. As in Example 1

of Sec. 6.07, we shall scale the V, so as to slightly increase the

bandwidth, without affecting the pass-band ripple. Since from

Eq. (6.09-2) V1 and V,,1 are inversely proportional to w., whereas

the other (n - 1) junction VSWRs, namely V2. V3 ... V., are inversely

proportional to the square of w., reduce V1 and V7 by a factor of

a ) a 0.9251\4875/ 48751

and V2 through V by a factor of

S"



S4875) " a 0.8559

(Compare Example 1 of Sec. 6.07.) This reduces R from 4875 to 1915.

Hence,

V, a V7  = 2.803

V2 a V6 a 2.486

V3 a V s a 3.360 (6.09-8)

V 4 = 3.470

The half-wave filter line impedances are now

Z; a 1.0 (input)

Z; - 2.803

Z - 1.128

*Z 3.788
(6.09-9)

74 - 1.092

Z; - 3.667

Z * - 1.475

Z; - 4.135 (output)

Since the reduction of R, from 4875 to 1915, is a relatively large

one, we may expect some measurable discrepancy between the predicted

and the analyzed performance. The analyze,! performances of the designs

given by Eqs. (6.09-7) and (6.09-8), before and after correction for

R, are shown in Fig. 6.09-2. For most practical purposes, the agreement
after correction for R is quite acceptable. The bandwidth for 2-db

insertion loss is 58 percent instead of 60 percent; the rejection is

exactly as specified.

Discussion-The half-,.eve filter of Example 1 required large

impedance steps, the largest being V4 a 105. It would therefore be

impractical to build it as a stepped-impedance filter; it serves,

inaLead as a prototype for a reactance-coupled cavity filter (Sec. 9.04).
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SOURCE: Quarterly Progres Report 4, Contract DA 36-039 SC-87398, SRI;
reprinted in IRE Tran. PGMTT (See Ref. 36 by L. Young)

FIG. 6.09-2 ANALYZED PERFORMANCE OF TWO HALF-WAVE FILTERS
DESIGNED IN EXAMPLE 2 OF SEC. 6.09

This is typical of narrow-band filters. The filter given in the second

example, like many wide-band filters, may be built directly from

Eq. (6.09-9) since the largest impedance step is V4 a 3.47 and it

could be constructed after making a correction for junction discontinuity
capacitances (see Sec. 6.08). Such a filter would also be a low-pass

filter (see Fig.. 6.03-2). It would have identical pass bands at all

harmonic frequencies, and it would attain its peak attenuation at

one-half the center frequency (as well as at 1.5, 2.5, etc., times
the center frequency, as shown in Fig. 6.03-2). The peak attenuation

can be calculated from Eqs. (6.02-8) and (6.09-3). In Example 1 of

Sec. 6.09 the peak attenuation is 100 db, but the impedance steps are

too large to realize in practice. In Example 2 of Sec. 6.09 the

impedance steps could be realized, but the peak attenuation is only

27 db. Half-wave filters are therefore more useful as prototypes for
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other filter-types which are easier to realize physically. If shunt

inductances or series capacitances were used (in place of the impedance

steps) to realize the Viand to form a direct-coupled-cavity filter, then

the attenuation below the pass band is increased and reaches infinity at

zero frequency; the attenuation above the pass band is reduced, as com-

pared with the symmetrical response of the half-wave filters (Figs. 6.09-1

and 6.09-2). The derivation of such filters from the quarter-wave trans-

former or half-wave filter prototypes will be presented in Chapter 9.

Ezample 3-This example illustrates a case when neither the first-

order theory (Sec. 6.06) nor the method of this part are accurate, but

both may give usable designs. These are compared to the exact design.

It is required to design the best quarter-wave transformer of four

sections, with output-to-input impedance ratio B - 31.6, to cover a

fractional bandwidth of 120 percent.

Here n - 4 and w.- 1.2. From Eq. (6.02-13) and Table 6.02-1, the

maximum VSWR in the pass band is 2.04. Proceeding as in the previous

example, and after reducing the product VIV 2 ... V5 to 31.6 (this required

a relatively large reduction factor of 4), yields Design A shown in

Table 6.09-1. Its computed VSWR is plotted in Fig. 6.09-3 (continuous

line, Case A).
Table 6.09-1

Since R exceeds (21w)" by a factor of THETHEE DESIGNS OF EXAMPLE 3

only 4 [see Eq. 6.09-1)], the first-order

procedure of Sec. 6.07 may be more appro- A-"Large A" Approximation.

priate. This is also indicated by C1-"Smtil A" Approximation.
C-- Exact Design.

Eq. (6.07-2), which is satisfied, although DESIGN

Eq. 6.07-1) is not. Proceeding as in A
____ A Il

Example 1 of Sec. 6.07 yields Design 1, '1 V s  1. 656 I1. 7A0 1.936

shown in Table 6.09-1 and plotted in V2 a V4 2.028 2.091 1.9"S
Fig. 6.09-3 (dash-dot line, Case B). V3  2.800 2.289 2.140

In this example, the exact design can SMME: Quarterly Prooress Report 4.
Coatr ct DA 36-039 SC-ITS98,

also be obtained from Tables 6.04-3 and SRI; reprinted in IN Trm.
PG1 (ee Pef. 36 by

6.04-4, by linear interpolation of log V L. Young)

against log R. This gives Design Cahown in

Table 6.09-1 and plotted in Fig. 6.09-3 (broken line, Case C).

Designs A and B both give less fractional bandwidth than the

120 percent asked for, and smaller VSWR peaks than the 2.04 allowed.
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SOURCE: )uarterly I'rogres Ieport 4. Contract DA 36-0.9 SC-81398, SHI;
reprinted in IRE Trans. PGETT (See Ref. 36 by I. Young)

FIG. 6.09-3 ANALYZED PERFORMANCE OF THREE QUARTER-WAVE
TRANSFORMERS DESIGNED IN EXAMPLE 3 OF SEC. 6.09

The fractional bandwidth (,etween V a 2.04 points) of Design A is

110 percent, and of Design B is 115 percent, and only the exact equal-

ripple design, Design C, achieves exactly 120 percent. It is rather

astonishing that two approximate designs, one based on the premise

R a 1, and one on R - c, should agree so well.

SEC. 6.10, ASYMPTOTIC BEHAVIOH AS R TENDS TO INFINITY

Formulas for direct-coupled cavity filters with reactive discon-

tinuities are given in Chapter 8. These formulas become exact only in

the limit as the bandwidth tends to zero. This is not the only

restriction. The formulas in Seca. 8.05 and 8.06 for transmission-line

filters, like the formulas in Eq. (6.09-2), hold only when Eq. (6.09-1)

or its equivalent is satisfied. [Define the Vi as the VSWRs of the
reactive discontinuities at center frequency; R is still given by
Eq. (6.04-10); for r in Eq. (6.09-1), use twice the filter fractional
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bandwidth in reciprocal guide wavelength.) The variation of the V,

with bandwidth is correctly given by Eq. (6.09-2) for small bandwidths.

These formulas can be adapted for design of both quarter-wave transformers

and half-wave filters, as in Eq. (6.09-2), and hold even better in this

case than when the discontinuities are reactive. [This might be

expected since the line lengths between discontinuities for half-wave

filters become exactly one-half wavelength at band-center, whereas

they are only approximately 180 electrical degrees long in direct-coupled

cavity filters (see Fig. 8.06-1)].

Using Eq. (6.09-2) and the formulas of Eqs. (4.05-1) and (4.05-2)

for the prototype element values gi (i * 0, 1, 2,...,n, n + 1), one
can readily deduce some interesting and useful results for the V, as
R tends to infinity. One thus obtains, for the junction VSW~s of

Tchebyscheff transformers and filters,

2sin (i ) sin(

Ssin 6.10-1

n

(i - 2, 3, ... ,n) .

The quantity

S\/ I 2
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is tabulated in Table 6.10-1 for i - 2, 3, ... , n and for

n 2, 3, ... , 14.

Table 6.10-1

2

TABLE OF l)im (V.) FOR SMALL vq

a i 2 1 - 3 j4 •1 *6 iuT i7 *

2 0.81056
3 1.08075
4 1.14631 1.38372
5 1.17306 1.44999
6 1.18675 1.47634 1.51254
7 1.19474 1.48981 1.53668
8 1.19981 1.49773 1.54885 1.55943
9 1.20325 1.50282 1.55596 1.57073
10 1.20568 1.50631 1.56052 1.57727 1.58146
11 1.20747 1.50080 1.56365 1.58145 1.58762
12 1.20882 1,51066 1.56589 1.58431 1.59153 1.59351
13 1.20987 1.51207 1.56757 1.58636 1.59419 1.59723
14 1.21070 1.51318 1.56886 1.58789 1.59610 1.59975 1.60081

SOURCE: Quarterly Progress Report 4, Contract DA 36-039 SC-87398, SR;
teprinted in IRE Treat. PGVTT (see 8sf. 36 by I.. Young)

We notice that for Tchebysrheff transformers and filters, the

( 1, n + 1) tend to finite limits, and thus V1 - V.+1 tend to a

constant times B1 /2 . We also see that

16

2V < - a 1.62115 (i - 2, 3, ... , n) (6.10-3)
112

for all n, and tends to 16/01 only in the limit i - n/2 - O.

For maximally flat transformers, the V6 all tend to infinity with

B, but the quantities

V1
A a AX+ 1  a P71;

(6. 10-4)

At a12(i - 2, 3, ... , n)
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tend toward finite limits given by

lim A1 a 2(41)/x (s )

(6.10-5)

lim A. a 22(n'l)/n sin 2i - I ITsin (2i- 3 7

S( 2n 2n
( I , n + 1)

from which we see that

V *( 
4 -- 1 )1/ 2

n*1 (6. 10-6)
V < (i 1 n + 1

for all n. They tend toward the values on the right hand side only in

the limit i - n/2 - 0.

To show how a typical V, approaches its asymptotic value, the

exact solution for V 2 when n - 4 is plotted in Fig. 6.10-1 for all

fractional bandwidths wq in steps of 0.20. It is seen that each

curve consists of two almost linear regions with a sharp knee joining

them. In the sloping region above the origin ("small R"), the

approximations of Sec. 6.06 or 6.07 appl); in the horizontal region

("large R"), the approximations of Sec. 6.09 apply. These two sets

of approximations probably hold as well as they do because the knee

region is so small.

The exact asymptotic values of w V, a (w/2)2 Vi are plotted against

UP in Fig. 6.10-2. If Eq. (6.10-1) were exact instead of approximate,

then all of the curves would be horizontal straight lines. As it is,

Eq. (6.10-1) gives the correct value only on the wq= 0 axis. As the

bandwidth increases, w!V, departs from the value at w * 0 slowly at

first, then reaches a minimum, and finally all curves pass through unity

at Y. a 2 (wh  l).The values of (w9/2) 2V at Y. a 0 up to n - 8 are

also shown in Fig. 6.10-2. (They can be obtained more accurately

from Table 6.10-1.) They all lie below the value 16/f s - 1.62115, and
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may be expected to exhibit the same sort of general behavior as do the

curves up to n 0 4, for which the exact solutions were obtained from
Eqs. (6.04-4) to (6.04-6).

The asymptotic values of the V, for i n 2, 3, ..., n, and for a

given fractional bandwidth, are seen to be fairly independent of n, on

examination of Eq. (6.10-1), Table 6.10-1, or Fig. 6.10-2. It follows

that the same is true of Vl/v' - V, I/v'R. Thus, as B increases indefi-

nitely, so do V1 and V.,; on the other hand for "small p," V2 and
V2 ,+ are less than the other V1 (not squared) for small and moderately

wide fractional bandwidths (up to about 100-percent bandwidths, by

Table 6.06-1). If we assume that in the knee region (Fig. 6.10-1)
SV .12* are of the order of the other Vi, then in the knee region

R is of the order of (Vi)", for any i # 1, n + 1. From Eq. (6.09-2),
R is therefore inversely proportional to (const. X w q) , and from the

previous remarks this constant of proportionality is reasonably

independent of n. Using Fig. 6.10-1 for example, the constant is

very close to the value %. This leads to the magnitude formulas of

Eqs. (6.06-1), (6.07-1), (6.07-2), and (6.09-1), which have been

confirmed by numerous sample solutions.

SEC. 6.11, INHOMOGENEOUS WAVEGUIDE QUARTER-WAVE
TRANSFORMERS OF ONE SECTION

Inhomogeneous transformers were defined in Sec. 6.01. They

come about, for instance, when rectangular waveguides having different
'a' dimensions are cascaded; or when rectangular waveguides are

combined with ridged, circular, or other types of waveguide; or when

the materials of an optical multi-layer are not uniformly dispersive.

At first, only ideal waveguide transformers will be considered.

The junction effects in non-ideal transformers can be compensated

by adjusting the lengths as in Sec. 6.08, except that the step

discontinuity effects cannot usually be represented by a shunt

capacitance alone. Only very limited information on waveguide junctions

(other than E-plane steps) is available,23 and for large steps the

designer may have to make individual meas.rementa on each junction.

The notation for an inhomogeneous quarter-wave transformer of one

section is shown in Fig. 6.11-1.
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To obtain zero reflec- ELECTRICAL

tion at center frequency LENGTH.

(where the section length

is one-quarter guide- IMPEDANCES!

wavelength) a sufficient JUNCTION z0 Z ZZ Izo

condition is that VSWRIS: VI V2
REFLECTION
COEFFICIENTS:

Z a (Z ) (6. 1-1) CUTOFF
WAVELENGTHS; Xco kel he€ a
GUIDE

where Zo . Z1,. and Z2 are WAVELENGTHS: hXk

the characteristic imped-
IF RECTANGULAR WAVErGuIDE:

ances of the input wave-

guide, the transformer tEb, bt AND 102 . RESPECTIVELY

section, and the output a

waveguide, respectively so. at AND at. RESPECTIVELY

(Fig. 6.11-1). For a

homogeneous transformer FIG. 6.11-1 INHOMOGENEOUS QUARTER-WAVE

Eq. (6.11-1) determines the TRANSFORMER OF ONE SECTION

design completely, since

the three cutoff wavelengths

are the same (k. 0 X'i a X .2); in the case of rectangular waveguide,

the three wide dimensions are then equal (a0 a a 2) However,

even when a homogeneous transformer is possible, that is, when

to . 2 , we may prefer to make A , different, and thus choose to

make the transformer inhomogeneous. This gives an extra degree of

freedom, which, it turns out, can always be used to: (1), lower the

VSWH near center frequency, and simultaneously (2), shorten the

transformer.

When Xc0 and X2 are not equal, an inhomogeneous transformer results

of necessity. For a match at center frequency, Eq. (6.11-1) still holds,

but there are an infinity of possible cutoff wavelengths, he, (equal to

2a, for rectangular waveguide). This general case will now be considered.

(If a homogeneous transformer is required, then X.0 can be set equal

to X# at any stage.)
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It can be shown s that the excess loss fsee Eq. (6.02-5)] is given by

1 [(F2  - ri)2 + 4FF COS 9] (6.11-2)
T2T I

12

For no attenuation at center frequency (6 a f712), it is only necessary
that F a r2, which is equivalent to Eq. (6.11-1). Minimizing the

frequency variation of a at center frequency, leads for both TE and T'

modes to:

k 2 + N2

,\2 to2 +2 2 (Z 2  _ Zo) 6 11 3

() Z 2Zo

Note that

)2< 1 p 2 + 2

( 1  opt. 2 ( 0 92) (6.11-4)

and that further, if &,0  A , 2 .

,kel opt. > '\ 0 t2 : (6.11-5)

Therefore, one can always improve upon a homogeneous transformer

(N , I a, 0  X c2). The computed VSWH against normalized wavelength of

three transformers matching from a0 a 0.900 in., b0 S 0.050 in., to

a2 * 0.900 in., 60 a 0.400 in. waveguide, at a center frequency of

7211 megacycles ( 0 W 1.638 in.) is shown in Fig. 6.11-2 for transformer
guide widths of a, - 0.900 in. (homogeneous), al - 0.990 in., and

41 - 1.90 in. (optimum). Beyond this value the performance deteriorates

again. The performance changes very slowly around the optimum value.

It is seen that for the best inhomogeneous transformer (a, - 1.90 in.),

the VSWH vs. frequency slope is slightly better than 45 percent of that

for the homogeneous transformer. Moreover al is so uncritical that it
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FIG. 6.11-2 VSWR AGAINST WAVELENGTH OF THREE QUARTER-
WAVE TRANSFORMERS OF ONE SECTION, ALL FROM
0.900-INCH BY 0.050-INCH WAVEGUIDE TO 0.900-INCH
BY 0.400-INCH WAVEGUIDE. CENTER
FREQUENCY -7211 Mc

may be reduced from 1.90 in. to 1.06 in. and the improvement remains

better than 50 percent. This is very useful in practice, since•a

cannot be made much greater than a0 or a2 without introducing higher-

order modes or severe junction discontinuities.

The example selected above for numerical and experimental investi-

gation has a higher transformer impedance ratio (Rt - 8), and operates

considerably closer to cutoff (Xo/h. - 0.91), than is common. In such

a situation the greatest improvement can be obtained from optimizing

al. In most cases (low R and low dispersion) the improvement obtained

in making the transformer section less dispersive than that of a

homogeneous transformer will only be slight. This technique, then, is

most useful only for highly dispersive, high-impedance-ratio transformers.

Table 6.11-1 connects (\/X,) with (X /X), and is useful in the

solution of inhomogeneous transformer problems.

To compensate for the junction effects, we itote that a non-ideal

junction can always be represented by an ideal junction, but the no..-ideal

junction's reference planes (in which the junction reflection coefficient
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Table 6.11-1

HELATIONS tETWEEN ,9. A, AND h

050 1 1547 1.3333 0.5773 1.7320
0.51 1.1625 1.3515 0.5929 1.6866
0.52 1.1707 1. 3706 0.6087 1.6426
0.53 1.1792 1.3006 0.6250 1.5099
0.54 1.1881 1.4116 0.6415 1.5586

0.55 1.1973 1.4336 0.6585 1.5184
0.56 i.2u7U 1.1568 0.6759 1.4794
0.57 1.2170 1 4812 0.6 V37 1.4414
0.58 1.2275 1.5064 0.7119 1.4045
0.SQ 1.23,15 1.5330 0.7307 1.3684

0.60 1.2500 1.5625 0.7500 1.3333
0.61 1.2619 1 1. 502h 0.7698 1.2990
0.62 1.2745 1.6244 0.7902 1.2654
0.63 1.2876 1.4130 0.8112 1.2326
0.64 1 1.3014 1.6937 0.8329 1.2005

0.65 1.3159 . 1.7316 0.8553 1.1691
0.66 1.3310 1.7717 0.8785 1.1382
0.67 1,3470 1 8145 0.)025 1.1080
0.68 1.3t)38 1 M0'1 0.9274 1.0782
0.69 1.3815 1 1.9087 0.9532 1.0489

0.70 1.4002 1.9607 0.9801 1.0202
1.4200 2. 0165 1.0082 O.q918

0.72 1 440 2.0764 1.0375 0.9638
0.73 1 431 2.1408 1.0681 0.9362
0.74 1.4867 2.210S 1.1001 0.9089

07 1.5118 2.2857 1.1338 0.8819
.6 1 58) 2.3674 1.1693 0.8551

0.77 1.5672 2.4563 1.2068 0.8286
0.78 1.5080 2 5536 1.2464 0.8022
0.79 1.6310 j 2.6602 1 2885 0.7760

0 I80 1.6666 2.7777 1,3333 0.7500
0.81 1.7052 2.9078 1.3812 0.7239
082 1.7471 3.0525 1.4326 0.6980
0.83 1.7928 3.2144 1.4880 0.6720
0.84 1.8430 3.3967 1.5481 0.6459

0.85 1.8983 3.t036 1.6135 0.6197
0.86 1.95% 3 8402 1.6853 0.5933
0.87 2.0281 4.1135 1.7645 0.5667
0.88 2.1053 4.4326 1.8527 0.5397
0.89 2.1931 4.8100 1,9519 0.5123

0.90 2.2941 5.2631 2.0647 0.4843
0.91 2.4119 5.8173 2.1948 0.4556
0.92 2.5515 6.5104 2.3474 0.4259
0.93 2.7206 7.4019 2.5302 0.3952
0.94 2.9310 8.5910 2.7551 0.3629

0.95 3.2025 10.2564 3.0424 0.3286
0.9 3.5714 12.7551 3.4285 0.2916
0.97 4.1134 16.9204 3.9900 0.2506
0.98 S.0251 25.2525 4.9246 0.2030
0.99 7.0888 50.2512 7.0179 0.1424
1.00 ) U 0
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r is real) are no longer in the plane of the junction. This can be

compensated for Eoplane steps, as explained in Sec. 6.08. In compound

junctions involving both E-plane and H-plane steps, if the junction

discnntinuities of these steps are small enough, they may be treated

separately of each other using the junction data in Marcuvitz; 23 the

two corrections are then superimposed. In most cases, fortunately,

these two corrections tend to oppose each other; the shunt inductance

effect of the H-plane step partly cancels the shunt capacitance effect

of the E-plane step. When for a rectangular waveguide operating in

the TE1 0 mode, both the width a and height b are to be increased

together (or decreased together), the condition for resonance of the

two reactive discontinuities coincides with the condition for equal

characteristic impedances,

(fWaye(uid1 Waveguid. 2 (6.11-6)

according to Ref. 24, p. 170; when an increase in the 'a' dimension is

accompanied by a decrease in the 'b' dimension (or vice versa), then an

empirical equation showing when the reactive discontinuities resonate

and so cancel is given in Ref. 25, but it is not known how accurate

this empirical data is.

In addition to the phase perturbation introduced by the non-ideal

junction, there may also be a noticeable effect on the magnitude of

the reflection coefficient. (In the case of E-plane steps alone, the

latter is usually negligible; see Sec. 6.08.) The increase in the

magnitude of the reflection coefficient for H-plane steps in rectangular

waveguide can be derived from the curves in Marcuvitz1 3 (pp. 296-304).

The junction VSWR is then greater than the impedance ratio of the two

guides. For instance, in the example already quoted, the output-to-

input impedance ratio, A, is equal to 8 with ideal junctions. However,

because of the additional reflection due to junction susceptances,

this goes up to an effective R of 9.6 (confirmed experimentally$).

As a general rule, for rectangular waveguides the change in the

'a' dimension of an H-plane step should be kept below about 10-20 percent

if the junction effects are to be treated as first-order corrections to

the ideal transformer theory. This is mainly to keep the reference plane
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from moving too far out of the junction plane (see Marcuvitz," Fig. 5.24-2,

p. 299, and Fig. 5.24-5, p. 303). Symmetrical junctions are to be pre-

ferred to asymmetrical junctions. Larger H-plane steps are permissible

as the guide nears cutoff (smaller 'a' dimension).

SEC. 6.12, INHOMOGENEOUS WAVEGUIDE QUARTER-WAVE
TRANSFORMERS OF TWO OH MORE SECTIONS

The condition that an ideal inhomogeneous transformer of two

sections (Fig. 6.12-1) be maximally flat can be written for both TE

and TM modes:

z 
2

(Z)l (6.12-1)

1

X2 _ X2 1(X - X8) (6.12-2)
82 91 2 s63 g

,X2 + X"

(Z) _L -8 (6.12-3)
0 X2 +X -

#1 :2

with the notation of Fig. 6.12-1. Equations (6.12-1) to (6.12-3) are

only three conditions for the four parameters klp X , ZI, Z2 ; or in

rectangular waveguide, for at' a 2 ble b2. Thus there are an infinity of

maximally flat transformers of two sections (just as there was an infinity

of matching transformers of one section), and some have flatter responses

than others. An example is shown in Fig. 6.12-2, in which ideal junctions

are assumed. The transformation in this case is between two rectangular

waveguides, namely a0 0 8 in., b0 - 2 in., to be transformed to a3 - 5 in.,

b3 a 3 in., at a center frequency of 1300 megacycles. The various values

of a, taken are shown in Fig. 6.12-2. There is probably an optimum (or

"flattest maximally flat") transformer, but this has not been found.

Instead, it is suggested that a, and a, be chosen to minimize junction

discontinuities and keep the transformer as nearly ideal as possible.

Equation (6.12-3) is plotted in Fig. 6.12-3, with (Xg/. 1)' running

from 0.5 to 2.5, for R - 1, 2, ... , 9, 10.
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ELECTRICAL * r

NORMALIZED
IMPEDANCES:

20 21 2, Z3,ZoRt

GUIDE
WAVELENGTHS'

IF RECTANGULAR WAVEGUIDE

=I1 60 bi - ba AND b3' RESPECTIVELY

o. 6, . 42 AND op* RESPECTIVELY
A-IS17-296

FIG. 6.12.1 INHOMOGENEOUS QUARTER-WAVE
TRANSFORMER OF TWO SECTIONS

IA - +-.s.

VSw

IOL@

OiHUC~t IRK, lrun. P(;.VI (isec Ref. 6by L.. Young)

FIG. 6.12-2 YSWR AGAINST WAYELEN(STH OF SEVERAL TWO-SECTION
MAXIMALLY FLAT TRANSFORMwERS, ALL FROM S-INCH BY
2-INCH WAVEGIJIDE TO 5-INCH BY 3-INCH WAVEGUIDE.
CENTER FREQUENCY - 130014c
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A

The reciprocal-guide-wavelength fractional bandwidth is approximately

(dX /k )/(dk/) - (k /X)2 times the frequency fractional bandwidth of

0.13. The arithmetic mean of (. /X)2 for the a w 0.900-inch and the

a w 0.750-inch waveguides is (2.47 + 7.04)/2 w 4.75, so that the (l/X )

bandwidth is approximately 4.75 x 13 * 62 percent. The characteristic

impedance is proportional to (b/a) (,k/K), as in Eq. (6.11-6), and the

output-to-input impedance ratio, A, is 2.027. A homogeneous transformer

of B - 2.027, to have a VSWi of less than 1.10 over a 62-percent band-

width, must have at least two sections, according to Table 6.02-3.

Therefore choose n a 2.

Since the transformer is inhomogeneous, first design the maximally

flat transformer. The choice of one waveguide 'a' dimension is

arbitrary, so long as none of the steps exceeds about 10-20 percent.

Selecting at a 0.850 inch, Eq. (6.12-2) yields a2 a 0.771 inch and

then Eqs. (6.12-I) and (6.12-3), or Fig. 6.12-3, yield bI U 0.429 inch,

b a 0.417 inch. (Note that none of the It-plane steps exceed 10 percent.)

The computed performance of this maximally flat transformer, assuming

ideal waveguide junctions, is shown by the broken line in Fig. 6.12-4.

7 -I I I I I I I

lis BROAD - "MUDO

MAXWALLY FLAT

\

"° .90 0.92 .9 o.n .16 .00 .02 .4

l.b
U,~

SOCRCl: IRE Tran. PGMTT (see lef. 6 by I.. Young)

FIG. 6.12-4 VSWR AGAINST WAVELENGTH OF BROADBANDED AND MAXIMALLY
FLAT TRANSFORMERS
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To broadband this transformer (minimize its reflection over the

specified 13 percent frequency band), we note from Table 6.04-1 that, for

a two-section homogeneous transformer of R - 2.027 to be modified from

maximally flat to 62 percent bandwidth, Z1 increases about 2 percent, and

Z 2 is reduced about 2 percent. Applying exactly the same "corrections"

to b1 and b2 then yields bI - 0.437 inch and b2 a 0.409 inch. The 'a'

dimensions are not affected. The computed performance of this transformer

is shown in Fig. 6.12-4 (solid line), and agrees very well with the

predicted performance.

In the computations, the effects of having junctions that are non-

ideal have not been allowed for. Before such a transformer is built,

these effects should be estimated and first-order length corrections

should be applied as indicated in Secs. 6.11 and 6.08.

Transformers having R . I1-It is sometimes required to change the

'a' dimension keeping the input and output impedances the same (R * 1).

It may also sometimes be convenient to effect an inhomogeneous trans-

former by combining a homogeneous transformer (which accounts for all

or most of the impedance change) with such an inhomogeneous transformer

(which accounts for little or none of the impedance change but all of

the change in the 'a' dimension). Such inhomogeneous transformers are

sketched in Fig. 6.12-5. We set R I l in Eqs. (6.12-1) and (6.12-2)

and obtain

Z0  a Z, Z 2 Z 3  . (6.12-4)

The reflection coefficients at each junction are zero at center

frequency, and we may add the requirement that the rates of change of

the three reflection coefficients with frequency be in the ratio 1:2:1.

This then leads to

3&2 + X9

4

(6.12-5)

2 0 + 30'.
X2 

9 s3

2 4
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FIG. 6.12-5 INHOMOGENEOUS TRANSFORMERS
WITH R - I

Equations (6.12-2), (6.12-4). and (6.12-5) then determine all the wave-
guide dimensions.

Example 2- Find the 'a' dimensions of an ideal two-section quarter-

wave transformer in rectangular waveguide from a, 1.372 inches to

Got 1.09 inches to have R - I and to conform with Eqs. (6.12-2),

(6.12-4), and (6.12-5). Here, X~.a 1.918 inches.

The solution is readily found to be a, a 1.226 inches and a2
1.117 inches. In order for the impedances to be the same at center
frequency, as required by Eq. (6.12-4), the 'b' dimensionts have to be in
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the ratio bo:bl:b 2:b3 a 1:0.777:0.582:0.526, since Z cc(b/a) (X/X).
The performance of this transformer is shown in Fig. 6.12-6.

The performances of two other transformers are also shown in Fig. 6. 12-6,

both with the same input and output waveguide dimensions as in Example 2,

given above,, and both therefore also with R a 1. The optimum one-

section transformer has Z 2 a Z* = Z0, from Eq. (6.11-3), but requires

(\2* + X12 )/2, where suffix 2 now refers to the output. This

yields a: - 1.157 inches. The third, and only V-shaped, characteristic

in Fig. 6.12-6 results when the two waveguides are joined without benefit

of intermediate transformer sections. The match at center frequency is

ensured by the 'b' dimensions which are again chosen so that R - 1 at

center frequency.

Ho-

I

NORMALIZED FREQUiNCY

FIG. 6.12-6 PERFORMANCE OF THREE INHOMOGENEOUS TRANSFORMERS
ALL WITH R - 1, HAVING NO INTERMEDIATE SECTION
(. - 0), ONE SECTION (n - 1), AND TWO SECTIONS
(n - 2), RESPECTIVELY
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Transformers with sore than two sections-No design equations have

been discovered for n > 2. If a two-section transformer, as in

Example I of Sec. 6.12, does not give adequate performance, there are

two ways open to the designer: When the cutoff wavelengths X of the

input and output waveguides are only slightly different, the transformer

may be designed as if it were homogeneous. In this case the X, of the

intermediate sections may be assigned arbitrary values intermediate to

the input and output values of X.; the impedances are selected from the

tables for homogeneous transformers for a fractional bandwidth based o.

the guide wavelength, Eq. (6.02-1), of that wavegiiide which is nearest

to being cutoff. Even though the most dispersive guide is thus selected

for the homogeneous prototype, the frequency bandwidth of the inhomogeneous

transformer will still come out less, and when the spread in K, is appre-

ciable, considerably less. Thus, this method applies only to transformers

that are nearly homogeneous in the first place.

The second method is to design the transformer in two parts: one

an inhomogeneous transformer of two sections with R - 1, as in Example 2

of this section; the other a homogeneous transformer with the required

R, preferably built in the least dispersive waveguide.

Example 3-Design a quarter-wave transformer in rectangular wave-

guide from ai, 0 1.372 inches to a. t 0  1.09 inches, when R • 4. Here,

&0 a 1.918 inches.

Selecting a three-section homogeneous transformer of prototype band-

width w a 0.30 and R - 4, in a - 1.372-inch waveguide, followed by the

two-section inhomogeneous transformer of Example 2 of this section, gives

40  a 1.372 inches Z = 1.0 1

a, a 1.372 inches Z, a 1.19992

a2 M 1.372 inches Z 2 0 2.0 ,

a3 a 1.372 inches Z3 a 3.33354

a, a 1.276 inches Z 4 a 4.0

as - 1.117 inches Z5 0 4.0

a 6 1.090 inches Z 6 a 4.0
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The '6' dimensions may again be obtained from Z o (6/a) (Xs/X), as

in Example 2 of this section. The performance of this five-section

transformer is shown in Fig. 6.12-7. Its VSWIH is less than 1.05 over

a 20-percent frequency band, although it comes within 6 percent of

cutoff at one end.

Where a low VSWIH over a relatively wide pass band is important, and

where there is room for four or five sections, the method of Example 3

of this section is generally the best.

SEC. 6. 13, A NONSYNCHIBONOUS THANSFOHMEH

All of the quarter-wave transformers considered so far have been

synchronously tuned (see Sec. 6.01); the impedance ratio at any junction

has been less then the output-to-input impedance ratio, R. It is pos-

sible to obtain the same or better electrical performance with an ideal

ti0 --

t05

NORMALIZED FREOUENCY

FIG. 6.12-7 PERFORMANCE OF A FIVE-SECTION
INHOMOGENEOUS TRANSFORMER

3'0



nonsynchronous transformer of

shorter length; however, the im-

pedance ratios at the junctions

generally exceed R by a large

factor, and for more than two Zo z, Zo z,

sections such "supermatched" AND R.Z,/Zo

transformers appear to be i;..- EXAMPLE: ZoSOehms
Z, • TO ohms

practical. There is one case of L I_-

a nonsynchronous transformer that h o Ac
• - Itfl- 00

is sometimes useful. It consists

of two sections, whose respective FIG. 6.131 ANONSYNCHRONOUS

impedances are equal to the out- TRANSFORMER

put and input impedances, as

shown in Fig. 6.13-1. The whole

transformer is less than one-sixth

wavelength long, and its performance is about the same as that of a

single-section quarter-wave transformer. It can be shown2 6 that the

length of each section for a perfect match has to be equal to

1 )/2
L a 2arc cot 0 + I + - wavelengths (6.13-1)

which is always less than 30 electrical degrees, and becomes 30 degrees

only in the limit as P approaches unity. It can be shown further that,

for small R, the slope of the VSWR vs. frequency characteristic is

greater than that for the corresponding quarter-wave transformer by a

factor of 2/r (about 15 percent greater); but then the new transformer

is only two-thirds the over-all length (k /6 compared to Ka/4).

The main application of this transformer is in cases where it is

difficult to come by, or manufacture, a line of arbitrary impedance.

Thus if it is desired to match a 50-ohm cable to a 70-ohm cable, it

is not necessary to look for a 59.1-ohm cable; instead, the matching

sections can be one piece of 50-ohm and one piece of 70-ohm cable.

Similarly, if it is desired to match one medium to another, as in an

optical multilayer antireflection coating, this could be accomplished

without looking for additional dielectric materials.
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SEC. 6.14, INTERNAL DISSIPATION LOSSES

In Sec. 4.13 a formula was derived for the center-frequency increase

in attenuation (ALA)o due to dissipation losses. Equation (4.13-11)

applies to lumped-constant filters which are reflectionless at band

center, and also includes those transmission-line filters which can be

derived from the low-pass lumped-constant filters of Chapter 4 (see,

for example, Sec. 6.09). If, however, the filter has not been derived

from a lumped-constant prototype, then it is either impossible or

inconvenient to use Eq. (4.13-11). What is required is a formula giving

the dissipation loss iii terms of the transmission-line filter parameters,

such as the V. instead of the g,.

Define S, as the VSW at center frequency seen inside the ith filter

cavity, or transformer section, when the output line is matched

(Fig. 6.14-1). Here the numbering is such that i a I refers to the

section or transmission-line cavity nearest the generator. Let

1 - .
(6.14-1)Pt •S + I

be the amplitude of the reflection coefficient in the ith cavity,

corresponding to the VSWi S,. Let 1 2 ' 27

POWER FLOW

i-th CAVITY

MATCHED
- - ILINE

I IOUTPUT
INPUT 0 I --- ( 1- I 1(1+1) . . a n*I

I I
VSWR SEEN IN i-th

SECTION OR CAVITY IS Si
A-10111-I

FIG. 6.14-1 VSWR INSIDE A FILTER OR TRANSFORMER
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Gross Power Flow
Net Power Flow

1 Ipi' (6.14-2)

- 1p1

S2 +*

2S3

The attenuation of transmission lines or dielectric media is usually

denoted by a, but it is measured in various units for various purposes.

Let

a,, U attenuation measured in decibels per unit length

an a attenuation measured in nepers per unit length f(6.14-3)

a0  a absorption coefficient (used in optics 12) I

The absorption coefficient, x, is defined as the fraction of the

incident power absorbed per unit length. Thus, if Piat is the incident

power (or irradiance) in the z-direction, then

MOa - - (6.14.4)
Ping dz

These three attenuation constants, a., a,, and a0, are related as

fol lows:

a a a0/2 nepers

ad - (10 loglo e) 0 - 4.343a* decibels (6.14-5)

a (20 loglo )a - 8.686a. decibels

Denote the length of the ith cavity or section by IV If each 1, is

equal to an integral number of quarter-wavelengths, with impedance

maxima and minima at the ends, as is the case with synchronously tuned,
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stepped-impedance filters end transformers at center frequency, then
the dissipation loss (if small) is given by12

(WLA)0  (- p01) iliU i  decibels
il

( - 1p1 2) I d6,lud nepers (6.14-6)
i*1

(O i 1 i0,

as a fraction of the incident power

where 1p01 is again the reflection coefficient amplitude at the input.

To calculate the dissipation loss from Eq. (6.14-6), the gross-to-

net power flow ratio, U, has to be determined from Eq. (6.14-2). For
half-wave filters this is particularly simple, since

S. > 1 (6.14-7)

where Z' is the impedance of the line forming the ith cavity and Z'

is the output impedance of the half-wave filter. The half-wave filter

impedances, Z', can be worked out as in Example I of Sec. 6.07,. or

Examples I and 2 of Sec. 6.09, or from Fig. 6.03-1. Since the filter
or transformer is synchronously tuned,

S aV a - +1

V[ (6.14-8)

S- .(si) > 1
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. L,

S l~ > 1

i+1

.S > . 1 (6.14-8)

Input VS*R a S0  (- ) > 1

The internal VSWR, S,, for synchronous filters, can also be written in

the form

S Vi+41 Vi+3 V iS
S .1 1'S ''I . (6.14-9)

S i+2Vi+4 ..

The highest suffix of any V in this equation is n + 1.

Narrow-Band Filters-For narrow-band filters of large R (filters

with large stop-band attenuation), Eq. (6.09-2) combined with the

formulas 7 for the g, (Sec. 4.03) shows that the V, increase toward

the center (compare Table 6.10-1 or Fig. 6.10-2). Therefore, the

positive exponent must be taken in Eq. (6.14-9) and hence throughout

Eq. (6.14-8). Then

V.. S S * (i - 1, 2, ... , n + 1) . (6.14-10)

Since the output is matched (S,+i a 1), and from Eq. (6.04-10), the

maximum possible VSWR (in the stop band) is

R . S0(SIS2 ...S)2 . (6.14-11)

With the restriction of constant R, it can be shown" that when all the

4,l, products are equal, Eq. (6.14-6) gives minimum dissipqtion loss
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when all the S. are made equal. The internal V. are then all equal

to each other, and equal to the square of V1 * V,,. Such a filter

(called a "periodic filter") gives minimum band-center dissipation loss

for a given It (i.e., for a given maximum stop-band attenuation). (In

optical terms, it gives maximum "contrast".) General formulas including

filters of this type have been given by %ielenz 2 and by Abelts. 29

Since the attenuation, a,, and the unloaded Q, Q,., are related by35

c " Q *, (6.14-12)

therefore (ALA)u ran be expressed in terms of Q.

(1'(A L A) o 0 (a - 012) 7 4 - - Ut nepers

a 27.28 1 - 1P012) 7U decibelsi= Q.i k.\N

(6.14-13)

To relate this to Eq. (4.13-11), we must assume narrow-band filters

with large R. As in Chapter 4 and Ilef. 31, it is convenient to

normalize the low-pass filter prototype elements to g0 - 1. In

Eq. (4.13-2) and in Ref. 31, v is the frequency fractional bandwidth,

related to v. or v. (Secs. 6.02 and 6.03) of dispersive waveguide

filters by
3 2

W W or h() (6.14-14)

X X

whichever is appropriate. This can be shown to lead, for small v

and large R, to
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( ~ (1 - 1%o f)2 .2
A nepers

(6.14-15)

( 0 2w (10 log10 e) Q - decibels

It differs from Eq. (4.13-11) and lBef. 31 for the low-pass Jumped-constant

filter by an additional factor

(I - KP012) - I/antilog [I(LA)01/10] (6.14-16)

If this factor is added to Eq. (4.13-11) or Eq. (1) in Rlef. 31, they

also become more accurate. [For instance, multiplying the last column

in IfaEle 4.13-2 by the factor in Eq. (6.14-16), approximates the exact

values in the first column for (LA)O more closely, reducing the error

by an order of magnitude in every case.]

Equation (6.14-6) is the most accurate available formula for the

dissipation loss at center frequency of a quarter-wave or half-wave

filter, and can le applied to any such filter directly; Eq. (6.14-15)

is the most accurate available formula for band-pass filters derived

from the low-pass lumped-constant filter prototype of Chapter 4.

Equation (6.11-6) or (6.14-15) determines the dissipation loss at the

center of the pass band. The dissipation loss generally stays fairly

constant over most of the pass band, rising to sharp peaks just

outside loth edges, as indicated in Fig. 6.14-2(a). %1hen the total

attenuation (reflection loss plus dissipation loss) is plotted against

frequency, the appearance of the response curve in a typical case is

as shown in Fig. 6.14-2(0); the two "dimples" are due to the two

dissipation peaks shown in Fig. 6.14-2(a).

The two peaks of dissipation loss near the two band-edges may be

attributed to a build-up in the internal fields and currents. Thus we

would expect the power-handling capacity of the filter to be approximately
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DISSIATIONinversely proportional to the dissi-
LOSSTO pation loss, as the frequency

I Ichanges. An increase in stored
I energy for a matched filter is in

(a) I Iturn associated with a reduced

group velocity, 32or increased
I FRPEQUNCY~ group delay. TIhus we would expect

I the group delay through the filter

REFLECTION Ito Ibe approximately proportional
PLUS tea h

DISSIPATION toItto dissipation loss, a h
LOS frequency changes. This has already

I Ibeen pointed out in Sec. 4.13. These
Mb

Iquestions are taken up further in

FRtEQUENCY-~ Sec. 6.15.

SIOl'ICI~ J,,ur. Opt. S-),. Am. Is... It,.f 12 by L.. Young) E~xample I-The parameters of a
half-wave filter are. 0 1,

FIG. 6.14.2 ATTENUATION CHARACTERISTICS =' 245.5, Z2 - 0.002425, Z;=
OF FILTERS 455.8, Z4' - 0.0045, Z5 - 1.106

(corresponding to a 0.01-db pass-

hand ripple for a lossless filter

of bandwidth w.a0.00185). Calculate the center-frequency dissipation

loss if this filter is constructed in waveguide having an attenuation of

4.05 d1/100 ft. Wavelength &0 a 1.437 inches; waveguide width a w

1.015 inches.

The guide wavelength is

k * 2.034 inches

and

(kjo/0)' 2.00

The internal VSIls are by Eq. (6.14-7).

S1  a (Z/IZ) - 222.0

S2  a (Z/IZ;) - 455.8

S3  a 7/; - 412.5
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S4  • (Z/Z) • 245.5

3s  a 1.0 (by definition)

Summing these gives

4 1 4
2 - - Z S. 667.9
imI  2 j=1 '

Since the center-frequency input V-SAI is equal to Z s - 1.106,

therefore

IpoI1 . 0.0025

Hence from the first of Eqs. (6.14-6),

4.05
(ALA)O * 0.9975 x 1 x 1.017 x 667.9 decibels

100 x 2

= 2.29 db

SEC. 6.15, GROUP DELAY

The slope of the phase-versus-frequency curve of a matched filter

is a measure of the group delay through the filter. This has already

been discussed in Sec. 4.08, and results for some typical low-pass

filter prototypes with n - 5 elements are given in Figs. 4.08-1 and

4.08-2. In this section, group delay, dissipation loss, and power-

handling capacity will be examined in terms of stepped-impedance filters,

such as the quarter-wave transformer prototype.

it can be shown 33 that the group delay at center frequency f0

through a homogeneous matched quarter-wave transformer is given by

fo(td)o " X u U (6.15-1)

where t. is the phase slope d /cd and may be interpreted as the group

delay in the pass band. (The phase slope td - d4/dw will, as usual,
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be referred to as the group delay also outside the pass band, although

its physical meaning is not clear when the attenuation varies rapidly

with frequency.)

The group delay of a half-wave filter is just twice that of its

quarter-wave transformer prototype; in general, the gioup delay of any

matched stepped-impedance filter at center frequency is given by33

f0(o I)0 - i k9, _ (6.15-2)

Combining Eq. (6.15-2) with Eq. (6.14-6) when P0 - 0 (filter matched

at center frequency), and when the attenuation constants a and guide

wavelengths A are the same in each section, yields

ALA = aX5(/& )2f0 td  (6.15-3)

where a may be measured in units of nepers per unit length (a.), or in

units of decibels per unit length (ad), ALA being measured accordingly

in nepers or decibels.

Equation (6.15-3) can also be written

ry
ALA - f~t,  nepers • (6.15-4)

These equations have been proved for center frequency only. It can be

argued from the connection between group velocity and stored energy
TM

that the relations (6.15-3) and (6.15-4) between dissipation loss and

group delay should hold fairly well over the entire pass band. For

this reason the suffix 0 has been left out of Eqs. (6.15-3) and (6.15-4).

This conclusion can also be reached through Eqs. (4.13-2), (4.13-3) and

(4.13-9) in Chapter 4.

Example 1-Calculate the time delay (t.). at the center frequency of

the filter in Example 1 of Sec. 6.14 from its center-frequency

dissipation loss, (ALA)O.
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From Eq. (6.15-3),

f0(t) -a (()l ) O cycles at center frequency

2.29
0 2.00 x cycles at center frequency

100 x 12 /

a 668 cycles at center frequency

Since k0 a 1.437 inches, which corresponds to 0 8220 Mc, therefore

668
(.) 0 682 microseconds

8220

a 81.25 nanoseconds

Universal Curves of Group Delay-Curves will be presented in

Figs. 6.15-1 through 6.15-10 which apply to stepped-impedance transformers

and filters of large R and small bardwidth (up to about w- 0.4). They

were computed for specific cases (generally R - 102' and w 9 0.20),

but are plotted in a normalized fashion and then apply generally for

large R, small w. The response is plotted not directly against

frequency, but against

x ±( (6.15-5)

with o- given by

a pRil/2f (6.15-6)

where p is the length of each section measured in quarter-wavelengths.

(Thus p a I for a quarter-wave transformer, and p - 2 for a half-wave
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filter.) For maximally flat filters, Eq. (6.15-6) with the aid of

Sec. 6.02 reduces to

4 -- 1 2m (6.15-7)
f \'3-db /

where '3.db in Eq. (6.15-7) is the 3-db fractional bandwidth; while for

Tchebyscheff transformers,

8f 1/2*\
* -- • (6.15-8)

Similarly it can be shown 33 for maximally flat time-delay filters, that

" 2n fLj o( ,,)o
(6.15-9)

4 [.. .. ( 2n-1l) I] /

and that for equal-element filters (corresponding to periodic filters),

4 '
0" - (6.15-10)/T w

It can be deduced from Eq. (6.09-2) that the attenuation charac-

teristics are independent of bandwidth or the value of R when plotted
against x, defined by Eq. (6.15-5). Similarly, it follows from

Eqs. (6.15-1) and (6.09-2) that the time delay should be plotted as

Y 0* - (6.15-11)

so that it should become independent of bandwidth and the quantity R

(still supposing small bandwidth, large A).
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By using Eq. (6.15-7) through (6.15-10) to obtain cr, the curves in

Figs. 6.15-1 through 6.15-10 can be used also for lumped-constant filcers.

These curves are useful not only for predicting the group delay, but

also for predicting the dissipation loss and (less accurately) the power-

handling capacity in the pass band, when the values of these quantities

at midband are already known [as, for instance, by Eq. (6.14-6) or

(6.14-15)].

The following Jilter types are presented: maximally flat; Tchebyscheff

(0.01 db ripple, 0.1 db ripple and 1.0 db ripple); maximally flat time delay;

and periodic filters. The last-named are filters in which 2 _i a,+

for i - 2, 3, .... , n. (They correspond to los-pass prototype filters in

which all the g, (i - 1, 2, ..... n) in Fig. 4.04-I are equal to one another.

For large It and small bandwidth periodic filters give minimum band-center

dissipation loss !,31 and greatest power-handling capacity for a given

selectivity.]

The figures go in pairs, the first plotting the attenuation charac-

teristics, and the second the group delay. Figures 6.15-1 and 6.15-2 are-

for three periodic filters. The case n - 1 cannot be labelled, as it be-

longs to all types. The case n - 2 periodic is also maximally flat. The

case n - 3 periodic is equivalent to a Tchebyscheff filter of about 0.15 db

ripple.

Figures 6.15-3 to 6.15-8 are for n - 4, n - 8, and n - 12 sections,

respectively, and include various conv-.ational filter types. Figures 6.15-9

and 6.15-10 are for several periodic filters, showing how the character-

istics change from n - 4 to n - 12 sections.

Example 2-Calculate the dissipation loss at band-edge of the filter

in Example 1 of Sec. 6.14.

It was shown in that example that the band-center dissipation loss fdr

that filter is 2.29 db. Since this is a Tchebyscheff 0.0l-db ripple filter

with n - 4, we see from Fig. 6.15-4 that the ratio of band-edge to band-

center dissipation loss is approximately 0.665/0.535 - 1.243. Therefore

the band-edge dissipation loss is approximately 2.29 x 1.243 - 2.85 db.

The application of the universal curves to the power-handling capacity

of filters is discussed in Section 15.03.
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CHAPTER 7

LOW-PASS AMC HIGHrPASS FILTERS USING SEMI-LUWED ELAWNffS
OR WAVEGUIDE CORRUGATIONS

SEC. 7.01, PROPEBTIES OF THE FILTERS DISCUSSED IN THIS CHAPTER

Unlike most of the filter structures to be discussed in later

chapters, the microwave filters treated in this chapter consist entirely

of elements which are small compared to a quarter-wavelength (at pass.

band frequencies). In the cases of the TEM-mode filters treated, the

design is carried out so as to approximate an idealized lumped element

circuit as nearly as pos ible. In the cases of the corrugated and

waffle-iron low-pass waveguide filters discussed, the corrugations are

also small compared to a quarter-wavelength. Such filters are a wave-

guide equivalent of the common series-L, shunt-C, ladder type of low-

pass filter, but due to the waveguide nature of the structure, it is

more difficult to design them as a direct approximation of a lumped-

element, low-pass filter. Thus, in this chapter the waveguide filters

with corrugations are treated using the image method of design (Chapter3).

In Sec. 7.02 will be found a discussion of how lumped elements may

be approximated using structures which are practical to build for micro-

wave applications. In later sections the design of filters in specific

common types of construction are discussed, but using the principles in

Sec. 7.02 the reader should be able to devise additional forms of con-

struction as may be advantageous for special situations.

Figure 7.01-1(a) shows a coaxial form of low-pass filter which is

very common. It consists of short sections of high-impedance line (of

relatively thin rod or wire surrounded by air dielectric) which simulate

series inductances, alternating with short *actions of very-low-impedance

line (each section consisting of a metal disk with a rim of dielectric)

which simulate shunt capacitances. The filter shown in Fig. 7.01-1(a)

has tapered lines at the ends which permit the enlarging of the coaxial

region at the center of the filter so as to reduce dissipation loss.

However, it is mor" common to build this type of filter with the outer

conductor consisting of a uniform, cylindrical metal tube, The popularity
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/
of this type of low-pass filter results f-om its simplicity of fabrication

and its excellent performance capabilities. Its first spurious pass band

occurs, typically, when the high-impedan-e lines are roughly a half-

wavelength long. It is not difficult with this type of filter to obtain

atop bands which are free of spurious responses up as far as live times

the cutoff frequency of the filter. F.Iters of this type are commonly /1

built with cutoff frequencies ranging from a few hundred megacycles up /
to around 10 ec. A discussion of their design will be found in Sec. 7.fl3.

Figure 7.01-1(b) shows a printed-,ircuit, strip-line filter whic, I s

equivalent to the filter in Fig. 7.01-1(a) in most re-pects, but which has

somewhat inferior performance -haract, ri.sti!s. The great advantage of

this type of filter is tlat it is unusually inexpensive and easy to fabri-

cate. It usually consists primarily )f two sh-eta of low-loss dielectric

material with a photo-etched, copper-foil. -en*er-conductor [shown in

Fig. 7.01-11,)] sandwiched in betwee,, an, ;itl- copper foil or metal

plates on the outer surfaces of the lielectric pieces to serve as ground

planes. When this type of circuit is used -.he dissipation loss is gener-

ally markedly higher than for the filter in Fit. 7.01-1(a) because of the

presence of dielectric material throughout %he circuit. Also, when this

type of construction is used it is ienerall-, not possible to obtain as

large a difference in impedance level between 'he high- and low-impedance

line sections as is readily feasible in the construction shown in

Fig. 7.01-1(a). As a result of this, the attetuation level at frequencies

well into the stop band for filters conatructei as shown in Fig. 7.01-1(b)

is generally somewhat lower than that for filt.-ra constructed as shown in

Fig. 7.01-1(a). Also, spurious r,!sponases ir te stop bard generally tend

to occur at lower frequencies for the construction in Fig. 7.01-1(b).

Filters using this latter construction can also be used in the 200-Mc to

l0-Gc range. liowev:!r, for the Nigh portion of this range they must be

quite small and they tend to have considerable dissipation loss. A dis-

cussion of the design of this type of filter will be found in Sec. 7.03.

Figure 7.01-1(c) shows another related type of printed-circuit low-

pass filter. The symbols L1* L1, C., etc., is-dicate the type of element

which different parts of the circuit approximate. Elements L, and C S in

series approximate an L-C bramih which will short-circuit transmission at

its resonant frequency. Likewise for the part of the circuit which ap-

proximates L 4 and C 4. These branches then produce peaks of high attenu-

ation at frequencies above the cutoff frequency and fairly close to it,
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and by so doing, they increase the sharpness of the cutoff charkcteristlc.

This, type of filter is also easy to fabricate in photo-etched, printed-

circuit construction, but has not been used as much as the type in

Fig, 7.01-1(b), probably because it is somewhat more difficult to design

accurately. This type of filter can also be designed in coaxial or co-

axii aplit-blo-k fnrm, e aq tc obtain improved performance, but such a

fil';er would, of curse, be markedly more costly to build. Discussion

of .ie design of fi.te-s such as that in Fig. 7.01-1(c) will be found in

See 7.03.

The filter stown tn Fig. 7.01-1(d) is a waveguide version of the

fil .rs in l'igs. ".01-1(a) and (b). In this case the low- and high-

mp'iance sections of .line are realized by raising and lowering the height

of le guide, which han; led to the name "corrugated waveguide filter" by

whi-Ii it is commcn)v krown. It is a low-pass filter in its operation, but

sin:,v the waveguide ha. a cutoff frequency, it cannit operate, of course,

to L as do most low-pass filters. This type of filter can be made to

have very low pass-,anoJ loss because of its waveguide construction, and

it :frt be expected to have a higher power rating than equivalent TEM-mode

filters, However, this type of filter has disadvanta,:es compared to,

sa), the coaxias filter in Fig. 7.01-1(a) because (1) it is larger and

more costly to build, (2) the stop bands cannot readily be made to be

free of spurioz% respons#3 to as high a frequency even for the normal

TE1,, moJe of propagation, and (3) there will be numerous spurious responses

in the stop-ba-id region for higher-order modes, which are easily excited

at frequencies above the normal TE1 0 operating range of the waveguide.

Due to the presence of the corrugations in the guide, modes having vari-

ations in the direction of the waveguide height will be cut off up to very
1.igh frequencies. Therefore, TE.0 modes will be the only ones that need

be cnsidered. If the ,vaveguide is excited by a probe on its center line,

the *1'1, TE 0 , and othetr even-order modes will not be excited. In this

case, the first higher-,,rder mode that will be able to cause trouble is

the TE 0 code which has a cutoff frequency three times that of the TE1 0

mode. In typical cases the TE3 0 mode might give a spurious response at

about. 2.5 times the center frequency of the first pass band. Thus, if

the TE,,10 mode is not ex(il;ed, or if a very wide stop band is not required,

corrugated waveguide filters will frequently be quite satisfactory. The

only limitations on their useful frequency range are those resulting from

considerations of size ani ease of manufacture. Filters ot-his type (or
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the waffle-iron filters discussed below) are probably the most practical

forms of low-pass filters for frequencies of 10 Gc or higher. This type

of filter is discussed in Sec. 7.04.

Figure 7.01-1(e) shows a waffle-iron filter which in many respects

is equivalent to the corrugated waveguide filter in Fig. 7.01-1(d), but

it includes a feature which reduces the problem of higher-order modes

introducing spurious responses in the stop band. This feature consists

of the fact that the low-impedance sections of the waveguide are slotted

in the longitudinal direction so that no matter what the direction of the

components of propagation in the waveguide are, they will see a low-pass

filter type of structure, and be attenuated. Filters of this type have

been constructed with stop bands which are free of spurious responses up

to three times the cutoff frequency of the filter. The inclusion of

longitudinal slots makes them somewhat more difficult to build than corru-
gated waveguide filters, but they are often worth the extra trouble.

Their characteristics are the same as those of the corrugated waveguide

filter, except for the improved stop band. This type of filter is dis-

cussed in Sec. 7.05.

Figure 7.01-2 shows a common type of high-pass filter using coaxial

split-block construction. This type of filter is also designed so that

its elements approximate Jumped elements. In this case the short-

circuited coaxial stubs represent shunt inductances, and the disks with

Teflon spacers represent series capacitors. This type of filter has

A

LA
SiCTION 1-$ SECTION A-A

FIG. 7.01-2 A HIGH-PASS FILTER IN SPLIT-BLOCK
COAXIAL CONSTRUCTION
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excellent cutoff characteristics since for a design with n reactive

elements there is an nth-order pole of attenuation (Sec. 2.04) at zero

frequency. Typical filters of this sort have a low-attenuation, low-VSWR

pass band extending up about an octave above the cutoff frequency, with

relatively low attenuation extending up to considerably higher frequencies.

The width of the pass band over which the filter will simulate the response

of its idealized, lumped prototype depends on the frequency at which the

elements no longer appear to be sufficiently like lumped elements. To

achieve cutoffs at high microwave frequencies, structures of this type

have to be very small, and they require fairly tight manufacturing toler-

ance. This makes them relatively difficult to construct for high microwave

frequency applications. For this reason they are used most often for cut-

offs in the lower microwave frequency range (200 to 2000 Mc) where their

excellent performance and compactness has considerable advantage, but they

are also sometimes miniaturized sufficiently to operate with cutoffs as

high as 5 or 6 Gc. Usually at the higher microwave frequency ranges the

need for high-pass filters is satisfied by using wideband band-pass filters

(see Chapters 9 and 10). The type of high-pass filter in Fig. 7.01-2 has

not been fabricated in equivalent printed-circuit form much because of the

difficulties in obtaining good short-circuits on the inductive stubs in

printed circuits, and in obtaining adequately large series capacitances.

SEC 7.02, APPROXIMATE MICROWAVE REALIZATION OF LUMPED ELEMENTS

A convenient way to realize relatively wide-band filters operating in

the frequency range extending from about 100 Mc to 10,000 Mc is to con-

struct them from short lengths of coaxial line or strip line, which approxi-

mate lumped-element circuits. Figure 7.02-1 illustrates the exact T- and

77-equivalent circuits of a length of non-dispersive TEM transmission line.

Also shown are the equivalent reactance and susceptance values of the net-

works when their physical length I is small enough so that the electrical

length ci/v of the line is less than about 77/4 radians. Here we have used

the symbol w for the radian frequency and v for the velocity of propagation

along the transmission line.

For applications where the line lengths are very short or where an

extremely precise design is not required, it is often possible to represent

a short length of line by a single reactive element. For example, inspec-

tion of Fig. 7.02-1 shows that a short length of high-Zo line terminated

at both ends by a relatively low impedance has an effect equivalent to that
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FIG. 7.02-1 TEM-LINE EQUIVALENT CIRCUITS

of a series inductance having a value of L - Z 0 1/v henries. Similarly,

a short length of low-Z 0 line terminated at eit.t-r end by a relatively

high impedance has an effect equivalent to that of a shunt capacitance

C E Y0 1,"V - ,z 0 v farads. Such short sections of high-Z o line and low-Z 0

line are the most common ways of realizing series inductance and sI,

capacitance, respectively, in TEM-mode microwave filter structures.

A lumped-element shunt inductance can be realized in TEM transmission

line in several ways, as illustrated in Fig. 7.02-2(a). The most con-

venient way in most instances is to employ a short length of high-Z0 line,

short-circuited to ground at its far end, as shown in the strip-line ex-

ample. For applications where a very compact shunt inductance is required,

a short length of fine wire connected between the inner and outer con-

ductors can be used, as is illustrated in the coaxial line example in

Fig. 7.02-2(a).
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Also, a lumped element series capacitance can be realized approximately

in TEM transmission lines in a variety of ways. as illustrated in

Fig. 7.02-2(b). Often the most convenient way is by means of a gap in the

center conductor.' Where large values of series capacitance are required

in a coaxial system a short length of lov,-Z 0, open-circuited line, in

series with the center conductor can be used. Values of the series capaci-

tance of overlapping strip lines are also shown in Fig. 7.02-2(b).

Section 8.05 presents sole further data on capacitive gaps.

A lumped-element, series-resonant, shunt circuit can be realized in

strip line in the manner shown in Fig. 7.02-2(c). It is nsually necessary

when computing the capacitive reactance of the low-impedance (Z0 1) line in

Fig. 7.02-2(r) to include the fringing capacitance at the end of the Z01

line and at the step between lines. The end fringing capacitance can be

accounted for as follows. First, compute the per-unit-length capacitance

LOCK $14011TtD
TO GOUND PLANES

T

TOP VIEW OF CENTER CONDUCTOR EQU:VALENT CIRCUIT
( STRIP LINE I

SIDE
r 
VIEW X IO O.0o117wLO iL X 10"0

ICOAXIAL LINE) EQUIVALENT CIRCUIT
(DIMENSIO -INCN )

10) SHUNT INOUCTANCLS A s

FIG. 7.02-2 SEMI-LUMPED-ELEMENT CIRCUITS
IN TEM TRANSMISSION LINE
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C 84 7 #re /inch (7.02-1)

for the Z0 1 line, where C, is the relative dielectric constant. Then

the effect of the fringing capacitances at the ends of the line can be

accounted for, approximately, by computing the total effective electrical

length of the Z0 1 line as the measured length plus a length

Al-0.450 WE (C ( 0-2Al1 - inches (7.02-2)

added at each end. In Eqs. (7.02-1) and (7.02-2), w is the width of the

strip in inches, and C' /E is oltained from Fig. 5.07-5. A further re-
I

finement in the design of resonant elements such as that in Fig. 7.02-2(c)

can be made by correcting for the junction inductance predicted by

Fig. 5.07-3; however, this correction is usually quite small.

A lumped-element parallel-resonant shunt circuit can be realized in

the manner shown in Fig. 7.02-2(d). Here too it is necessary, when com-

puting the capacitive reactance of the low-impedance (Z.1 ) line, to in-

clude the fringing capacitance at the end of the open-circuited line.

The series-resonance and parallel-resonance characteristics of the

lumped elements of Figs. 7.02-2(c) and 7.02-2(d) can also be approximated

over limited frequency bands by means of quarter-wavelength lines, re-

spectively, open-circuited or short-circuited at their far ends. Formulas

for computing the characteristics of such lines are given in Fig. 5.08-1.

Series circuits having either the characteristics of lumped series-

resonant circuits or lumped parallel-resonant circuits are very difficult

to realize in semi-lumped-form TFAI transmission lines. However, they can

be approximated over limited frequency bands, in coaxial lines, by means

of quarter wavelength stubs in series with the center conductor, that are

either open-circuited or short-circuited at their ends, respectively.

Such btubs are usually realized as lines within the center conductor in

a manner similar to the first example in Fig. 7.02-2(b).
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SEC. 7.03, LOW-PASS FILTERS USING SEMI-LUMPED ELEMENTS

The first step in the design of filters of this type is to select

an appropriate lumped-element design (usually normalized), such as those

in the tables of low-pass prototypes in Secs. 4.05 to 4.07. The choice

of the type of the response (for example, the choice between a 0.1- or

0.5-db ripple Tchebyscheff response) will depend on the requirements of

a specific application. Also, the number n of reactive elements will be

determined by the rate of cutoff required for the filter. For Tchebyscheff

and maximally flat series-L, shunt-C, ladder low-pass filters the required

value of n is easily determined from the normalized attenuation curves in

Sec. 4.03.

Having obtained a suitable lumped-element design, the next step is

to find a microwave circuit which approximates it. Some examples will

now be considered.

An Example of a Simple L-C Ladder Type of Low-Pass Filter-It is

particularly advantageous to design low-pass filters in coaxial- or

printed-circuit form using short lengths of transmission line that act

as semi-lumped elements. In order to illustrate the design procedure

for this type of filter the design of a 15-element filter is described

in this section. The design specifications for this filter are 0.1-db

equal-ripple insertion loss in the pass band extending from zero frequency

to 1.971 Gc, and at least 35-dL attenuation at 2.168 Gc. A photograph

of the filter constructed from coaxial elements using the"split-block"

coaxial line construction technique is shown in Fig. 7.03-1.

The form of the 15-element low-pass prototype chosen for this filter

has a series inductance as the first element, as illustrated in the

schematic of Fig. 7.03-2(a). At the time this filter was designed the

element values in Table 4.05-2(b) were not available, but the element

values for filters containing up to 10 elem-nts as listed in Table 4.05-2(a)

were available. Therefore, the 15-element prototype was approximated by

using the nine-element prototype in Table 4.05-2(a), augmented by re-

peating three times each of the two middle elements of the nine-element

filter. Comparison of these values with the more recently obtained exact

values from Table 4.05-2(b) shows that the end elements of the filter

are about 1.2 percent too small and that the error in the element values

increases gradually toward the center of the filter so that the center

element is about 4.2 percent too small. These errors are probably too
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FIG. 7.03-1 A MICROWAVE LOW-PASS FILTER
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Small to be of Significance in most applications. It should be noted

that since tables going to n - 15 are now available, good designs for

even larger n's can be obtained by augmenting n • 14 or n - 15 designs,

in the above manner.

The schematic of the lumped-constant prototype used in the design

of the actual filter is shown in Fig. 7.03-2(a). This filter is scaled

to operate at a 50-ohm impedance level with an angular band-edge fre-

quency w, of 12.387 x 109 radians per second. The values of the in-

ductances and capacitances used in the lumped-constant circuit are

obtained from the low-pass prototype by means of Eqs. (4.04-3) and

(4.04-4). That is, all inductances in the low-pass prototype are mul-

tiplied by 50/(12.387 x 109) and all capacitances are multiplied by

1/(50 x 12.387 x 109). Sometimes, instead of working with inductance

in henries and capacitance in farads, it is more convenient to work in

terms of reactance and susceptance. Thus, a reactance wiLh for the

prototype becomes simply wlL , u (w LI)(R 0/R) for the actual filter,

where R'0 is the resistance of one of the prototype terminations and R0
is the corresponding resistance for the scaled filter. Also, the shunt

susceptances uC' for the prototype become - (w1C;)(R;1/R0) for the
scaled filter. This latter approach will be utilized in the numerical

procedures about to be outlined.

The semi-lumped realization of a portion of the filter is shown in

Fig. 7.03-2(b). It is constructed of alternate sections of high-

impedance (Z - 150 ohms) and low-impedance (Z, 10 ohms) coaxial line,

chosen so that the lengths of the high-impedance line would be approxi-
mately one-eighth wavelength at the equal-ripple band-edge frequency of

1.971 Gc. The whole center conductor structure is held rigidly aligned

by dielectric rings (E, - 2.54) surrounding each of the low-impedance

lengths of line. The inside diameter of the outer conductor was chosena

to be 0.897 inch so that the 2.98-Oc cutoff frequency of the first
higher-order mode* that can propagate in the low-impedance sections of

the filter is well above the 1.971-Gc band-edge frequency of the filter.

The values of the inductances and capacitances in the lumped-constant

circuit, Fig. 7.03-2(a), are realized by adjusting the lengths of the

high- and low-impedance lines respectively.

A diseased in Se. 5.03. the first ksbr made ean aeou wb I0 7.61(1 + d)hr, ebre fb / ii Go
mad 6 nd d are the ester end inner disters in ies.
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The exact equivalent circuit of the semi-lumped realization of the

first three snd elements of the filter are shown in Fig. 7.03-2(c). In

this figure C¢0 is the fringing capacity at the junction of the 50-ohm

terminating line and the 150-ohm line representing the first element in

the filter, as determined from Fig. 5.07-2. Similarly, C/ is the fringing

capacitance at each junction between the 10-ohm and 150-ohm lines in the

filter. It is also determined from Fig. 5.07-2, neglecting the effect

on fringing due to the dielectric spacers in 10-ohm lines. The velocity

of prop gation v. of a wave along the 150-ohm line is equal to the veloc-

ity of light in free space while the velocity of propagation v, along the

10-ohm line is vl/V.

Some of the 150-ohm lines in this filter attain electrical lengths

of approximately 50 electrical degrees at the band-edge frequency w1.

For lines of this length it has been found that the pass-band bandwidth

is most closely apr-nximated if the reactances of the lumped-constant

inductive elements at frequency w, are matched to the exact inductive

reactance of the transmission line elements at frequency wl using the

formulas in Fig. 7.02-1. The inductive reactance of the 10-ohm lines

can also be included as a small negative correction to the lengths of

the 150-ohm lines. Following this procedure we have

COL Z. sin C + ohms (7.03-1)
\ Vk 2v,

W L 3  O = Z 1 2C 1 +

\ sin ( ) ) 2u, 2v

etc.

The capacitance of each shunt element in the low-pass filter in

Fig. 7.03-2(a) is realised as the sum of the capacitance of a short

length of 10-ohm line, plus the fringing capacitances between the 10-ohm

line and the adjacent 150-ohm lines, plus the equivalent 150-ohm-line

capacitance as lumped at the ends of the adjacent 150-ohm lines. Thus,

we can determine the lengths of the 10-ohm lines by means of the

relations
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Y, 12w Y I W I Y I SW 1
1 + 2Ct + - + - mho s (7.03-2)

cilC 4  -+2 C /co 2v+

V1 2v h  2vh

etc.

In Eqs. (7.03-1) above, the first term in each equation on the right

is the major one, and the other terms on the right represent only small

corrections. Thus, it is convenient to start the computations by neg-

lecting all but the first term on the right in each of Eqs. (7.03-1),

which makes it possible to solve immediately for preliminary values of

the lengths 1, 1i 
1s, etc., of the series-inductive elements. Having

approximate values for l1, 13, 15, etc., it is then possible to solve

each of Eqs. (7.03-2) for the lengths 12' 1, 1., etc., of the capacitive

elements. Then, having values for 12, 14, 1., etc., these values may

then be used in the correction terms in Eqs. (7.03-1), andEq. (7.03-1)

can then be solved to give improed values of the inductive element

lengths l, i3, Is, etc.

The iterative process described above could be carried on to insert

the improved values of 111 130 1,, etc., in Eq. (7.03-2) in order to re-

compute the lengths 12t 14, 16, etc. However, this is unnecessary because

the last two terms on the right in each of Eqs. (7.03-2) are only small

correction terms themselves, and a small correction in them would have

negligible effect on the computed lengths of the capacitor elements.

The reactance or susceptance form of Eqs. (7.03-1) and (7.03-2) is

convenient because it gives numbers of moderate size and avoids the

necessity of carrying multipliers such as 10-12. The velocity of light

is v - 1.1803 x 101 0/v-, inches per second, so that the ratios wlv,

and c/v, are of moderate size.

The effect of the discontinuity capacitances Cf, and Y111/2vj at

the junction between the 50-ohm lines terminating the filter and the

150-ohm lines comprising the first inductive elements of the filter can

be minimized by increasing the length of the 150-ohm lines by a small

amount 10 to simulate the series inductance and shunt capacitance of a

3"



short length of 50-ohm line. The necessary line length 1, can be

determined from the relation

Vh ere nuctance
z0 z 5 Yh 1 Shunt Capacitance

(,0 2vA

Solving for 10 gives

10 z 2 [(-lfo)VA 1 (7.0O3-3)

F~igure 7.03-3(a) 'diows the dimensionis of' the filter determined using

the above procedures, while IFig. 7.03-3(b) shows the measured response

of the filter. It is seen that the maximum pass-band ripple level as

determined from %nhh measuremenits is about 0.12 db over most of the pass

band while rising to 0.2 dlb near the edge of the pass band. It is

believed that the discrepancy between the measured pass-band ripple
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Oi 97-

ALL DISKS 7.- i-
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O.0?3'do THROUGHOU 00? ."S / \ -- INSIDE 0.6971di

MODIFIED UG-5A/Y
TYPE N CONNECTOR

5O ohm SECTION
LENGTH TO SUIT

FILTER SY111ETRICAL AlOUT NICOLE

FIG. 7.03-3(s) DIMENSIONS OF THE FILTER IN FIG. 7.03-1
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level and the theoretical O.I-db level is caused primarily by the fact

that the approximate prototype low-pass filter was used rather than the

exact prototype as given in Table 4.05-2(b). The actual pass-band at-

tenuation of the filter, which includes the effect of dissipation loss

in the filter, rises to approximately 0.35 dh near the edge of the pass

band. This behavior is typical and is explained by the fact that d/dw',

the rate of change of phase shift through the low-pass prototype filter

as a function of frequency, is more rapid near the pass-band edge, and

this leads to increased attenuation as predicted by Eq. (4.13-9). A more

complete discussion of this effect is contained in Sec. 4.13.

This filter was found to have some spurious responses in the vicinity

of 7.7 to 8.5 Gc, caused by the fact that many of the 150-ohm lines in the

filter were approximately a half-wavelength long at these frequencies. No

other spurious responses were observed, however, at frequencies up through

X-band. In situations where it is desired to suppress these spurious

responses it is possible to vary the length and the diameter of the high-

impedance lines to realize the proper values of series inductance, so

that only a few of the lines will be a half-wavelength long at any fre-

quency within the stop band.

The principles described above for approximate realization of low-

pass filters of the form in Fig. 7.03-2(a) can also be used with other

types of filter constructions. For example, Fig. 7.03-3(c) shows how the

filter in Fig. 7.02-3(a) would look if realized in printed-circuit, strip-

line construction. The shaded area is the copper foil circuit which is

photo-etched on a sheet of dielectric material. In the assembled filter

the photo-etched circuit is sandwiched between two slabs of dielectric,

and copper foil or metal plates on the outside surfaces serve as the

ground planes. The design procedure is the same as that described above,

except that in this case the line impedances are determined using

Fig. 5.04-1 or 5.04-2, and the fringing capacitance CI in Eq3. (7.03-2)

is determined using Fig. 5.07-5. It should be realized that C; in

Fig. 5.07-5 is the capacitance per unit length from one edge of the

conductor to one ground plane.* thus, C1 in Eqs. (7.03-2) is C1 /2C'W 
,

where W, is the width of the low-impedance line sections (Fig. 7.03-3(c)]..

The calculations then proceed exactly as described before. The relative

It in computing C .from i . 5.075.9s, • .2S X o" Is Wed,. b. C, will hav. the Vlts of
fareds/isch.
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advantages and disadvantages of printed-

U N circuit vs. coaxial construction are

discussed in Sec. 7.01.

* iLow-Pass Filters Designed from
I Prototypes Having Infinite Attenuation
J

at Finite Frequencies -The prototype

filters tabulated in Chapter 4 all have
- -their frequencies of infinite attenuation

W, Webb Wa (see Secs. 2.02 to 2.04) at w * W. The

A-S,-nO corresponding microwave filters, such as

the one just discussed in this section,
FIG. 7.034 TCHEBYSCHEFF FILTER

CHARACTERISTIC WITH are of a form which is very practical to

INFINITE ATTENUATION build and commonly used in microwave en-
POINTS AT FINITE gineering. However, it is possible to
FREQUENCIES design filters with an even sharper rate

of cutoff for a given number of reactive

elements, by using structures giving in-

finite attenuation at finite frequencies. Figure 7.03-4 shows a

Tchebyscheff attenuation characteristic of this type, while Fig. 7.03-5

shows a filter structure which can give such a characteristic. Note that

the filter structure has series-resonant branches connected in shunt,

which short out transmission at the frequencies w.. and w,,, and thus

give the corresponding infinite attenuation points shown in Fig. 7.03-4.

In addition this structure has a second-order pole of attenuation at

w v O since the w,. and w,, branches have no effect at that frequency,

and the inductances L1, L 3, and L, block transmission by having infinite

L, L3 LS

L2  L4
zo zo

T 2 1zC4 To
Wio Wb

FIG. 7.03-5 A FILTER STRUCTURE WHICH IS POTENTIALLY
CAPABLE OF REALIZING THE RESPONSE IN
FIG. 7.03-4
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series reactance, while G6 shorts out transmission by having infinite

shunt susceptance (see Sec. 2.04).

Filters of the form in Fig. 7.03-5 having Tchehyscheff responses

such as that in Fig. 7.03-4 are mathematically very tedious to design.

However, Saal and Ulbrich 2 have tabulated element values for many cases.

If desired, of course, one may obtain designs of this same general class

by use of the classical image approach discussed in Secs. 3.06 and 3.08.

Such image designs are sufficiently accurate for many less critical

applicat ions.

COPPER FOIL
GRO"0 PLANES

LOW-LOSS
DIELECTRIC"lL,

WC4, PRINTED CIRCUITmet IN CENTER

TOP VIEW OF COPMER two VIEW
PRINTEO CIRCUIT OF FILTER

FIG. 7.03-6 A STRIP-LINE PRINTED-CIRCUIT FILTER WHICH CAN
APPROXIMATE THE CIRCUIT IN FIG. 7.03-5

Figure 7.03-6 shows how the filter in Fig. 7.03-5 can be realized,

approximately, in printed-circuit, strip-line construction. Using this

construction, low-loss dielectric sheets are used, clad on one or both

sides with thin copper foil. The circuit is photo-etched on one side of

one sheet, and the printed circuit is then sandwiched between the first

sheet of dielectric and a second shget, as shown at the right in the

figure. Often, the ground planes consist simply of the copper foil on the

outer sides of the dielectric sheets.

The L's and C's shown in Fig. 7.03-6 indicate portions of the strip-

line circuit which approximate specific elements in Fig. 7.03-5. The

various elements are seen to be approximated by use of short lengths of

high- and low-impedance lines, and the actual dimensions of the line
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elements are computed as discussed in Sec. 7.02. In order to obtain best

accuracy, tile shunt capacitance of the inductive line elements should be

compensated for in the design. fly Fig. 7.02-1(c) the lengths of the

inductive-line-elements can be computed by the equation

V AilI LL

'i I)z 0
-V sin 0

and the resulting equivalent capacitive susceptance at each end of tile

pi-equivalent cirruit of inductive-line-element k is then

k' -Vi tan (7.03-4)

where -! is the cutoff frequency, Z k is the characteristic impedance of

inductive-Iine-element k, Ik is the length of the line element, and v is

again the velocity of propagation. Now, for example, at the junction of

the inductive line elements for L1 , L2 , and L3 in Fig. 7.03-6 there is

an unwanted total equivalent capacitive susceptance of wICL a C+(C,) I +

1 i 2 + C." due to the three inductance line elements. The un-

wanted susceptance WICL can be compensated for by correcting the sus-

ceptance of the shunt branch formed by L 2 and C 2 so that

B2  lCL + B (7.03-5)

where B2 is the susceptance at frequency w, of the branch formed by L 2

and C2 in Fig. 7.03-5, and Be is the susceptance of a "compensated" shunt

branch which has L2 and C 2 altered to become L' and C; in order to com-

pensate for the presence of CL. Solving Eq. (7.03-5) for w C; and wol
gives

CdC ucC vC [(7.03-6]1 2 1 2 1 L 1(703-6)

1 2 2
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where

(--) 2  . (7.03-8)

Then the shunt branch is redesigned using the compensated values LI and

C; which should be only slightly different from the original values

computed by neglecting the capacitance of the inductive elements.

In filters constructed as shown in Fig. 7.03-6 (or in filters of

any analogous practical construction) the attenuation at the frequencies

w, and co. (see Fig. 7.03-4) will be finite as a result of losses in

the circuit. Nevertheless, the attenuation should reach high peaks at

these frequencies, and the response should have the general form .n

Fig. 7.03-4, at least up to stop-band frequencies where the line elements

are of the order of a quarter-wavelength long.

Example-One of the designs tabulated in Ref. 2 gives normalized

element values for the circuit in Fig. 7.03-5 which are as follows:

Z; - 1.000 L' I 0.7413

L; a 0.8214 C - 0.9077

L; a 0.3892 L S W 1.117

C; - 1.084 C( - 1.136

L' - 1.188 W * 1.000

This design has a maximum pass-band reflection coefficient of 0.20

(0.179 db attenuation) and a theoretical minimum stop-band attenuation

of 38.1 db which is reached by a frequency w' - 1.194 w'j. As an example

of how the design calculations for such a filter will go, calculations

will be made to obtain the dimensions of the portions of the circuit in

Fig. 7.03-6 which approximate elements L1 to L. The impedance level is

to be scaled so that Z0 * 50 ohms, and so that the un-normalized cutoff

frequency is f, - 2 Gc or w, - (2w)2 x 109 - 12.55 x 109 radians/sec.

A printed-circuit configuration with a ground-plane spacing of

b a 0.25 inch using dielectric with , " 2.7 is assumed. Then, for the

input and output line /viZG * 1.64 (50) - 82, and by Fig. 5.04-1,

Wo/b - 0.71, and a width We - 0.71 (0.25) - 0.178 inch is required.
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Now v 1.1803 x 10/'h-v inches/sec

so

V 1.1803 x 10"0- . a 0.523
Wt (1.64)(12.55 x 10')

For inductor LI, w1 La w L'1(Z 0 /Z ) - 1(0.8214)(50)/1 - 41.1 ohms.
Assuming a line impedance of Z1 a 118 ohms. re'Z - 1938 and Fig. 5.04-1

calls for a line width of W1 - 0.025 inch. Then the length of the

L,-inductivo element is

- sin1-0 I 0.573 sin "-1 4. . 0.204 inch
W Z1 118

The effective, unwanted capacitive susceptance at each end of this

inductive line is

1( 1a I 0.204
Co *0.0015 who

l(v) 2\/ z 2(0.573)118

After some experimentation it is found that in order to keep the

line element which realizes L. from being extremely short, it is desirable
to use a lower line impedance of Z. - 90 ohms, which gives a strip width

of W2 - 0.055 inch. Then w1L2 a %L(Zo!Z 0) - 19.95 and

W1 -l 19.95
s -sin" - 0.573 sin' - 0.128 inch

W1 Z2 90

Even a lower value of Z, might be desirable in order to further lengthen

1, so that the large capacitive piece realizing C. in Fig. 7.03-6 will be

further removed from the Ls and L2 lines. However, we shall proceed with

the sample calculations. The effective unwanted capacitance susceptance

at each end of 12 is

1 wl Lt 0.128

*(,) -- W 2 .2 0.0012 who
2 v Z2 2(0.573)90
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Similar calculations for L 3 give 13 - 0.302 inch and

WI(C,)3 -•0.0022 mho, where Z3 is taken io be 118 ohms as was Z1 . Then

the net unwanted susceptance due to line capacitance at the junction of

LI, L2, and L3 is

CICL w W (C,,) + "I (C,,)2 + W*(C, - 0.0049 mho

Now w C 2 2 WC'(/Z 0 ) - 1(1.084)/'50 - 0.0217 mhos. Then by Eq. (7.03-8)

19.45(0.0217) - 0.422

and by Eq. (7.03-6) the compensated value for w1C2 is

U iCe - 0.217 - 0.0049 [1 - 0. t22] - 0.0189 mho

Now thme compensated value for oL 2 is
2

W (+). 22.3 ohms

Then the compensated value for the length 12 of the line for L. is

12 s 0.573 sin-' 2 - 0.144 inch

90

To realize C 2 we assume a line of impedance ZC2 a 30.5 ohms which calls

for a strip width of Wc - 0.362 inch. This strip should have a capacitive

susceptance of c 1C - c 1(C) 2 - 0.0189 - 0.0012 - 0.0177 mho. Neglecting

end-fringing, this will be obtained by a strip of length

V
*(Co-c;c - 1(c')2zc -z

a 0.0177(30.5)(0.573) - 0.309 inch
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To correct for the fringing capacitance at the ends of this strip we

first use Eq. (7.02-1) to obtain the line capacitance

84.734- 84.73(1.64)
C a - . 4.55 /pf per inch

Zc2 30.5

Then by Fig. 5.07-5, CIle - 0.45, and by Eq. (7.02-2) we need to subtract

about

0.450W0 (C6)

0.450(0.362) (2.7)(0.45) - 0.0435 inch

4.55

from each end of the capacitive strip, realizing C; in order to correct

for end-fringing. The corrected length of the strip is then

IC2 - 2A1 - 0.222 inch. This calculation ignores the additional

fringing from the corners of the C2 strip (Fig. 7.03-6), but there ap-

pear to be no satisfactory data for estimating the corner-fringing. The

corner-fringing will be counter-balanced in nome degree by the loss in

capacitance due to the shielding effect of the line which realizes L2.

In this manner the dimensions of the portions of the circuit in

Fig. 7.03-6 which are to realize LI, L, C2 , and L 3 in Fig. 7.03-5 are

fixed. It would be possible to compensate the length of the line

realizing L1 so as to correct for the fringing capacitance at the junction

between L 1 and Z0 (Fig. 7.03-6). but in this case the correction would be

very small and difficult to determine accurately.

SEC. 7.04, LOW-PASS CORIIUGATED-WAVEGUIDE FILTER

A low-pass* corrugated-waveguide filter of the type illustrated

schematically in Fig. 7.04-1 can be designed to have a wide. well-matched

That te the filter is low-paes in nature eneept for the cutoff effect of the waveguide.
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FIG. 7.04-1 A LOW-PASS CORRUGATED WAVEGUIDE FILTER

pass band and a wide, high-attenuation stop band, for power propagating

in the dominant TE1 0 mode. Because the corrugations are uniform across

the width of the waveguide the characteristics of this filter depend

only on the guide wavelength of the TE.0 modes propagating through the

filter, and not on their frequency. Therefore, while this type of filter

can be designed to have high attenuation over a particular frequency band

for power propagating in the TE1 0 mode, it may offer little or no attenu-

ation to power incident upon it in the TE20 or TE3 0 modes in this same

frequency band, if the guide wavelengths of these modes falls within the

range of guide wavelengths which will give a pass band in the filter

response.

A technique for suppressing the propagation of the higher-order TE 0

modes, consisting of cutting longitudinal slots through the corrugations,

thus making a "waffle-iron" filter, ia described in Sec. 7.05. However,

the procedure for designing the unslotted corrugated waveguide filter

will be described here because this type of filter is useful in many ap-

plications, and an understanding of design techniques for it is helpful

in understanding the design techniques for the waffle-iron filter.

The design of the corrugated waveguide filter presented here follows

closely the image parameter method developed by Cohn.' When 6 < I the

design of this filter can be carried out using the lumped-element proto-

type approach described in Sec. 7.03; however, the present design applies

for unrestricted values of 6. Values of I' are restricted, however, to
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be greater than about b/2 so that the fringing fields at either end

of the line sections of length ' will not interact with each other.

Figure 7.04-2 illustrNtes the image parameters of this type of

filter as a function of frequency. The pass band extends from f,, the

cutoff frequency of the waveguide, to fl, the upper cutoff frequency

360 - a- --

,9,* -

c f. I, f . to

FIG. 7.04-2 IMAGE PARAMETERS OF A SECTION OF A

CORRUGATED WAVE GUIDE FILTER

of the first pass band of the fiter. At the infinite attenuation fre-

quency, f, the image phase shift per section changes abruptly 
from 180

to 360 degrees. The frequency f2 is the lower cutoff frequency of the

second pass band. The normalized image admittance y, of the filter is

maximum at f, (where the guide wavelength X, a cO) and zero at f, (where

The equivalent circuit of a single half-section of the filter is

illustrated in Fig. 7.04-3. For convenience all admittances are normalized

with respect to the wave~aide characteristic admittance ofr the portion# ofr
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holoci

FIG. 7.04.3 NORMALIZED EQUIVALENT
CIRCUIT OF A WAVEGUIDE
CORRUGATED FILTER
HAL F-SECTION

yand y0 are normalIized
cha'racterisetic admittances
and y, is the normalized
imago admittance

the filter of height b and wtdth a. Thus, the normalized characteristic

admittance of the terminating lines are b/b. where b and bT are defined

in Fig. 7.04-1.

The half-section open- and short-circuit susceptances are given by

b 0 iton[7T + tan- (8 b6s) (7.04-1)

b. a -tan[. + tan-1 (8bi). (7.04-2)

where

b: tam (-) + B~ (7.04-3)

b.' (--cot )+a B + 2B. (7.04-4)

and

8 - b/lb

379



The susceptances marked oc are evaluated with the ends of the wires on

the right in Fig. 7,04-3 left open-circuited, while the suaceptances

marked sc are evalua ted with the ends of the wires on the right all

shorted together at the (enter line.

When 6 . 0.15, the shunt susceptance B.2 is given accurately by the

equat ion {k~ IFj
tanh -

2b Ib ] 6
B,2 A 0. 338 4- 0.09 - (7.04-5)

and the series susceptance hel bas the value

® 2-nk IFtacit

Be (7.04-6)

where

F 1 )2

The normalized image admittance y, • Yo* Y" is

coJ, , J co / (7.04-7)S cot cot

and the image propagation constant for a full section is

y a + j/3 - 2 tanh" ,I I
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or

tan acot

y * 2 tanh " 1 (9 (7.04-8)
c tan

cot j-( tan -

Qe -- ,\b' + 2
(6: 8 so

where 0' * 21 'A' is the electrical length of the low-impedance lines

of length L'.

The attenuation per section of a corrugated filter can be computed

by use of Eq. (7.04-8a) (for frequencies where the equivalent circuit in

Fig. 7.04-3 applies). However, once the image cutoff frequency of the

sections has been determined, with its corresponding guide wavelength

hal, the approximate formula

a - 17.372 coah "1  1  db/aection (7.04-8b)
N

is convenient, where X6 is the guide wavelength at a specified stop-band

frequency. Equation (7.04-8b) is based on Eq. (3.06-7) which is for

Jumped-element filters. Thus, Eq. (7.04-8b) assumes that the corrugations

are small compared to a wavelength. Note that a section of this filter is

defined as the region from the center of one tooth of the corrugation to

the center of the next tooth. The approximate total attenuation is, of

course, a times the number of sections.

Equations (7.04-7) and (7.04-8a) can be interpreted most easily with

the aid of Fig. 7.04-4, which shows a sketch of the quantities in these

equations as a function of reciprocal guide wavelength. It is seen that

the image cutoff frequency f1 at which y, 0 0, is determined by the

condition that
0'

tan
2

b' + 0 (7.04-9)
8

The equstios used here fo ,yl and v are essetially ie soe"ao eq etie which ea be fond in
Table .03-1. Their validity for the case in ig. 7,04-3, where there are moe them teo termisaels e
the right. sga be proved by u of Bartlett's lisection 1hoore.$
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FIG. 7.04-4 GRAPH OF QUANTITIES WHICH DETERMINE CRITICAL FREQUENCIES
IN CORRUGATED-WAVEGUIDE FILTER RESPONSE

The infinite attenuation frequency f. in determined by the condition

that

a "(7.04-10)

Finally, the image cutoff frequency f 2 at the upper edge of the first

stop band is determined from the condition that

,91
cot 2

-8 0 (7.04-11)

Design Procedure-One can design corrugated waveguide filters by

means of Eqs. (7.04-1) to (7.04-11), using computed values of a and b,

or the values plotted by Cohn for I/b - I/w, 1/217, and 1/47Y. Alterna-

tively one can use the values of 6'., andb', derived from the equivalent

circuit of a waveguide E-plane T-junction as tabulated by Marcuvit for
1/b' 1 1.0. However, it is generally easier to use the design graphs
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(Figs. 1.04-5. 7.04-6, and 7.04-7) prepared by Cohn,1 which are accurate

to within a few percent for 8 <. 0.20.0 In using these graphs the first

step is to specify f., fl, and f.. The width a is then fixed, since

a 5.9(7.04-12)

where a is measured in inches and (f)cin gigacycles. Values of ka.*

and Xmeasured in inches arc then calculated in the usual way from the

relation

11.8 (7.04-13)

f)2,.- (jc )2
Ge Go

using n - 1 and n w

00a.s00 00 ~a . . 3 0 .

ecemes Te .5

0.23
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The next stop in the filter design is to choose a convenient value
of l/b. Using this value of 1/b and the value of X,1/k . one then enters

Fig. 7.04-5 and determines b/Xl8 and b6,/h.1, thus fixing the values of
b, b0, and 1. Here b. is the terminating guide height which will match

the filter as X approaches infinity. Then one determines the design
parameter G from Fig. 7.04-6 in terms of I/b and b/X8 l. Finally, one
assumes a value of 8 1 0.20 and calculates ' from the relation

t78 -L-In + 0.215] (7.04-14)

If '/b' is less than 0.5, a different value of 8 should be used.

The image admittance in the pass band of l:he filter, normalized to
a guide of height b, is given to very good approximation by

- 10 (7.04-15)

where X., is the guide wavelength at frequency fl. In order that a

perfect match to the filter be achieved at some frequency f. (for which
, IS X.), the height bT of the terminating guide may be adjusted so that

b 0

b - . (7.04-16)

If b0 - 0.7 bT a fairly good over-all match in the pass band is obtained.

The amount of mismatch can be estimated by use of Eq. (7.04-15) and
Fig. 3.07-2, where the abscissa of Fig. 3.07-2 is a - ylbr/b. A superior

alternative for achieving a wide-band match is to use transforming end

sections as described in Sec. 3.08. In this case, one sets b0 N b., both
for the internal sections and for the transforming end sections. However,
the internal sections are designed to have a cutoff at X,,, while the
transforming end sections are designed to have their cutoff at about

X81/3.3.
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An expJicit relation for b/X,, in terms of 1,/b is also presented

in Fig. 7.04-7, which is often useful in design work.

Unfortunately Cohn's7 simplified design procedure does not enable

one to specify f2" However, it is generally found that f2 is only about

20% higher in frequency than f.. Therefore, it is wise in any design

situation to place f. quite near the upper edge of the prescribed stop

band.

The length 1'/2 of the low-impcdance line of height 6'; connecting

to the terminating line of height br, must be reduced by an amount AI'

to account for the discontinuity susceptance B of the junction. This is

illustrated in Fig. 7.04-1. The amount of At' that the line should be

decreased in length is given by the expression

Al' - - (7.04- 17)

where Y0 is the chararteristic admittance of the terminating line. The

appropriate valueof N4 /b)(B/Yo)] iseasily determined fromFig. 5.07-11.

Two examples of this procedure as applied to the design of waffle-

iron filters will be presented in the next section.

SEC. 7.05, LOW-PASS WAFFLE-IRON FILTERS
HAVING VERY WIIE STOP BANDS

This section desrribes the design of low-pass corrugatedwaveguide fil-

ters containing longitudinal slots cut through the corrugations. These types

of filter, known as waffle-iron 1liters, have wide, well matchedpasa bands

and wide, high-attenuation stop bands which ran be made to be free of spurious

responses for all modes. Several specific designs will be discussed.

Figure 7.05-1 is a drawing of a waffle-iron filter, illustrating the

metal islands, or bosses (from which it derives its name) lying between

the longitudinal and transverse slots. In these filters it is essential

that the center-to-center spacing of the bosses be no greater than a half

of a free-space waveleng,.h at the highest required stop-band frequency.

Under these conditions the waffle-iron structure is essentially isotropic

and has the same characteristics, at a given frequency, for TEu1 waves

This type of filter was originated by S. B. Cohn.
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FIG. 7.05-1 DETAILS OF A TYPICAL WAFFLE-IRON
FILTER

propagating through it in any direction. Thus, since any TEg0 mode can

be resolved into TEM waves traveling in different directions through the

filter it is seen that the properties of the waffle-iron filter for TE 0

modes are functions of frequency only. This is in contrast to the un-

slotted corrugated waveguide filters described in Sec. 7.04, whose response

properties involve guide dimensions and mode numbers also, and are functions

of guide wavelength.

Incident modes having horizontal compo:ents of electric field can

excite slot modes that will propagate through the longitudinal slots in

the filter at frequencies where the slot height b is greater than one half

a free.-space wavelength. Usually these modes are troublesome only at the

highest stop-band frequencies. However, when unslotted step transformers

are used to match the waffle-iron filters to waveguide of the standard
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Aheight, the reduced height of the stepped

transformers effectively suppresses the

L iI._ incident modes with horizontal components
V of electric field which could otherwise

I- C-l excite slot modes in the filters.

Design Utilizing Cohn', Corrugated

Filter Data-Waffle-iron filters can be de-

I- signed approximately using the technique

(a) described in Sec. 7.04 if the guide wave-

length X used there is everywhere replaceda
by the free-space wavelength X1. As an

illustration we will consider the design of

s.LJLrL --LJyj Waffle-Iron-Filter-I, used with WR-650 wave-
TUI u u U..U guide of width a - 6.5 inches. We use the

SECTION A-A
notation in Sec. 7.04 and that shown in(b)
Fig. 7.05-2, and choose f, - 2.02 Gc

FIG. 7.05-2 A SINGLE-FILTER ( i - 5.84 inches), f. a 5.20 Gc

SECTIONOFA (XM 0 2.27 inches), so that X1 /A0  2.57.
WAFFLE-IRON Letting I/b 0.318 - 1/7T, we find from
FILTER Fig. 7.04-5 that bo/X 1 - 0.077, and

b/ ] a 0.275, so that b0 a 0.450 inch,

b - 1.607 inches and I - 0.511 inch. Referring to Fig. 7.04-6 we find

the design parameter G to be 3.85. Now, we make the assumption that we

want five bosses across the a 0 6.5-inch width of the filter so that

I + ' - 6.5/5 - 1.3 inches and ' - 0.789 inch. From various trial

designs, it has been found that for a 3:1 stop-band width, five -bosses

is about optimum in terms of giving convenient dimensions. For narrower

stop-band widths more bosses can be used. Substituting the values of G

and ' into Eq. (7.04-16) we ind that 8 a b'/b a 0.176 and since

6 - 1.607 inches, b' - 0.282 inch.

The presence of the longitudinal slots through the filter has the

effect of decreasing the capacitance per unit length of the low-impedance

lines. This decrease in capacitance can be compensated for by decreasing

the dimension b for an unslotted filter to b. The ratio be/b' is given

approximately by

b .  + 2 ta n 1 + (lbh/b'b1 (7.05-1)
7(1 + l) L " l
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Solving the above equation gives "/b' - 0.81. However, the filter

described here has the edges of the bosses rounded with a 0.0625-inch

radius to increase its power-handling capacity, and this rounding further

decreases the capacitance of the low-impedance lines. Therefore, b'/b'

was chosen to be 0.75, yielding a value of b" - 0.210 inch.

The height of the unslotted terminating guide b. necessary to match

this filter at some pass-band design frequency f. is related to be, the

height to give a match when X. W, by

b0

br . (7.05-2)

In order to maintain a reasonably good match across the band, f. should

not be too close to f1; typically, f. 0.7 f, is desirable. For the best

wide-bandmatch, matching end sections should be used, as will be described

in a following example. Using f. - 1.3 Gc, Eq. (7.05-2) predicts

bT - 0.555 inch. Step transformers were used at each end to match t._a

guide of height br to standard guide.

The attenuation per section in the stop-band region just above the

pass band can be estimated by use of Eq. (7.04-8b), with X and ks,

replaced by A and X1.

Figure 7.05-3 shows the measured insertion loss of this filter in

the stop band. It is seen to be everywhere greater than 60 db from 2.2

to 5.7 Gc. The VSWR in the 1.25-to-l.40-Gc required pass band of this

filter wan less than 1.08 and the attenuation was less than 0.1 db. As

will be discussed at the end of this section, a broader band of good

impedance match could have been obtained if the filter had been constructed

to start and end in the center of a boss (i.e., at plane A-A in

Fig. 7.05-2(a)] instead of in the center of a row of teeth (i.e., in the

plane of one of the dotted lines in Fig. 7.05-2(a)].

Design Using the T-Junction Equivalent Circuit of Marcuvits -Though

the method described above is usually easier, waffle-iron filters can

also be designed using the equivalent circuit of a waveguide T-junction
as given by Marcuvitas when 1/b' 1 1, for arbitrary values of S a V!6,
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FIG. 7.05-3 MEASURED INSERTION LOSS OF WAFFLE-IRON
FILTER I

so long as 1' b' is greater than about 0.5 Cohn's graphs apply only

when l,'b > 1, so if 1,6' < 1, the uqP of P-arcuvjtz's data is the most

convenient. In order to illustrate this procedure we will now describe

the design of Waffle-Iron-Filter-H1, used with WR-112 waveguide of width

a - 1.122 inch. It has a pass band extending from 7.1 to 8.6 Gc and a

stop band with greater than 40-db attenuation extending from 14 to 26 Gc.

This filter could also be designed by the technique described above but

the alternate procedure is presented here for completeness.

Figure 7.05-4 illustrates the bottom half of a single section of the

waffle-iron filter together with its equivalent circuit. The part of the

equivalent circuit representing the junction of the series stub with the

main transmission line of characteristic impedance Zo is taken from
Marcuvits's Fig. 6.1-2. (The parameter labeled b/X 8 on Marcuvitz's
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curves 6 in his Figs. 6.1-4 to 6.1-14 should in reality be 2b/kd.) The

normalized image impedance of a filter section is

Zzi

Z 1Z-o0 1 ' 0- - -ot" - - Z - (7.05-3)

while the image attenuation constant y w a + j5 per section is related
to the bisected section open- and short-circuit impedance Z., and Zoe by

I.- A
2d I

(a) SHORT CIRCUIT
OP OPR CMAT

FIG. 7.05-4 FULL-FILTER SECTION - CROSS SECTION
OF WAFFLE-IRON FILTER AND
EQUIVALENT CIRCUIT
At (e) the equivalent circuit ha. been bisected
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2n ( !0 " - z- 
( 7 5-4)

where

? [L + ±- ]. (7.05-5)

2 X 2 Z0

2ff +d]. (7.05-6)

and the remaining parameters are as indicated in Fig. 7.05-4. In applying

Eqs. (7.05-3) and (7.05-4) it has been found that 0/0' u 1 is nearly
optimum. Values of 0/6' - 2 are to be avoided because they cause the

filter to have a narrow spurious pass band near the infinite attenuation

frequency f,.

The design of this filter proceeded by a trial and error technique

using Eq. (7.05-4) to determine the dimensions to yield approximately

equal attenuations at 14 and 26 Gc. In this design the curves for the

equivalent-circuit element values for series T-junctions in MarcuvitzG

were extrapolated to yield equivalent-circuit parameters for 1'/6 - 1.17,

and X. was replaced by X. The choice of dimensions was restricted to

some extent in order to have an integral number, a, of bosses across the

width of the guide. The value of a was chosen to be 7. The calculated

attenuation per section was calculated to be 7.6 db at 14 Gc and 8.8 db

at 26 Gc. The total number of sections along the length of the filter

was chosen to be 7 in order to meet the design specifications. Reference

to Eq. (7.05-1) showed that V was within 5 percent of V, so V 6' was

used. The final dimensions of the filter obtained by this method are

those shown in Fig. 7.05-1.

The normalized image impedance Z,/Z. of the filter was computed from

Eq. (7.05-3) to be 2.24 at 7.9 Oc. Thus, it is expected that the height
67 of the terminating guide should be

Za
6T  6" - (7.05-7)
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or 0,036 x 2.24 - 0.080 inch. Experimentally, it was determined that

the optimum value for br is 0.070 inch at 7.9 Gc.

This filter was connected to standard W1-112 waveguide by means of

smooth tapered transitions which had a VSWR of less than 1.06 over the

frequency band from 7.1 to 8.6 Gc, when they were placed back-to-back.

The measured insertion loss of the filter and transitions in the stop

band was less than 0.4 db from 6.7 to 9.1 Gc while the VSWI1 was less than

1.1 from 7 to 8.6 Gc. The measured stop-band attenuation of the filter

is shown in Fig. 7.05-5, and it is seen to agree quite closely with the

theoretical analysis.

5o

40-

30 -

10

20 -

0 10 12 14 s as 2 30
FREQUENCY- St

FIG. 7.05-5 STOP-BAND ATTENUATION OF
WAFFLE-IRON FILTER II

No spurious responses were measured on either of the above described

filters in the stop band when they were terminated by centered waveguides.

However, if the terminating waveguides are misaligned at each end of the

filter, it is found that spurious transmissions can occur when X < 26.

These spurious responses are caused by power propagating through the

longitudinal slots in the filter in a mode having a horizontal component

of electric field. Thus, it is seen to be essential to accurately align

the waveguides terminating waffle-iron filters if maximum stop-band width

is desired.

A Third Example with Special End-Sections to Improve Impedance

Match-As a final example, the design of a low-pass waffle-iron filter
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having integral longitudinally slotted step transformers will be described.

This filter is designed to be terminated at either end with WR-51 wave-

guide. The pass band of the filter extends from 15 to 21 Gc and the atop

band which has greater than 40-db attenuation, extends from 30 to 63 Gc.

A photograph of this filter is shown in Fig. 7.05-6, illustrating the

split-block construction, chosen so that the four parts of the filter would

be easy to machine.

The longitudinal slots in the stepped transformers necessitate that

the design of this filter be different than those described previously.

This occurs because these slots allow modes incident on the transformers

such as the TE11 or TM,, to set up the previously described slot modes,

having horizontal electric fields, which propagate through the filter when

6 X/ X2. Thus, it is necessary in the design of this filter to choose

6 X/ 2 at the highest stop-band frequency of 63 Gc. In the design pre-

sented here, b - 0.0803 and f, a 24.6 Gc (XI - 0.480 inch). It was de-

cided to use 5 bosses across the width of the guide with I - 0.0397 inch

and I' w 0.0623 inch. Referring to Fig. 7.04-5 we find bu - 0.021 inch,

and from Fig. 7.04-6 we find the design parameter G - 7. Substituting in

Eq. (7.04-16) we find 8 a 0.139 or V a 0.0113 inch. We find the reduction

in gap height due to the presence of the longitudinal slots from Eq. (7.05-1),

which predicts b"T b' mu.77 or 6" a 0.0087 inch.

The height bT of a parallel-plate terminating guide that will give a

match at 18 Gc is determined from Eq. (7.04-16 to be 0.031 inch. The

actual height of the longitudinally slotted lines used in this design is

br - 0.030 inch.

In order to further improve the match of this filter over the oper-

ating band, transforming end sections were used at either end having the

same values of b, b, and 1, but with ' reduced from 0.0623 inch to

0.040 inch. This reduction in the value of ' causes the end sections to

have a low-frequency image admittance about 14 percent lower than that of

the middle sections and an image cutoff frequency about 14 percent higher

than that of the middle sections. Figure 7.05-7 shows a sketch of the

image admittance of the middle and end sections of the filter normalized

to the admittance of a parallel-plate guide of height b - 0.0803 inch.

The image phase shift of the end sections is 90 degrees at 21 Gc (the upper

edge of the operating band) and not greatly different from 90 degrees over

the rest of the operating band. The approximate admittance level of the
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FIG. 7.05-6 PHOTOGRAPHS OF WAFFLE-IRON FILTER III HAVING 15-to-21-Gc
PASS BAND AND 30-to-63-Gc STOP BAND
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FIG. 7.05-7 SKETCH OF NORMALIZED IMAGE
ADMITTANCE vs. FREQUENCY OF
MIDDLE- AND END-SECTIONS OF
WAFFLE-IRON FILTER III

filter is transformed to closely approximate the normalized terminating

admittance YT - 2.68 over the operating bend, as indicated in the figure.

A more general discussion of this matching technique is presented in

Sec. 3.08.

The discontinuity capacity at the junction between each end section

and the terminating line was compensated for by reducing the length of

each end section by 0.004 inch as predicted by Eq. (7.04-17).

Quarter-Wave Transformers with Longitudinal Slots-Quarter-wave

transformers, some of whose sections contained longitudinal slots, were

designed for Waffle-Iron Filter III using the methods presented in

Chapter 6. If there were no longitudinal slots in any of the steps of

the transformers the appropriate transformation ratio to use in the

design of the transformers would be the ratio of the height of the termi-

noting guide, which is 0.255 inch, to the height of the guide which

properly terminates the filter, which in this case is 0.030 inch. Thus,

the transformation ratio would be 0.255/0.030 * 8.5.

3%



If the filters and the step transformers are made from the same

piece of material it is difficult to machine longitudinal slots in the

main body of the filter without machining them in the step transformers

at the end also. However, this difficulty can be avoided if the step

transformers are made as inserts or as removable sections. Alternately,

the step transformers can be designed to include longitudinal slots.

The presence of the longitudinal slots would tend to increase the

transformation ratio about 8 percent since the impedance of a slotted

transformer step is slightly lower than that of an unslotted step. The

procedure used to calculate the impedance of a slotted waveguide is ex-

plained in detail later in this section. Qualitatively, however, it can

be seen that the impedance of a slotted waveguide tends to be increased

because the capacity betweer the top and bottom of the waveguide is re-

duced. On the other hand, the slots also reduce the guide wavelength

which tends to decrease the waveguide impedance. Ordinarily it is found

that the net result of these two competing effects is that the impedance

of a longitudinally slotted waveguide is less than that for an unslotted

waveguide.

The present design was carried out including the presence of the

slots; however, it is believed that in future designs they may well be

neglected in the design calculations.* The ratio of guide wavelengths

at the lower and upper edge of the operating band of the transformers was

chosen to be 2.50, which allowed ample margin to cover the 2.17 ratio of

the guide wavelengths at the lower and upper edges of the operating band

of the filter. The maximum theoretical pass-band VSWR is 1.023, and five

S9/4 steps were used.

The procedure used to account for the presence of the longitudinal

slots in the step transformers is as follows:

One assumes that the impedance Zoe of the longitudinally slotted

guide is

Zoe-1 - ( (7.05-8)

CaeselaUia have aboe that ast last is oe ee@ the eeeeestioa for the proese of the &late is
quite email.
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where Z0 () is the impedance of the slotted waveguide at infinite

frequency and Xe is the cutoff wavelength of the slotted waveguide.

Both Z0 (W) and X/X are functions of the guide height h i, which is take,

as the independent variable for the purpose of plotting curves of these

quantities. (If Fig. 7.05-2(b) is interpreted as a cross section of

the longitudinally slotted transformers, h, corresponds to V.)

First Z0 (D) is calculated for several values of h < b (where b is

again as indicated in Fig. 7.05-2(b)) by considering TEM propagation in

the longitudinal direction. Since the line is uniform in the direction

of propagation

84.73 1012

Z0 (O) a ohms (7.05-9)C O

where Co is the capacitance in farads per inch of length for waveguide a

inches wide. The capacitance C O can be expressed as

C0  U CP + Cd (7.05-10)

Here the total parallel-plate capacitance C of the longitudinal ridges

of the waveguide of width a is given approximately by

C) 0.225 x 10 "  
- farads/inch • (7.05-Il)

The total discontinuity capacitance Cd of the 2a step discontinuities

across the width of the guide is given approximately by

41

C, (2) --4 x 0.225 x 10("77h ,(7.05-12 
)

tan "I h, + / farads/inch

The cutoff wavelength, \,, of a rectangular waveguide with longitudinal

slots is then calculated from the condition of transverse resonance for

the values of h, used above. For this calculation it is necessary to

consider the change in inductance as well as the change in capacitance
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for waves propagating in a direction perpendicular to the longitudinal

slots, back and forth across the guide of width a.

We will use static values of capacitance and inductance, and to be

specific, consider that the waves propagating back and forth across the

width of the guide are bounded by magnetic walls transverse to the

longitudinal axis of the guide and spaced a distance w inches apart.

The capacitance per slice w wide, per inch of guide width (transverse

to the longitudinal axis of the guide), is

farads/inch (7.05-13)
a

The inductance per inch of the same slice is approximately

L0  a 0.032 x 10"6 (L + lb) henries/inch (7.05-14)
,(I + 1')

where all dimensions are in inches. A new phase velocity in the trans-

verse direction is then calculated to be

1 inches/second (7.05-15)

The new cutoff wavelength is now

Xe 2a inches (7.05-16)
\V)

where v is the plane-wave velocity of light in air-i.e.,

1.1803 x 1010 inches/second.

A graph of Z., vs. h is then made using Eq. (7.05-8), and from this

graph the guide height, h,, is obtained for each Z, of the stepped trans-

former, and also for the optimum filter terminating impedance, all as

previously calculated. Finally, new values of step length are calculated

at the middle of the pass band for each slotted step using the values of

X I computed from the new values of X. by means of the relation
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- '(7.05-17)

Figure 7.05-8 shows a dimensioned drawing of the filter. The lengths

of the terminating guides at each end of the filter were experimentally

adjusted on a lower-frequency scale model of this filter for best pass-

band match. By this procedure a maximum pass-band VSWR of 1.4, and a

maximum pass-band attenuation of 0.7 db was achieved. The stop-band

attenuation of this filter as determined on the scale model is shown in

Fig. 7.05-9. The circled points within the stop band represent spurious

transmission through the filer when artificially generated higher-order

modes are incident upon it. These higher-order modes were generated by

twisting and displacing the terminating waveguides. The freedom from

spurious responses over most of the stop band in Fig. 7.05-9, even when

higher-order modes were deliberately excited, shows that this waffle-iron

filter does effectively reflect all modes incident upon it in its stop

band.

A Simple Technique for Further Improving the Pass-Band Impedance

Match-In the preceding examples step transformers were used to match

standard waveguide into waveguide of the proper height needed to give a

reasonably good match into the waffle-iron filter structure. In Waffle-

Iron Filter III, besides a step transformer, additional end sections de-

signed by the methods of Sec. 3.08 were used to further improve the

impedance match. As this material is being prepared for press on ad-

ditional design insight has been obtained, and is described in the

following paragraphs. This insight can improve pass-band performance

even more, when used in conjunction with the previously mentioned

techniques.

Waffle-iron filters starting with half-capacitances (half-teeth) at

either end, as used in the examples so far, are limited in the bandwidth

of their pass band. The reason for this is the change of image impedance

with frequency. This variation is shown in Fig. 3.05-1 for ZIT and Z,,.

The waffle-iron with half-teeth presents an image impedance Z,, whose

value increases with frequency. (The image admittance then decreases

with frequency, as indicated in Fig. 7.05-7.) However, the characteristic

impedance Z# of rectangular waveguide decreases with frequency as
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FIG. 7.05-9 MEASURED PERFOPMANCE OF SCALE MODEL OF
WAFFLE-IRON FILTER III SHOWING EFFECT OF
ARTIFICIALLY GENERATED HIGHER MODES
The scale factor waes 3.66

indicated by Z0 -. Vi - (7,17), where f, is the cutoff frequency of the

waveguide. Thus, while it is Possible to match the image impedance Z,,

of the filter to the characteristic impedance Z0 of the waveguide at one

frequency, Z,, and Z 0 diverge rapidly with frequency, resulting in a

relatively narrow pass band.

By terminating the filter with a half T-section, the image impedance

ZzIr (Fig. 3.05-1) runs parallel to the weveguide impedance Z. over a sub-

stantial frequency band; then by matching Zrr to Z. at one frequency,

they stay close together over a relatively wide frequency band. Such a

filter' has been built and in shown in Fig. 7.05-10. This L-band, five-

section filter has circular (instead of square) teeth to improve the

power-handling capacity by an estimated factorIl of 1.4. The dimensions

of this filter, using the notation of Fig. 7.05-2, were: 6 - 1.610 inches,
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SOURCE: Quarterly Progress Report 1, Contract AF 30(602)-2734
(See Ref. 9 by Leo Young)

FIG. 7.05-10 EXPLODED VIEW OF WAFFLE-IRON FILTER WITH ROUND TEETH
AND HALF-INDUCTANCES AT THE ENDS

V a 0.210 inch, a a 6.500 inches, center-to-center spacing - 1.300 inches,

tooth diameter - 0.893 inch, edge radius of the rounded teeth is

R - 0.063 inch. This filter is in fact based on the Waffle-Iron Filter I
design, whose stop-band performance is bhown in Fig. 7.05-3.

The new filter (Fig. 7.05-10) had a stop-band performance which almost

duplicates Fig. 7.05-3 (after allotance is made for the fact that it has

five rather than ten sections), showing that neither the tooth shape

(round, not square), nor the end half-sections (half-T, not half-7) affect

the stop-band performance.

In the pass band, the filter (Fig. 7.05-10) was measured first with

6.500-inch-by-0.375-inch waveguide connected on both sides. The VSWR was

less than 1.15 from 1200 to 1640 megacycles. (It was below 1.08 from

1250 to 1460 megacycles). The same filter was then measured connected to

6.500-inch-by-0.350-inch waveguide, and its VSWR remained below 1.20 from

1100 to 1670 megacycles (as compared to 1225 to 1450 megacycles for 1.2
VSWR or less with Waffle-Iron Filter I). Thus the VSWR remains low over

almost the whole of L-band.
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The estimated power-handling capacity of the filter$ in Fig. 7.05-10

is over two megawatts in air at atmospheric pressure. This power-handling

capacity was later quadrupled by parelleling four such filters (Chapter 15).

SEC. 7.06, LOW-PASS FILTERS FROM QUARTER-WAVE
TRANSFORMER PROTOTYPES

This section is concerned with the high-impedance, low-impedance

short-line filter, which is the most common type of microwave low-pass

filter, and which has been treated in Sec. 7.03 in terms of an approxi-

mately lumped-constant structure (Fig. 7.03-1). Such an approximation

depends on:

(1) The line lengths being short compared to the shortest
pass-band wavelength

(2) The high impedances being very high and the low ones
very low-i.e., the impedance steps should be large.

There is then a close correspondence between the high-impedance lines

of the actual filter and series inductances of the lumped-constant proto-

type, on the one hand, and the low-impedance lines and shunt capacitances,

on the other.

There is another way of deriving such a transmission-line low-pass

filter, which is exact when:

(1) All line lengths are equal (and not necessarily
vanishingly short)

(2) When the step discontinuity capacities are negligible.

When either of these, or both, are not satisfied, approximations have to

be made, as in the design from the lumped-constant prototype. Which one

of the two prototypes is more appropriate depends on which of the two

sets of conditions (1) and (2) above are more nearly satisfied. Whereas

the lumped-constant prototype (Sec. 7.03) is usually the more appropriate

design procedure, the method outlined in this section gives additional

insight, especially into the stop-band behavior, and into the spurious

pass bands beyond.

This second way of deriving the short-line low-pass filter can best

be understood with reference to Fig. 7.06-1. In Fig. 7.06-1(a) is shown

a quarter-wave transformer (Chapter 6) with its response curve. Each

section is a quarter-wave long at a frequency inside the first pass band,
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TRANSFORMERS (a) AND CORRESPONDING
LOW-PASS FILTERS (b)

called the band centerjf0 . The "low-pass filter" in sketched in

Fig. 7.06-1(b). Its physical characteristics differ from the quarter-

wave transformer in that the impedance steps are alternately up and down,

instead of forming a monotone sequence; it is essentially the same

structure as the "half-wave filter" of Chapter 9. Each section is a

half-wave long at a frequency fo at the center of the first band-pass

pass band. However, note that there is also a low-pass pass band from

f -' C to fl, and that the stop band above f, is a number of times an wide
a& tjie low-pass pass band. The fractional bandwidth of the spurious pass

band at 1f for the low-pass filter has half the fractional pass-band

-,.naiwidth, w, of the quarter-wave transformer. The VSW~a Vof the

corresponding steps in the step-transformer and in the low-pass flter
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are the same for both structures, the VSWRa here being defined as equal

to the ratio (taken so an to be greater than one) of the impedances of

adjacent lines.

Low-pass filters are generally made of non-dispersive lines (such

as strip lines or coaxial lines), will be treated as such here. If wave-

guides or other dispersive lines are used, it is only necessary to re-

place normalized frequency f/fo by normalized reciprocal guide, wavelength
Xs0/ha. Since the low-pass filter sections are a half-wavelength long at

f - fa, the over-all length of a low-pass filter of n sections is at most

nV/8 wavelengths at any frequency in the (low-pass) pass band, this being

its length at the low-pass hand-edge, f, - wf1/4. Note that the smaller w

for the step-transformer is chosen to be, the larger the size of the stop

band above f, will be for the low-pass filter, relative to the siae of the

low-pass pass band.

Exact solutions for Tchebyscheff quarter-wave transformers and half-
wave filters have been tabulated up to n - 4 (Sec. 6.04); and for maxi-

mally flat filters up to n - 8 (Sec. 6.05); all other cases have as yet

to be solved by approximate methods, such as are given in Sacs. 6.06 to

6.09.

The low-pass filter (as designed by this method) yields equal line

lengths for the high- and low-impedance lines. When the impedance steps,

V,' are not too large (as in the wide-band examples of Sec. 6.09), then

the approach described in this section can be quite useful.* Corrections

for the discontinuity capacitances can be made as in Sec. 6.08 If large

impedance steps are used, as is usually desirable, the discontinuity

effects become dominant over the transmission-line effects, and it is

usually more straightforward to use lumped-element prototypes as was done

for the first example in Sac. 7.03.

SEC. 7.07, HIGH-PASS FILTERS USING SEMI-LUMPED ELEMENTS

High-pass filters, having cutoff frequencies up to around 1.5 or

possibly 2.0 Gc can be easily constructed from semi-lumped elements. At

frequencies above 1.5 or 2.0 Gc the dimensions of semi-lumped high-pass

It should b saad &bt eal lapedam. stops iy a relatively limited esoet o1 atiessa. %so,
mall stes w11 be desired golf in wstmis satial sitestifts.
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filters become so small that it is usually easier to use other types of

structures. The wide-band band-pass filters discussed in Chapters 9 Ond

10 are good candidates for many such applications.

In order to illustrate the design of a semi-lumped-element high-pass

filter we will first describe the general technique for designing a

lumped-element high-pass filter from a lumped-element low-pass prototype

circuit. Next we will use this technique to determine the dimensions of

a split-block, coaxial-line high-pass microwave filter using semi-lumped

elements.

Lumped-Eleaent High-Pass Filters fron Low-Pass Prototype Filters -The

frequency response of a lumped-element high-pass filter can be related to

that of a corresponding low-pass prototype filter such as that shown in
Fig. 4.04-1(b) by means of the frequency transformation

U - - - (7.07-1)

In this equation w' and w are the angular frequency variables of the low-

and high-pass filters respectively while ca and w, are the corresponding

band-edge frequencies of these filters. It is seen that this transfor-

mation has the effect of interchanging the origin .of the frequency axis

with the point st infinity and the positive frequency axis with the nega-

tive frequency axis. Figure 7.07-1 shows a sketch of the response, for

positive frequencies, of a nine-element low-pass prototype filter together

with the response of the analogous lumped-element high-pass filter obtained

by means of the transformation in Eq. (7.07-1).

Equation (7.07-1) also shows that any inductive reactance w'L' in the

low-pass prototype filter is transformed to a capacitive reactance

-~wiL'/w a -I/(coC) in the high-pass filter, and any capacitive susceptance

w'C' in the low-pass prototype filter is transformed into an inductive

susceptance -wlw;C'/w - -1/(&L) in the high-pass filter.

Thus, any inductance L' in the low-pass prototype filter is replaced

in the high-pass filter by a capacitance

1
C - . (7.07-2)
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FIG. 7.07-1 FREQUENCY RESPONSE OF A LOW-PASS
PROTOTYPE AND OF A CORRESPONDING
HIGH-PASS FILTER

Likewise any capacitance C' in the low-pass prototype is replaced in the

high-pass filter by an inductance

1
L a 1 - (7.07-3)

Figure 7.07-2 illustrates the generalized equivalent circuit of a

high-pass filter obtained from the low-pass prototype in Fig. 4.64-1(b)

by these methods. A dual filter with an identical response can be ob-

tained by applying Eqs. (7.07-2) and (7.07-3) to the dual low-pass proto-

type in Fig. 4.04-1(a). The impedance level of the high-pass filter may

be scaled as discussed in Sec. 4.04.

Design of a Semi-Lumped-Element High-Pass Filter -In order to illus-

trate the technique for designing a semi-lumped-element high-pass filter

we will consider the design of a nine-element high-pass filter with a

pass-band ripple L1 r of 0.1 db, a cutoff frequencyoflGc (w 0217 x 109),

that will operate between 50-ohm terminations. The first step in the

design is to determine the appropriate values of the low-pass prototype

elements fromTable 4.05-2(a). It should be noted that elements in this

table are normalized so that the band-edge frequency w; - 1 and the termi-

nation element go - 1. The values of the inductances and capacitances for

the high-pass filter operating between 1-ohm terminations are then
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FIG. 7.07.2 HIGH-PASS FILTER CORRESPONDING TO THE LOW-PASS
PROTOTYPE IN FIG. 4.04-1(b)
Frequencies w], and w, are defined in Fig. 7.07-1. A dual
foon of this filiter corresponding to the low-pass filter in
Fig. 4.0441(a) is also possible
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FIG. 7.07-3 DRAWING OF COAXIAL LINE HIGH-PASS FILTER CONSTRUCTED
FROM SEMI-LUMPED ELEMENTS USING SPLIT-BLOCK
CONSTRUCTION
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determined using the formulas in Fig. 7.07-2, upon setting w - 1,

W1 - 27 x 109, and using the g. values selected from Table 4.05-2(a).

In order to convert the above design to one that will operate at a

50-ohm impedance level it is necessary to divide all the capacitance

and conductance values obtained by 50 and to multiply all the inductance

values obtained by 50. When this procedure is carried through we find

that C, 0 C9 M 2.66 /f, L2  Le - 5.51 nuh, C S a C 7 a 1.49 p4f,

L 4 a L6 a 4.92 nwh, and C " 1.44 /f.

A sketch showing a possible realization of such a filter in coaxial

line, using split-block construction, is shown in Fig. 7.07-3. Here it

is seen that the series capacitors are realized by means of small metal

disks utilizing Teflon (c, - 2.1) as dielectric spacers. The shunt in-

ductances are realized by short lengths of Z0 - 100-ohm line short-

circuited at the far end. In determining the radius r of the metal

disks, and the separation s between them, it is assumed that the parallel-

plate capacitance is much greater than the fringing capacitance, so that

the capacitance C of any capacitor is approximately

l r

C . er 0.225 r Piz f (7.07-4)

where all dimensions are measured in inches. The lengths I of the short-

circuited lines were determined by means of the formula

L - 0.0847 Z0 l n/.h (7.07-5)

where Z0 is measured in ohms and I is measured in inches. Equation (7.07-4)

is adapted from one in Fig. 7.02-2(b), while Eq. (7.07-S) is adapted from

one in Fig. 7.02-1(a).

The dimensions presented in Fig. 7.07-3 must be regarded as tentative,

because a filter having these particular dimensions has not been built and

tested. However, the electrical length of each of the lines in the filter

is very short-even the longest short-circuited lines forming the shunt

inductors have an electrical length of only 19.2 degrees at 1 Gc. There-

fore, it is expected that this semi-lumped-constant filter will have very

close to the predicted performance from low frequencies up to at least

2.35 Gc, where two of the short-circuited lines are an eighth-wavelength
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long and have about 11 percent higher reactance than the idealized

lumped-constant design. Above this frequency some increase in pass-

band attenuation will probably be noticed (perhaps one or two db) but

not a really large increase. At about 5 Gc when the short-circuited

lines behave as open circuits, the remaining filter structure formed

from the series capacitors and the short lengths of series lines has a

pass band, so that the attenuation should be low even at this frequency.

However, somewhere between 5 Gc and 9 Gc (where the shot-circuited

lines are about 180 degrees long) the attenuation will begin to rise

very rapidly.

SEC. 7.08, LOW-PASS AND HIGII-PASS
IMPEDANCE-MATCHING NETWORKS

Some microwave loads which can be approximated by an inductance and

a resistance in series, or by a capacitance and a conductance in parb "el,

can be given a satisfactory broadband impedance match by use of low-pass

matching networks. Having L and R, or C and G to represent the load, the

decrement

R G
Su - or - (7.08-1)CL 

7.C

is computed, where wI is the pass-band cutoff frequency above which a

good impedance match is no longer required. Though the prototype filter

to be used in designing the matching network may have a considerably

different impedance level and cutoff frequency wo, it must have the same

decrement S. Thus, having computed 8 from the given microwave load ele-

ments and required cutoff frequency a),, an appropriate impedance-

matching-network prototype filter can be selected from the computed value

of 8 and the charts of prototype element values in Sec. 4.09. Having

selected a satisfactory prototype filter, the impedance-matching network

can be designed by scaling the prototype in frequency and impedance level

and by using the semi-lumped-element realization techniques discussed in

Sec. 7.03. As was illustrated in Fig. 4.09-1, the microwave load to be

matched provides the microwave circuit elements corresponding to the

prototype elements S. and SI, the microwave impedance-matching network

corresponds to the prototype elements 82 through g., and the microwave

driving-source resistance or conductance corresponds to 84#1"
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Though low-pass microwave impedance-matching structures are quite

pravt ical for somtie applications, they do, nevertheless, have some inherent

disadvantages compared to the band-pass impedance-matching networks dis-

cussed in Sees. 11.08 to 11.10. One of these disadvantages is that a good

impedance match all the way from dc up to microwave frequencies, is rarely

r.ally necessary. As was discussed in Sec. 1.03, allowing energy to be

transmitted in frequency bands where energy transmission is not needed

will detract from the efficiency of transmission in the band where good

transmission is really needed. Thus if the decrement computed using

Eq. (7.08-1) is found to be so small that Fig. 4.09-3 indicates an un-

acceptable amount of pa.ss-band attenuation, the possibility of using a

band-pass matcling network instead should he considered. If a band-pass

transmission characteristic is usable, better performance can be obtained.

Another disadvantage of low-pass impedance-matching networks is that

the designer is not free to choose the driving source resistance. For a

given H-I. or G-. load circuit and a given cutoff frequency a-l, the charts

in Sec. 4.1) will lead to matching networks which must use the driving
source resistances (or conductances) specified by the charts, if the pre-

dicted performance is to he obtained. In many microwave applications,

adjustments of the driving-source impedance level will not be convenient.

In such cases the use of band-pass impedance-matchinp networks is again

recommended since in the case of band-pass filters, impedance-level trans-

formations are easily achieved in the design of the filter, without

affecting the transmission characteristic.

lligh-liass impedance-matching networks have basically the same dis-

advantages as low-pass impedance-matching networks. Nevertheless they

are of practical importance for some applications. Loads which can be

approximated by a capacitance and resistance in series, or by an inductance

and conductance in parallel can be given a high-pass impedance match by

using the methods of this book. In this case the decrement is computed by
use of the formula

8 - 1CGR or wILG (7.08-2)

where in this cs- WI is the cutoff frequency for the desired high-pass

matching characteristic. Knowing 8, the (LA)..s values for various numbers

of matching elements are checked and a prototype ia then selected, as dis-
cussed in Sec. 4.09. [Again, if the values of (LA)... for the computed
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value of 8 are too large, the possibility of band-pass matching should

be considered.] The low-pass prototype is then transformed to a high-

pass filter as discussed in Sec. 7.07, and its frequency scale and

impedance level are adjusted so as to conform to the required cul value

and the specified microwave load. If the cutoff frequency w, is not

too high, it should be practical to realize the microwave impedance-

matching structure by use of the semi-lumped-element high-pass filter

techniques discussed in Sec. 7.07.

SEC. 7.09, .W-PASS TIME-DEVAY NETWOpKS

Most of the primary considerations in the design of low-pass time-

delay networks have been previously discussed in Secs. 1.05, 4.07, and

4.08. The maximally flat time-delay networks tabulated in Sec. 4.07

were seen to give extremely flat time-delay* characteristics, but at the

expense of havinp an attenuation characteristic which varies considerably

in the operating band. Maximally flat time-delay networks also are un-

symmetrical, which makes their fabrication more difficult. In Sec. 4.08

it was noted that Tchebyscheff filters with small pass-band ripple should

make excellent time-delay networkn for many practical applications. As

was discussed in Sec. 1.05, the amount of time delay can be increased

considerably for a given circuit complexity by using, where possible, a

band.pass rather than a low-pass structure for the delay network (see

Secs. 1.05 and 11.11). fligh-pass delay networks are also conceivable,

but they would not give much delay, except, possibly, near cutoff.

Exaaple -As an example of the initial steps in tl,e design of a low-

pass time-delay network, let us suppose that a time delay of about

7.2 nanoseconds is required from frequencies of a few megacycles up to

200 Mc. From considerations such as those discussed in Sec. 4.08, let us

further suppose that it has been decided to use a 0.l-db ripple Tchebyscheff

filter with a cutoff of f I 250 Mc, as the delay network. From

Eq. (4.08-3), the low-frequency time delay of a corresponding normalized

prototype filter with a cutoff of wi - 1 radian/sec is

W1 7.2(l0- )27T(0.25)l0'

do - 3 . * 11.3 seconds

hre ties delay is 8ee"d te imply ueoup ts delay (se. 1.05).
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By Eq. (4.08-2) and Fig. 4.13-2, this nominal time delay will be achieved

by a 0.10-db ripple filter having n a* 13 reactive elements. Hence, an

n 13, L., a 0.10 db prototype should be selected: from Table 4.05-2(b).

The actual microwave filter is then designed from the prototype an dis-

cussed in Sec. 7.03. If desired, this filter could be designed to be a

few inches long, while it would take approximately 7 feet of air-filled

coaxial line to give the same time delay.
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CHAPTER 8

BAND-PASS FILTERS

(A GENERAL SUMMARY OF BAND-PASS FILTERS, AND A, VERSATILE

DESIGN TECHNIQUE FOR FILTERS WIT NARROW OR MODERATE BANDWIDIUS)

SEC. 8.01, A SUM.MARY OF THE PROPER'IES OF THE BAN)-PASS OR PSEUDO
HIGH-PASS FILTIERS TREATEID IN CHAPTEBS 8, 9, AND 10

This chapter is the first of d seqjuence of four chapters concerning

band-pass filter design. chapters 8, 9, and 10 deal with the design theory

and specific types of microwave filters, while Chapter 11 discusses various

experimental and theoretical techniques which are generally helpful in the

practical development of many kinds of band-pass filters and impedance-

matching networks. This present chapter (Chapter 8) utilizes a design point

of view which is very versatile but involves narrow-band approximations whicih

limit its usefulness to designs having fractional bandwidths typically around

0.20 or less. The design procedure utilized in Chapter 9 makes use of step

transformers as prototypes for lilters, and the procedures given there are

useful for either narrow or wide bandwidths. Chapter 10 uses yet another

viewpoint for design, and the method described there is also useful for

either narrow or wide bandwidths. The procedures in Chapter 9 are most ad-

vantageous for filters consisting of transmission lines with lumped discon-

tinuities placed at intervals, while the methods in Chapter 10 are most

advantageous when used for filters consisting of lines and stubs or of

parallel-coupled resonators.

In this chapter the general design point of view is first described in

a qualitative way, then design equations and other data for specific types

of filters are presented, and finally the background details of how the

design equations for specific filters were derived are presented.

Chapters 9 and 10 also follow this pattern as far as is possible.

It is recognized that some designers may have little interest in filter

design theory, and that they may only wish to pick out one design for one

given job. To help meet this need, Table 8.01-1 has been prepared. It sum-

marizes the more significant properties of the various types of filters

discussed in Chapters 8, 9, and 10, and tells the reader in which sections

design data for a given type of filter can be found.
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Table 8.01-1

SU~MARY Of BAND-PASS AND PSEUDO NIGH-PASS FILTERS IN CHAPTERS 8, 9, AND 10

Symabols

wo=pass-bond center frequency A.~*wavelength at w

*Se center frequency of second pass band *guide wavelength

bL) and (btetwoen d or * guide wavelengthsu~ at
(LA~~~uS3 " pekatnutoind Zi e and at lower and uper

P pass-band- edge frequencis

LAr =peak attenuation (in db) in pass badgie

v a fractional bandwidth foA 8 'A E wavelength
SO fractional

bandwidth

STRIP-LINE (08 COAXIAL) AND SKIII-WUMP-ELEUENT FILTERGS

TYPica I PesoaeseveOfSeetiOa Filter Properties

w'p _ 2wIi. (LA)USI decreases. with increasing Y. (LA)USD is usually
sizeable for r - 0.20 or loe, but it is usually only 5 or 10 db for

w a 0.70. Has first-order pole of attenuation at ei a 0. Dielectric
support required for resonators. Coupling gaps may become quite

C3 =3 mall for r much larger then 0.10, which presents tolerance consider-

STRIPLINEations. See Sec. 8.05 for designs with w about 0.20 or less. See
5TNIP INE Chapter 9 for designs having larger w, or for designs with very small

LAP (0.01 db, for example), or for designs for high-psass applications.
Coaxial filters of this type are widely used as pseudo high-panss
filters.

2p a 3wo (LA) 3 decreases with increasing u, but for given Y and
ei*, (LA)S8 will be larger than for Filter 1 above. Has multiple-
order pole of attenuation at w - 0. Inductive &tube can provide me-

E3 chanical support for resonator structure so that dielectric is not re-
quired. For given v and o. capacitive coupling gaps are larger than
for Filter I above. See Sec. 8.08 for designs with v < 0. 30. See

STRIP LINE Chapter 9 for designs having larger a, or for designs with very small
LAP (0.01 db, for example), or for designs for high-pass applications.

%p 3a%. Has first-order pole of attenuation at w a 0 and at o;*
2% However, is prome to have narrow spurious pass bands near 2a;0

_j due to slightest mistumng. Dielectric support material required.

Vey attractive structure for printed circuit fabrication, when

STRIP LINE 9 a 0.15s. See Sec. S.0W-I for wei~ 0. 15. See Sec. 10. 02 for Assigns
haviag larger v, or for designs for high-pass applications.



Table 8.01-1 Continued

STRIP-LINE (OR COAXIAL.) AND SEMI-LUMPED ELEMENT FILTERS

Typical Resonator or Section Filter Properties

4

~~I-3 .SP ['' liax first-order pole of attenuation at w =0 and at

d 2'. O. However, is prone to narrow purius pass bonda near w
da. to slightest mistuning. Short-circuit blocks provide mechanical

rse Beu LocXS support for resonators. Suitable for values of w from around 0.01
STRIP LINE to 0.70 or more. See *-ec. 10.02.

0SH,3&. His first-order pole of attenuation at w - 0 and at co=
2r,. 0 Iowever. is prone to narrow spurious pass bands near 2w0 due

to slightest mistuning. short-circuits at ends of stubs provide me-

chanical support for structure. Suitable for values of w from around
0.40 to 0.70 or more. ,%ee Sec. 10.03. Also see Sec. 10.05 for case
where series stubs are added at ends to give poles of attenuation at

- additional frequencies.

STRIP LINE

Ntructure in coaxial form with series stubs fabricated within center

conductor of main line. ca 3o lies first-order pole of attenu-
ation at w 0 and at w a 2w0. However, is prone to narrow spurious

pans hands near 2w0 due to slightest mistuning. Structure requires
MTL dielectric aupport material. Suitable for values of a around 0.60

COAXIAL or more. See Sec. 10. 03.

h ft p. x2w., and also has a pass band around w = 0. Has po1.s of at-
tenuation above and below ca0 at frequencies &a. and (2w0 - &6), where

wm maiy be specified. isequires dielectric material for support. Can
conveniently be fabricated by printed circuit means. Little restric-

4 tion on a if w,~ can be chosen appropriately. See Sec. 10.04.

STRIP LINE
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Table 8.01 Conti£nued

STRIP-LINE (OR COAXIAL) AND SEMJ-LUMPED-BLIMENT rILTZRS

Typieal RisaonsororSoction Filter Properties

w.can be made to be an high as r~i or mera. Has multiple-order
r= poles of attenuation at wJ - 0. Short-circuited ends of resonators

provide mechanical support so that dielectric material is not re-
4 quired. Structure is quite compact. See Sec. 8.12 for design

data suitable for designs with w , 0.10.

STRIP LINE

Interdigital Filtet. &%ga3o. lies multiple-order poles of at-

tenuation at w~ a 0 and w, = 2eo. Can be fabricated without using

dielectric~ support material. Spacings between resonator elements
ho are relatively large which relaxes mechanical tolerances. Structure

is very compact. See Sacs. 10.06 and 10.07 for equations for de-

signs with w ranging from small values up to large values around

STRIP LINE

10 ~ Comb-line filter. Resonator length I depends on amount of capaci-
LOADING tive loading used. w - o A*/(21) so filter can be designed for

very broad upper stop bond. Poles of attenuation at wi a 0 and w~

wo A0/(41). Extremely compact structure which can be fabricated
without dielectric support material. Unloaded Q's of resonatorsml somewhat less than those for Filter 9 for some strip-line cross-
section. See Sac. 8. 13 for designs having w up to about 0. 15.

STRIP LINE

- Filter with quarter-wave-coupled resonators. Resonators may be
cavities, resonant irises, or lumped-element resonators. See

0 1\ /0 1 Sec. 8.08 for design data useful when v is around 0.05 or loe.
*1Al'on*tOs

LUMPED ELEMENTS
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Table, 8.01-1 Concluded

STRIP-LINE ((A COAXIAL) AND SIMI-LUMPED-ELEMENT FILTERS

Typical RaeoatoreorSection rilter Properties

Lumped-element circuit for use as a guide for design of semi-lumped-

S element microwave filters. Nee Sec. 8.11 for designs with 9 -' 0.20.

LUMPED ELEMENTS

~ Lumped-element circuit for use as a guide for design of semi-lumped.
..-- ~---.~~--- element microwave filters. See Sec. 8.11 for designs with r 0.20.

LUMPED ELEMENTS

SAVEGUIDE AND LAVITY FIL.TrRS

14*
A~~0  &.)P, occurs when A is sbout A0 2 hwer wenigr-order modes

can propagate, the upper stop band and second pass band may be dis-

rupted. (L ) decreases with increasing iA~. 1Vsveguide resonators
gi ve relatively low dissipation loss for gi ven vA. hee Sees. 8. 06 and 8.07

~ for designs with YA about 0.20 or less. ,ee Chapter 9 for designs
WAVEGUIDE having larger wk. or for designs with very small L,, (0.01 db, for

example), or for designs for high-pass applications.

15 ~ Use ofk S 0/4 couplings; gives irises which are all nearly the same.

If a disassembly joint is placed in the middle of each A,,/4 coupling

JI F ~ region, resonators may be easily tested individually. & p occurs

when A, is about #18 0/2; however, when higher-order modes can propa.
gat te uppr stop band and second pass bend may be disrupted.

(Ldecreses with increasing YA. iWaveguide resonators give
4 relatively low dissipation loss for given wA. Satisfactory for de-

WAVEGUIDE signs having &A about 0.05 or less. See Sec. 8.08.
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The filters whose properties are summarized in Table 8.01-1 are

suitable for a wide range of applications. Some are suitable for either

narrow- or wide-band band-pass filter applications. Also, since it is

difficult, if not impossible, tc build a microwave high-pass filter with

good pass-band performance up to many times the cutoff frequency, pseudo

high-pass filters, which are simply wideband band-pass filters, provide

some of the most practical means for fabricating filters for microwave

high-pass applications. Thus, many of the filters in Table 8.01-1 should

also be considered as potential microwave high-pass filters.

Although most of the filters in Table 8.01-1 are ictured in strip-line

form, many of them could be fabricated equally well in coaxial form or in

split-block coaxial form (Fig. 10.05-3). One of the filter properties which

is of interest in selecting a particular type of band-pass filter structure

is the frequency at which the second pass band will be centered. In Table 8.01-1,

this frequency is designated as &'SPB' and it is typically two or three times

WO, the center frequency of the first pass band. However, in the case of

Filter 8 in Table 8.01-1, wSPs can be made to be as much as five or more

times coo. Filter 10 is also capable of very broad stop bands.

All of the filters in Table 8.01-1 have at least one frequency, w, where

they have infinite attenuation (or where they would have infinite attenuation

if it were not for the effects of dissipation loss). These infinite attenuation

points, known as polesof attenuation (seeSec. 2.04), may be of first order or of

multiple order; the higher the order of the pole of attenuation, the more rapidly

the attenuation will rise as w approaches the frequency of the pole. Thus, the

presence of first-order or multiple-order poles of attenuation at frequencies w

are noted in Table 8.01-l asa guide towards indicating what the relative strength

of the stop band will be in various frequency ranges. Four of the filters in

Table 8.01-1 (Filters 1, 2, 14, and 15) have no poles of attenuation in the stop-

band region above the pass-band center w., and the attenuation between the first

and second pass-bands levels off at a value of (LA)usB decibels. As is mentioned

in Table 8.01-1, the values of (LA)USS will in such cases be influenced by the

fractional bandwidth wof the filter. Also, it should be noted that the filters

which have a first-order poleof attenuation in the stop band above W may be

liable to spurious responses close to this pole if there is any mistuning.

Another consideration in choosing a type of filter for a given job is the

unloaded Q's obtainable with the resonator structures under consideration.

Waveguideorcavity resonators will, of course, give the beat unloadedQ's, and

hence will result in filters with minimum insertion loss for a given fractional
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bandwidth. However, waveguide resonators have the disadvantagesofbeing

relatively bulky and of being useful over only a limited frequency range because

of the possibilityof higher-ordermodes. Thus, where wide pass bands or wide

stop bands are required, strip-line, coaxial, or semi-lumped-element filters

are usually preferable. Ifstrip-lineeorcoaxial constructuions are used, the

presence of dielectric material, which may be required for mechanical support of

the structure, will tend to further decrease the resonator Q's obtainable. For

this reason, it is inimuny cases noted inTable 8.01-1 whether or not the specific

structure can be fabricated without the use of dielectric support material.

The filter structures marked with stars in Table 8.01-1 are filter types

which represent attractive compromise choices for many applications. However,

they are by no means necessarily the best choices in all respects, and special con-

siderations may dictate the use of some of the unstarred types ol filters listed in the table.

Filter I in Table 8.01-1 was starred because, in coaxial form, it provides a

very rugged and convenient way for manufacturing pseudo lhigh-pass filters.

Commercial coaxial high-pass filters aremost commonly of this form.

Iilter 3 in 'fable 8.01-1 has been starred because it is extremely easy

to design and fabricate in printed-circuit construction when the fractional

bandwidth is around 0.15 or less. However, its atop-band characteristics

and its resonator Q's are inferior to those that can be obtained with some

of the other types of strip-line or coaxial filters in the table.

Filter 9was starred because it is easy to design for anywhere from small to

large iractional bandwidths, it is ccxripact, and it has strong stop bands on both sides of coo .

Filter 10 was starred because of its compactness and ease of design,

and because it is capable of a very broad upper stop band.

Filter 1.4 was starred because it is the simplest and most commonly used

type of waveguide filter. Within the single-mode frequency range of the

waveguide, such filters generally give excellent performance.

SEC. 8.02, GENEHAL PIIINCIPLES OF COUPLED-IAESONATOB FILTERS*

In this section we will discuss tihe operation of coupled-resonator fil-

ters in qualitative terms. For the benefit of those .-eaders who are concerned

The point of view used herein hs that due to S. B. Cohn.1 However, herein his point of view ba beem restated
in more general term, end it has been applied to edditioneal types of filter structures not treated by Cohn.
Some ether points of view and earlier contributions are listed in References 2 to A.
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primarily with practical design, rather than with theory, this qualita-

tive discussion will be followed by design data for specific types of

filters. Details of the derivation of the design equations will be found

in Sec. 8.14.

In the design procedures of this chapter, the lumped-element proto-

type filter designs discussed and tabulated in Chapter 4 will be used to

achieve band-pass filter designs having approximately the same Tchebyscheff

or maximally flat response properties. 'Thus, using a lumped-element proto-

type having a response such as the Tchebyscheff response shown in Fig. 8.02-1(a),

the corresponding band-pass filter response will also be Tchebyscheff as

shown in Fig. 8.02-1(b). As suggested in Fig. 8.02-1(b), the multiple

resonances inherent in transmission-line or cavity resonators generally

give band-pass microwave filters additional pass bands at higher frequencies.

Figure 8.02-2(a) shows a typical low-pass prototype design, and

Fig. 8.02-2(b) shows a corresponding band-pass filter design, which can

be obtained directly from the prototype by a low-pass to band-pass trans-

formation to be discussed in Sec. 8.04. In the equations for the band-

pass filter element values, the g, are the prototype filter element values,

w' and w are for the prototype filter response as indicated in Fig. 8.02-1(a)

for a typical Tchebyscheff case, and w, co, (1i' and w2 apply to the corre-

sponding band-pass filter response as indicated in Fig. 8.02-1(b). Of

course, the filter in Fig. 8.02-2(b) would not have the higher frequency

pass bands suggested in Fig. 8.02-1(b) because it is composed of lumped

elements.

* I

-aLAO LA LAO

an ---*

(a) (b)

FIG. 8.02.1 LOW-PASS PROTOTYPE RESPONSE AND CORRESPONDING
BAND-PASS FILTER RESPONSE
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L 0 210

FIG. 8. 02-2(a) A LOW-PASS PROTOTYPE FILTER

L2  C' L4  C4  Ln.r Cn.i L, C'

'to L1 0 C Lel C3 TLn. Cnn

0 ODD n EVEN

A-I1141-11

FOR SHUNT RESONATORS:

uCOC t suscepLance slope (1) 2 -
parameter 'W"JI

FOR SERIES RESONATORS: w0 - V()w' 2

k a 1 reactance slope (2)0 ~ k•eoi parameter

FIG. 8.02-2(b) BAND-PASS FILTERS AND THEIR RELATION TO LOW-PASS PROTOTYPES
Frequencies , 1, , 1, and '2 are defined in Fig. 8.02.1, Ong go, g1 , '-, gnl

are defined in Fig. 8.02-2(a)

Lei Ci - Lt Cr2Len Crn

RAI ooei K23  Ren~

NOTF.: Adapted from Final Repot, Contract DA-36-039 SC-64625, SRI;
reprinted in Proc. IRE (see Ref. I by S. R. Cohn).

FIG. 8.02-2(c) THE BAND-PASS FILTER IN FIG. 8.02-2(b) CONVERTED TO USE
ONLY SERIES RESONATORS AND IMPEDANCE INVERTERS
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The filter structure in Fig. 8.02-2(b) consists of series resonators

alternating with shunt resonators, an arrangement which is difficult to

achieve in a practical microwave structure. In a microwave filter, it is

much more practical to use a structure which approximates the circuit in

Fig. 8.02-2(c), or its dual. In this structure all of the resonators are

of the same type, and an effect like alternating series and shunt resona-

tors is achieved by the introduction of "impedance inverters," which were

defined in Sec. 4.12, and are indicated by the boxes in Fig. 8.02-2(c).

The band-pass filter in Fig. 8.02-2(c) can be designed from a low-pass

prototype as in Fig. 8.02-2(a) by first converting the prototype to the

equivalent low-pass prototype form in Fig. 4.12-2(a) which uses only

series inductances and impedance inverters in the filter structure. Then

a low-pass to band-pass transformation can be applied to the circuit in

Fig. 4.12-2(a) to yield the band-pass circuit in Fig. 8.02-2(c). Practical

means for approximate realization of impedance invertera will be discussed

in Sec. 8.03 following.

Since lumped-circuit elements are difficult to construct at microwave

frequencies, it is usually desirable to realize the resonators in

distributed-element forms rather than the lumped-element forms in

Figs. 8.02-2(b), (c). As a basis for establishing the resonance proper-

ties of resonators regardless of their form it is convenient to specify

their resonant frequency w 0 and their slope parameter. For any resonator

exhibiting a series-type resonance (case of zero reactance at w0) the

reactance slope parameter

o dXI

- - ohms (8.02-1)
2 dwo

applies, where X is the reactance of the resonator. For a simple series

L-C resonator, Eq. (8.02-1) reduces to w - w *L l/(c'wC). For any reso-

nator exhibiting a shunt-type resonator (case of zero susceptance at we)

the susceptance slope parameter

B mhoa (8.02-2)

2 do
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applies where B is the susceptance of the resonator. For a shunt L-C
resonator, Eq. (8.02-2) reduces to 4 • ¢C. 1/(wL). Note that in

Fig. 8.02-2(b) the properties of the lumped resonators have been defined
in terms of susceptance and reactance slope parameters. The slope param-
eters of certain transmission-line resonators were discussed in Sec. 5.08
and are summarized in Fig. 5.08-1. Any resonator having a series-type

resonance with a reactance slope parameter o and series resistance R has

a Q of

Q - (8.02-3)

Likewise, any resonator having a shunt-type resonance with a susceptance
slope parameter 4 and a shunt conductance G has a Q of

Q= (8.02-4)

Figure 8.02-3(a) shows a generalized circuit for a band-pass filter
having impedance inverters and series-type resonator characteristics as
indicated by the resonator-reactance curve in Fig. 8.02-3(b). Let us
suppose that a band-pass filter characteristic is desired like that in

Fig. 8.02-1(b), and the filter is to be designed from a low-pass proto-
type having a response like that in Fig. 8.02-1(a) and having prototype
parameters g,, gj. .. .. . g9,+, and r,'. The resonator slope parameters
Of, Z2, ... x .* for the band-pass filter may be selected arbitrarily to
be of any size corresponding to convenient resonator designs. Likewise,
the terminations RA, RO, and the fractional bandwidth w may be specified
as desired. The desired shape of response is then insured by specifying

the impedance-inverter parameters Ks,P K12  .... K.,.+ as required by

Eqs. (2) to (4) in Fig. 8.02-3. If the resonators of the filter in
Fig. 8.02-3(a) were each comprised of a lumped L and C, and if the im-
pedance inverters were not frequency sensitive, the equations in

Fig. 8.02-3 would be exact regardless of the fractional bandwidth V of
the filter. However, since the inverters used in practical cases are
frequency sensitive (see Sec. 8.03), and since the resonators used will

generally not be lumped, in practical cases the equations in Fig. 8.02-3
represent approximations which are best for narrow bandwidths. However,
in some cases good results can be obtained for bandwidths as great as



(0) A GENERALIZED, SAND-PASS FITER CIRCUIT USING IMPEDANCE INVERTERS

(b) REACTANCE Of Ith RESONATOR

X = dX (-.) ohmk I ohm XU1

I leactance Slope Parameter

.2.,(2) (3)~

______ x) , fractional -oCS

_ .g (4) andwidth, or()

where 0''. ani,2are defined in Fig. 8.02-1, and go, g i,.. 84+1 are
as defined in Sec. 4.04 arid Fig. 8.02-2(a).

For Experimental Determinat ion of Couplings (As Discussed in Chapter 11)

External (,I's are:

*~~~I~~~(6) '1 4')Ba M4(7

Coupling coefficients are:

to n1 * K,,1  a(8)

FIG. 8.02-3 GENERALIZED EQUATIONS FOR DESIGN OF BAND-PASS FILTERS
FROM LOW-PASS PROTOTYPES
Case of filters with resonators having series-typo resonances. The
K -invorters represent the coupling*
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(0) A G[IEALIZO. SAND-11I FILT911 CIRCUIT USING ADMITTANCI INVtST9R$

doS~(kD)

/
/

(b) SUSCEPTANC[ OF j fit NESONATOA

.(€ )l ,hoe o

Sueceptance Slope Parameter

91 J Aw 0 - (3
0 *o's"0 torn-1 g : il

(4) a . fractional * ' 1 (5)

n •rn~ -1m(4n• bandwidth or(

where 14, w, a and a re defined in Fig. B.02-1, and go- Al ..... Ig+ are
an defined in Sec. 4.04 and Fig. 8.02-2(a).

For Exparimental Determination of Couplings (As Discussed in Chapter 11)

External Q's are:

A &, a I,&, .a,,)

R,- (6) )Q (J., 1 /*) •

Coupling coefficient are:

Vj 4- +# IJ +

_______l . I- (9)

FIG. 8.02.4 GENERALIZED EQUATIONS FOR DESIGN OF BAND-PASS FILTERS
FROM LOW-PASS PROTOTYPES
Case of filters having resonators with only shunt-typ. resonances. The
J-inverters represent the couplings
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20 percent when hal f-wavelength resonators are used, and when quarter-

wavelength resonators are used, good results can be obtained: in some

cases for bandwidths approaching 40 percent.

l.-quations (6) to (8) in Fig. 8.02-3 are forms which are particularly

convenient. when the resonator couplings are to be adjusted by experimental

procedures discussed in Chapter 11. The external Q, ( V, A ' is the Q of
ilesonator i coupled by the Inverter K. to thle terminlation BA Thlle ex -

terna Iii,( is the corresponding o) of resonator n coupled by K..,
to Bii fit(- vxhression for the couplingz coefficients kj is a general-

ization of' the usual definition of couplinp' coefficient. For lumped.

element resonators wi th ineduct ive couplings k .11 /1L L whereJ -J+l J ,J +1 J J+1
L )atnd] L a re sel f induectaences and V))+ is the mutual inductance. Bly

spec i f'N i ng th e' r oup I i ng coe f ficienuts betIween re'sonalto rs and thle external

(s of the end resoneators as indicated in EIC s. (6) to (8) in Fig. 8.02-3,

thle response of' the filIter is fixed. EC4uations (2) to ()and E-'j8. (6)

to (8) are eqivalent.

The baned-pass filIter in Fig, 8.02-41(a) uses admittamnce inverters and

shunt-type resonator characteristics as indicated by thle resonator-

susceptonce curve in Fig. 8.02-4(b). Admittance inverters are in principle

thle same as impedance inverters, but for convenience they are here character-

ized bv an admittance parameter, J,.,,, instead of an impedance parameter,

k,,,+ (see See. 1.12). 'The equations in Fig. 8.02-4 are duals of those in

Fig. 8.02-3, and the same general principles discussed in the preceding

paragraphs apply.

In thle discussions to follow K-inverter impedance parameters will be

used whenever the resonators heave a series-type resonance, and J-imverter

admittance parameters will be used whenever the resonators have a shunt-

type resonance.

SEC. 8.03, PRACTICAL REALIZATION OF K- AND J-INVERTERS

One of the simplest forms of inverters is a quarter-wavelength of

transmission line. Observe that such a line obeys the basic impedance-

inverter definition in Fig. 4.12-1(a), and that it will have an inverter

parameter of K -* ohms where Zis the characteristic impedance of the

line. Of course, a quarter-wavelength of line will also serve as an

admittance inverter as can be seen from Fig. 4.12-1(b), and the admittance

inverter parameter will bei J Y where Yo is the characteristic admittance
of the line.
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Although its inverter properties are relatively narrow-band in

nature, a quarter-wavelength line can be used satisfactorily as an im-

pedance or admittance inverter in narrow-band filters. Thus, if we have

six identical cavity resonators, and if we connect them by lines which

are a quarter-wavelength long at frequency w., then by properly adjusting

the coupling at each cavity it is possible to achieve a six resonator

Tchebyscheff response such as that in Fig. 8.02-1(b). Note that if the

resonators all exhibit, say, series-type resonances, and if they were

connected together directly without the impedance inverters, they would

simply operate like a single series resonator with a slope parameter equal

to the sum of the slope parameters of the individual resonators. Some

sort of inverters between the resonators are essential in order to obtain

a multiple-resonator response if all of the resonators are of the same

type, i.e., if all exhibit a series-type resonance or all exhibit a shunt-

type resonance.

Besides a quarter-wavelength line, there are nemerous other circuits
which operate as inverters. All necessarily give an image phase (see

Sec. 3.02) of some odd multiple of ±90 degrees, and many have good invert-

ing properties over a much wider bandwidth than does a quarter-wavelength

line. Figure 8.03-1 shows four inverting circuits which are of special

interest for use as K-inverters (i.e., inverters to be used with series-

type resonators). Those shown in Figs. 8.03-(a),(b) are particularly

useful in circuits where the negative L or C can be absorbed into adjacent

positive series elements of the same type so as to give a resulting cir-

cuit having all positive elements. The inverters shown in Figs. 8.03-l(c),(d)

are particularly useful in circuits where the line of positive or negative

electrical length 0 shown in the figures can be added to or subtracted from

adjacent lines of the same impedance. The circuits shown at (a) and (c)

have an over-all image phase shift of -90 degrees, while those at (b) and

(d) have an over-all image phase shift of +90 degrees. The impedance-

inverter parameter K indicated in the figure is equal to the image imped-

ance (see Sec. 3.02) of the inverter network and is analogous to the

characteristic impedance of a transmission line. The networks in

Fig. 8.03-1 are much more broadband inverters than is a quarter-wavelength

line.*

In the gases of Fits. 8.03-1( .%itis tatemnt &sns e that 4/s.1 << I W4b is sually
%beons. in tho practical application of toe. circuitse.
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-c -C

SC

K'-

wC

(a) (b)

Z0 X - POSITIVE Z M X - NEGATIVE

a - A a -

#. NEGATIVE *. POSITIVE

(c) (d)

For both cases (c) and (d)

K Z. tan ohms

= -tan" I  
radians

.02

FIG. 8.03-1 SOME CIRCUITS WHICH ARE PARTICULARLY
USEFUL AS K-INVERTERS (Invertes To Be
Used with Series-Type Resonators)

Figure 8.03-2 shows four inverting circuits which are of special

interest for use as J-inverters (i.e., inverters to be used with shunt-

type resonators). These circuits will be seen to be the duals of those

in Fig. 8.03-1, and the inverter parameters J are the image admittances

of the inverter networks.

Figure 8.03-3 shows two more circuits which operate as inverters.

These circuits are useful for computing the impedance-inverting proper-

ties of certain types of discontinuities in transmission lines. Examples

will be cited in Secs. 8.05 and 8.06. Figure 8.03-4 shows yet another

form of inverter composed of transmission lines of positive and negative
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L c

-I. -€# -C

J. --L J-NC

(a) (b)

~**#/2a 24.--4

* - NEGATIVE S POSITIVE
TO YO

0  - 0 0

* POSITIVE * NEGATIVE

(C) (d)

For both cases (c) and (d):

J y 0 tan mhos

0 -tan
-

0  radians
0

FIG. 8.03-2 SOME CIRCUITS WHICH ARE PARTICULARLY
USEFUL AS J.INVERTERS (inverters to be Used
with Shunt-Type Resonators)

characteristic admittance. The negative admittances are in practice

absorbed into adjacent lines of positive admittance.

Numerous other circuits will operate as impedance or admittance in-

verters, the requirements being that their image impedance be real in

the frequency band of operation, and that their imt'ge phase be some odd

multiple of ±7T/2. For any symmetrical inverter, theme conditions will

be satisfied if

(XF.) 3-4). 'R (8.03-1)
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jX6 jXo

K 20 a tan ( tan1 7  ohms

(0)

a tn-o.Lo0~ 0  y

-Y -

* - -ton-
1  

) tan
1  

70 radians got #I

(b) -u.

FIG. 8.03-3 TWO CIRCUITS WHICH ARE FIG. 8.03-4 AN ADMITTANCE INVERTER
USEFUL FOR REPRESENTING FORMED FROM STUBS OF
THE INVERTER PROPERTIES ELECTRICAL LENGTH 9
OF CERTAIN DISCONTINUITIES
IN TRANSMISSION LINES

where (Xl/,)., is the input reactance of the circuit when cut in half and

the cut wires are left open-circuited, while (XI.) is the corresponding

reactance when the cut wires are shorted together.

SEC. 8.04, USE OF LOW-PASS TO BAND-PASS MAPPINGS

The response of a low-pass prototype circuit such as either of those
in Fig. 4.04-1 can be related exactly to the response of a corresponding

band-pass filter as shown in Fig. 8.02-2(b) by a well known low-pass to

band-pass sapping

- a (8.04-1)
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where s is the fractional bandwidth

ow

V *(8.04-2)600

Wo " Vw2wi (8.04-3)

and w' and co refer to the low-pass filter response as indicated in

Fig. 8.02-I(a) while w, woo W1, and w2 refer to the corresponding band-

pass filter response as shown in Fig. 8.02-1(b). Mappings of this sort

are particularly useful in determining the number of resonators needed

to meet given attenuation requirements. For example, suppose that an

audio-frequency filter of the form in Fig. 8.02-2(b) was desired with a

1.0-db Tchebyscheff ripple from f, - 2 kc to f2 - 4 kc and with at least

50-db attenuation at 1.5 kc. It is then desired to know how many reso-

nators will be required to do the job. Using the mapping E4. (8.04-1)

")- w1 f2 -f 4 - 2

2 f2 I v f-2 f1 v(4)(2)

0.707

Now

* 00

0 - 2.825 kc, and we wish, 50-db attenuation or more at f
1.5 kc. Then the low-pass prototype must have at least 50-db attenua-

tion for

1 (1.5 2.85
W1 0.707 2.825 1.5 /

The minus sign in the above result occurs because, mathematically,

the portion of the band-pass filter response below wo in Fig. 8.02-1(b)

maps to negative values of the low-pass filter frequency variable W',

while, mathematically, the low-pass filter response in Fig. 8.02-i(a) for
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negative values of w' is a mirror image of its response for positive

values of w. For our present purposes we may ignore the minus sign.

The chart shown in fig. 4.03-8 shows the cutoff characteristics of

filters with 1.0-db Tchebyscheff ripple. Using this chart we see that

an n - 6 reactive element prototype will give 54.5 db attenuation for

Ic'/OI - 1.914 (i.e., - 1 - 0.914) as required, and n - 5
elements will give only 43 db attenuation. Thus, the corresponding hand-

pass filter with f, a 2 kc and f, " 4 kc will requirc n - 6 resonators in

order to meet the attenuation requirement at f - 1.5 kc.

The various microwave filter structures about to be discussed approxi-

mate the performance of the filter in Fig. 8.02-2(b) very well for narrow

bandwidths, but their rates of cutoff will differ noticeably from that

for the filter in Fig. 8.02-2(b) when the bandwidth becomes appreciable

(more than five percent or so). However, in most cases in this chapter,

approximate mappings will be suggested which are more accurate than

Eq. (8.04-1) for the given structure. In many cases the suggested mappings

give very accurate results for filters with bandwidths as great as

20 percent or somewhat more. Though the mapping functions will be some-

what different from Eq. (8.04-1), they are used in exactly the same way

for determining the required number of resonators for a given application.

SEC. 8.05, CAPACITIVE-GAP-COUPLED TRANSMISSION

LINE FILTERS

Figure 8.05-1 presents design relations for coupled-resonator filters

consisting of transmission-line resonators which are approximately a half-

wavelength long at the midband frequency coo, and which have series-

capacitance coupling between resonators. In this case the inverters are

of the form in Fig. 8.03-2(d). These inverters tend to reflect high

impedance levels to the ends of each of the half-wavelength resonators,

and it can be shown that this causes the resonators to exhibit a shunt-

type resonance (see Sec. 8.14). Thus, the filters under consideration

operate like the shunt-resonator type of filter whose general design

equations were shown in Fig. 8.02-4.

If the capacitive gaps operate like purely series capacitances, then

the susceptance of the capacitive couplings can be computed by use of

Eqs. (1) to (4) in Fig. 8.05-1, and the electrical distance between the

series capacitance discontinuities is obtained by Eq. (5). However, in
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Yo YOV00801 sit 623 $34 80-1,n enmf~
YO Yo

a-M-100

lj= to 2.1I l VaIai. 1

+1 ,(3)

where go, gj..... g are as defined in Fig. 4.,04-1, w' is defiined in

Fig. 8.02-1(a), and Y is the fractional bandwidth defined below. The
J +1 are admittance inverter parameters and Y0 is the characteristic
admittence of the line.

Assuming the capacitive gaps act as perfect, series-capacitance discon-
tinuities of susceptance A ,)+1 as in Fig. 8.03-2(d)

0

0 4(j 2 
14

0
and

-TV [an- (1.8 + tan- ( radians ()

where the P and 8 are evaluated at w0.

For the construction in Figs. 8.05-3(a),(b); determine the gap spacings A
from the J,,,+,iY0 values and Firs. 8.05-3(a),(b); determine the 4,j !
values from the A's and Fig. 8.05-3(c); then

e,1  to a + 1 -, + .,+, (6)

where the ,k will usually lie negative.

To map low-pass prototype filter response to corresponding band-pass
filter response use the approximation

where

z 2(-t , (8) "o 2 (9)

where c' and are as defined in Fig. B.02-1(s); and c, coa. cal. endc,
are defined in Fig. 8,02-1(b).

FIG. 8.05-1 DESIGN EQUATIONS FOR CAPACITIVE-GAP-COUPLED
TRANSMISSION-LINE FILTERS
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many practical situations the

I capacitive gaps between reso-

Sy o  nators will be so large that

they cannot be treated as

t- simple series capacitances.

(a) Consider, for example, the

capacitive gap in a strip

Ob transmission line shown in

Fig. 8.05-2(a). If the length

so soT I of each resonator is defined

Tas extending from the center-4 line of one capacitive gap to

the centerline of the next gap(b)
(as is done in Fig. 8.05-1),

B ,, . n h 1  (1) then an equivalent circuit for
01 the gap, as referred to the

r t 2 centerline of the gap, will
- JL (2)I include series capacitance and0 AJ I ot 2

A-S,,-,9, some negative shunt capaci-
tance to account for the fact

FIG. 8.05-2 GAP EQUIVALENT CIRCUIT, AND

OLINER'S EQUATIONS 9 '1 0 FOR that the gap reduces the shunt

CAPACITIVE-GAP SUSCEPTANCES capacitance in the vicinity of
FOR THIN STRIP LINE the centerline. Figure 8.05-2(b)
Parameter b is the ground-plane
spacing, and Kis the wavelength in shows such an equivalent cir-

media of propagation, in same units. cuit for the gap, and also
Equations are most accurate for shows some equations due to
w/b - 1.2 or more and t/b - 0, Olinerg which give approximate
where t is the strip thickness.

values for the susceptances,
for the case of strip line of

nearly zero thickness. (Altschuler and Oliner I° point out that these equa-

tions are reasonably accurate if w/b is fairly large as is the case for a

50-ohm strip line having nearly zero thickness and air dielectric. However,

if w/b is small the error is considerable.) Having reasonably accurate

values for the susceptances in Fig. 8.05-2(b), the corresponding admit-

tance inverter parameters for a given gap size can be computed by use of

Fig. 8.03-3(b). The gap sizes must be chosen to give the JJ,$ l/¥o values

called for by Eqs. (1) to (3) in Fig. 8.05-1, and the corresponding values

of q obtained from Fig. 8.03-3(b) are then used with Eq. (6) inFig. 8.05-1

in order to obtain the proper electrical distance between the centerlines
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of the coupling gaps. It ahould be noted that all susceptances and
electrical distances are to be evaluated at the midband frequency Wo..

Figures 8.05-3(a) to (c pr--sent data for capacitive-gap filters

which were obtained by experimental procedures11 (see Chapter 11). Theae
data are for the particular rectangular-bar strip line construction ahown
in Fig. 8.05-3(a). Figures 8.05-3(a),(b) give data to be used for deter-

mining the proper gap spacing A in inches to give a specified J/Y0 value,

while Fig. 8.05-3(c) is for use in determining the proper negative line

length to be associated with the inverter. A simple numerical example
will clarify the use of these charts.

Suppose that a filter is desired with a 0.5-db ripple Tchebyscheff

pass band from *3.0 Cuc to f2 3.20 (ic and that 30-db attenuation

- A -*1 r -W -- 0.382W'. ROUND PLANE
as -.111 SPACING

OS 014sn 11111 AIR DIELECTRIC

04 DIMENSIONS OF TEST GAP DISCONTINUITY

0.3 -.--- - -

n% .

0.0

-7

0.04 -- 0.O60 in. +-----

- ~A.0.50 fi..

1.0 2.0 3.0 4.0 5.0 s0 to0

0c.),~ FREQUENCY - Go -I.U

SOUUCEt Reference 11, by G. L. %tathaei. (By courtesy of the
Rea-Wodujdgs Div. of the Thompeooa-Ramo-WootdrWdge Corp.)

FIG. 8.05-3(a) J/[Yo(fo)Gc] vs. (fo)rc FOR CAPACITIVE-GAP .- INVERTERS IN BAR
TRANSMISSION-L INE CONSTRUCTION
The characteristic Impedance of the transmission lines is Zo EE 1/Yo EA 50 ohms
and (fo)Gc is the hand center frequency of the filter in Oc
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SOURCE: Reference 11. by G. L. Matthaei. (By courtesy of the
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FIG. 8.05-3(b) CONTINUATION OF FIG. 8.05.3(a)
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is Aequired at - 2.50 Gc and at fb " 3.50 Gc. By Eqs. (7) to (9)

in Fig. 8.05-1

f/2 + flw * 2(2 +) -\2 + * 0.0645 ,

2f 2 fl

fo _ = 3.10 Gc
2 + 1\

60, 2( f 0,

which for f, 2.5 Gc gives = -- 7.45, while for f 3.5 (ic it gives

w'!c; - 3.55. Since w'/w' has the smaller magnitude for f - 3.5 (c, the

restriction at that freluency controls the design. Using Fig. 4.03-7 and

the procedure discussed in Sec. 3.04, for LAr x 0.5 di, we find that for

a three-resonator design,L A should be about 35 db at 3.5 Gc, and it should

be about 55 db at 2.5 Gc. rhus, three resonators will be sufficient.

By Table 4.05-2(a), the element values for an n a 3 reactive element

0.5 db-ripple Tchebyscheff prototype are go - 1, g, = 1.5963, g 2 - 1.0967,

93 - 1.5963, and 94 - 1.000. Bly .qs. (1) to (3) in Fig. 8.05-1,

JoI!Yo s J34!Yo a 0.252, J1 2/Yo - 323* *o 0.0769.0 Since f0 - 3.1 Gc,

JoI/Yo(fo)G. - 0.252/3.1 - 0.0313 and J12/Yo(fo)G. - 0.0769/3.1 - 0.0248.

Using Fig. 8.05-3(s) a plot of A vs. J/Yo(fQ)G. for f0 - 3.1 Gc is made

for purposes of interpolation, and from this plot the reiuired gaps are

found to be A01 a A3 4 " 0.027 inch, and A12 - A23 - 0.090 inch.

Using Fig. 8.05-3(c) for determining the (pjj~l since A., < 0.040"

we use

P01" a 34 - -2 tan- ( ¥o) a -2 tan-' (0.252) - -0.494 radian

0

For the A12 - 0.090-inch gap we use the chart to get r * 0.090 radian/Gc

for fo - 3.1 Gc. Then

Fil er. deaigs d mis Fig. 0.05-1 .d say symmetrical or astimetrieal prototype seo as theo.
is Table. 4.0S-l(a),(b)J, r 4.0S-2().,(b) will uleys be symuetricel.
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(12 " 4)23  (1o),(0.5323 A - r) - -0.130 radian

By Eq. (6) in Fig. 8.05-1

U 93 r 77 + - [-0.494 - 0.1301 2.830 radians
2

and

1

O2 a 7 + - (-0.130 - 0.130) " 3.012 radians
2

For propagation in air, 3.810 inches at 3.10 Gc, and the dis-

tances between the centerlines of the capacitive gaps is lI a 13

lk/27T - 1.715 inches for Resonators 1 and 3, and 12 = &2X/27 - 1.825

inches for Resonator 2. The resonator bars may be supported by Polyfoam

or by thin horizontal slabs of dielectric passing through the sides of

the bars. Of course, some correction in resonator bar dimensions will

be required to compensate for the effect of the dielectric supporting

material on the velocity of propagation and line impedance. In order to

tune the filter precisely tuning screws may be used as described in

Sec. 11.05, or alternately the resonant frequency of the various i io-

nators may be checked by testing them individually or in pairs as is

also described in Secs. 11.03 to 11.05.

Figure 8.05-4(a) shows a filter constructed using the design charts

in Fig. 8.05-3(a) to (c). This is a four-resonator filter designed for

a 1.0-percent bandwidth maximally flat response centered at f0 - 6.120 kMc.

In this filter the resonators are supported by 0.062-inch-thick Rexolite

2200 dielectric slabs which pass through the sides of the resonator bars,

the slabs being held by clamp strips at the sides of the filter. The four

bars in the interior of the filter are resonators while the bar at each

end is a 50-ohm input or output line. The resonant frequencies of the

resonators were checked by testing them in pairs as discussed inSec. 11.04.

These tests indicated small errors in the lengths of the resonator bars,

and the required corrections were made. Figure 8.05-4(b) shows the re-

sulting measured response obtained after the filter was assembled without

tuning screws.
11
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SOURCE: Referenice 11. by G. L. Mattha. (By courtesy of the
Ramo-Wooldridge Div. of the Thompuon-Remo-Wooidridge Corp.)

FIG. 8.05-4(a) A FILTER WITH 0.9% BANDWIDTH CENTERED AT 6.120 Gc AS SHOWN
IN FIG. 8.05-4(b)

As is seen from the photograph, this filter uses four, X0/2 resonators
in bar construction

Figure 8.05-5 shows the measured response of a six-resonator ilter

in similar construction. This filter was designed for l-db Tchebyscheff

ripple and 20 percent bandwidth. The z's show the measured data while

the circles show points mapped from the low-pass prototype using the

mapping in Eqs. (7) to (9) of Fig. 8.05-1. As can be seen, even for

bandwidths as large as 20 percent the design procedure and the mapping

give good accuracy. However, the bandwidth for which this procedure is

accurate depends somewhat on the pass-band ripple tolerance. For ripples

as small as 0.01 db, this design procedure will not meet the design ob-

jectives for as large bandwidths as it will when the ripples are, say,

0.5 or 1.0 db. For bandwidths of around 15 percent or more and very
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small pass-band ripples, the procedures in Chapter 9 are recommended for

this type of filter.

Observe that, the wider bandwidth filter response in Fig. 8.05-5

shows less dissipaLion loss than does the narrow-band response in

Fig. 8.05-4(b). The unloaded Q for resonators in this construction has

been found to be typically about 1000 to 1300 at S band.

Other considerations in the practical design and application of

filters of this type are that the second pass band of the filter will be

centered at roughly twice the center frequency of the first pass band,

and that the attenuation in the stop band between the first and second

40- -

20 _ _.

9.9 W 600'0 .. 40950' .100 6.150 6.200 6.110 6.300
FmniawCv - 06

SOURCE: Refovenc* II, by G. L. Matthei. (fly owtoey of the
Remo-Wooldridge Div. of the Thompson-Ramo-Wooldridge Corp.)

FIG. 8.05-4(b) THE ATTENUATION CHARACTERISTIC
OF THE FILTER IN FIG. 8.05-4(c)
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IIICE: Reference 12. by G. I.. MI.thnei. (By courtesy of the
Remo-'.ooldridte Iiv. of the Thompson-Rsmo-Iooldrjdge Corp.)

FIG. 8.05-5 THE ATTENUATION CHARACTERISTIC
OF A 6-RESONATOR FILTER
The x's indicated measured attenuation
while the circles are theoretical points
calculated using the mapping in Eqs. (7)
to (9) of Fig. 8.05.1

pass band will level off to some peak finite value of (LA)uSB decibels,

which occurs at. about co * 3w0/2. The size of this maximum attenuation

in the upper stop band can be estimated by use of the formula

(LAUS,20 [ol 0 1- (n + 1)3.53 -6.02 db

(LA) ~ ~ y. CF. tyO(~)( .)

(8.05-1)
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where the B,i+l/Yare computed from the Jj, IYo by use of Eq. (4) in

Fig. 8.05-1. The stop band below the pass band has a first-order pole of

attenuation (Sec. 2.04) at w - 0. Thus, in the cave of the lower stop

band the attenuation continues to grow as the frequency goes lower, and

the attenuation approaches an infinite value as w approaches zero.

If sizeable attenuation in the upper stop band is required for a

given application, (LA)usS should be computed. The attenuation predicted

by Eqs. (7) to (9) in Fig. 8.05-1 fo, upper-stop-band frequencies near

the pass band, will be reasonably accurate only so long as the computed

attenuation values are around 20 db or more below (LA)UsB.

In the case of the three-resonator numerical example discussed above,

J0 1/Y0 a J34 /Yo a 0.252, and J1 2/Yo - J23/Yo = 0.0769. By Eq. (4) in

Fig. 8.05-1, B/l/Yo = B3 4/Yo , 0.269, and B1 2/Yo - B23/Y o - 0.077. Then

by Eq. (8.05-1), (LA)USS - 54 db. Thus, the 35-db value computed for

3.5 Gc by use of the mapping should be reasonably accurate since the 35-db

value is about 19 db below (LA)USS.

It will be found that (LA)USB decreases rapidly as the fractional

bandwidth increases, but at the same time (LA)usm increases rapidly as

the number of resonators is increased. Thus, if (LA)UsO is found to be

too small, it can be increased by adding more resonators.

SEC. 8.06, SHUNT-INDUCTANCE-COUPLED, WAVEGUIDE FILTERS

The waveguide filter in Fig. 8.06-1 is in most respects the dual of

the capacitive-gap coupled filter in Fig. 8.05-1. In this case, the in-

verters are of the type in Fig. 8.03-1(c) and the structure operates like

the filter with series resonators shown in Fig. 8.02-3. The low-pass to
band-pass transformation in Eqs. (6) to (8) in Fig. 8.06-1 for the wave-

guide filter is the same as that in Eqs. (7) to (9) for the capacitive-

gap coupled filter if both transformations are expressed in terms of guide
wavelength. However, since the guide wavelength for waveguide varies

with frequency in a different way from the guide wavelength in a TEM-mode

structure, the frequency responses will be somewhat different for the two

types of filters. In particular, for a given range of guide wavelength,

the waveguide-type of filter will have narrower frequency bandwidth be-

cause of the more rapid change in guide wavelength for non-TEM modes of

propagation.
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K

00"

+- YX 1 (2)

T f .

where go, g , ... are is defiled in Iig. 4.0-I, is defined in

Fig. ii.2"(a I . d w A is the g:u,de.-waveleigth fractional bandwidth de-

fined below. Ile A .,re ipea.vice inrvert er parameters and 70 is

the ouide irmpedaner.

For purely lumped-inJ et i.ene discrntinuLties having shunt reactance

j .j+l,

+ 1  
(4)

and

- .4[tani 1 ;.) * tan-' ( +1.~ radians (So)

For discontinuities with more complicated equivalent circuits use

Fig. 8.03-3 and

" [ ., ) =.+ radians . (5b)

where the V's will usually Ise negative.

(Continued on p. 448)

FIG. 8.06-1 DESIGN EQUATIONS FOR SHUNT-INDUCTANCE-COUPLED
WAVEGUIDE FILTERS
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To nap low-pass filter response to corresponding band.pose filter

response use

. 0 (6)

60

where

"go (8)-

,0 A, a + 40

1A 0. 1 A,2, and X are the guide wavelengths at frequencies w ,
1 , & w a defined in Fig. 8.02-1(b); w' and a are as defined in
Fig. 8.02-1(a); and .0 is tho wavelangth of a pianie wave at frequeticy
W0 in the medium of ti. ruide.

FIG. 8.06-1 Concluded
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Assuming that the waveguide propagates the TE10 made of propagation

and that all higher-order modes are cut off, the procedure for using the

equations in Fig. 8.06-1 is very similar to that for the equations in

Fig. 8.05-1. Figures 8.06-2 and 8,06-3(a),(b) present inductive iris and

inductive post coupling discontinuity data from Xlarcuvitz. 13  The reac-

tances plotted relate to the equivalent circuit in Fig. 8.06-4. Since

fore& very thin iris, X. 0, Eqs. (4) and (5) in Fig. 8.06-1 which assume

a simple, shunt, lumped-inductance discontinuity may be used. For the

an 0 FOR A TWIN IRIS

0 0

~O 0O

02

d

1.2 I 1 7 TTT

0

0.61
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0. 000.00.502

0
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FIG. 8.06-3(a) CIRCUIT PARAMETERS OF CENTERED INDUCTIVE POST
IN RECTANGULAR GUIDE
The guide wavelength at midband is .90 while ho is the
corresponding free-space wavelength

IX W- - 0

I TI xb  I

T T

A- 302? - 7%

FIG. 8.06-4 EQUIVALENT CIRCUIT
FOR THE SHUNT-
INDUCTIVE DISCONTIN-
UITIES IN FIG. 8.06-2

FIG. 8.06.3(b) DEFINITION OF THE AND 8.06-3(c), (b)
DIMENSIONS IN Note that X f, 0 for case
FIG. 8.06-3(a) of Fig. 8.06-2
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case of the inductive post (or a thick iris), X. is not negligible and

it should be accounted for in the design process. This can be done for

the case of inductive posts by first computing the required normalized

inverter parameter values K,.,,I/Z 0 by use of Eqs. (1) to (3) in

Fig. 8.06-1. Then, using the data in Fig. 8.06-3(a) along with

Fig. 8.03-3(a), a plot is made of K/Z0 and cP vs. d/a, for the desired

midbsnd guide wavelength \,0, corresponding plane-wave wavelength K0,

and waveguide width a. From this chart the post diameters d which will

give the normalized impedance inverting parameters Kjj+I1/Z can be de-

termined, and also the corresponding values of 0j,j+I* Then, paralleling

the analogous case for Fig. 8.05-1, the electrical distance between the

centers of the posts at each end of Resonator j is

1
60 " + -1 j + 4j +] radians (8.06-1)

Except possibly for the case of large posts, the 0,,,1 should be negative.

The distance between post centers for Hesonator j is then

- X- 2i (8.06-2)

j27r

This design procedure should give good accuracy for designs having

guide-wavelength fractional bandwidths wA [see Eq. (7) in Fig. 8.06-1]

of 20 percent,1 with diminishing accuracy for larger bandwidths.

Analogously to the strip-line filter in Sec. 8.05, this waveguide

filter will have for TE1 0-mode propagation a second pass band centered

approximately at the frequency for which X.a \80/2. This frequency

would be somewhat less than 2w0 because of the manner in which X and

the X,., 1 vary with frequency. Also, the attenuation between the first

and second pass bands for TE1 0-mode propagation will level off with a

peak value of (LA)Us, which can be estimated by use of the equation

(L A)USI - 20 log,, 0  I)(XI) (X -.. (n + 03. 53-6.02 db

(8.06-3)
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where the X/oj IZ 0 are computed from the Kj, 1 /Z0 by use of Eq. (4) in

Fig. 8.06-1. Equation (8.06-1) is the dual of Eq. (8.05-1), and some

further ramifications concerning its use are discussed at the end of

Sec. 8.05.

As for the type of filter in Sec. 8.05, the waveguide filter in

Fig. 8.06-1 will have monotonically increasing attenuatio; for fre-

quencies varying from the pass-band frequency downward. Thus, the at-

tenuation in the lower stop band rises to an infinite value at w - 0,

due to the attenuating effects of the irises, and due to the cutoff of

the waveguide.

It should be noted that the discussion above assumes that only the

TE1 0 mode is present. If other modes are also present (as is likely to

happen for frequencies which are around 1.5 or more times c0), the per-

formance can be greatly disrupted. This disruption arises because

higher-order modes have different guide wavelengths than that for the

TE1 0 mode. As a result the pass and stop bands for energy in the higher
modes will occur at quite different frequencies than for the TE1 0 mode.

Thus, the possible effects of higher-order modes should be kept in mind
when this or any other type of waveguide filter is to be used.

In order to clarify the differences between strip-line and waveguide

filter design, a waveguide filter design example will now be considered
which is closely related tr the strip-line filter example in Sec. 8.05.

Let us sttppu-se tiat a pass band with 0.5-db Tchebyscheff ripple is de-

sired from ft - 3.047 to f2 - 3.157 Gc, and that at least 30-db attenua-

tion is required at the frequencies f. - 2.786 Gc and f6 - 3.326 Gc. Let

us suppose that WH-284 waveguide is to be used. The design calculations

are those outlined in Table 8.06-1.

In Part (a) of Table 8.06-1, guide wavelengths are computed that
correspond to the various frequencies of importance. In Part (b), WX

and w * (U2 - fl)/fo are computed, and it should be noted that YA, the

guide-wavelength fractional bandwidth, is nearly twice as large as the

frequency fractional bandwidth w. Also, normalized prototype frequencies

o'/co are computed corresponding to f. and f6 for the waveguide filter,

and the attenuation is predicted by use of the chart in Fig. 4.03-7. It

will be noted that wA - 0.0645 for this example, which corresponds exactly

to v - 0.0645 for the example in Sec. 8.05. Also, the ratios k,,/t\,,
5.130/6.361 - 0.806 and k,,/,k, - 5.130/4.544 - 1.129 correspond exactly
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Table 8.06-1

OUTLINE Or A WAVEGUIDE FILTER
DESIGN CALCULATION

Part (a)

Assume PH-284 guide. Width a a* 2.840 inches

Height 6 m 1.340 inches

Xminches (1)

where a is in inches and f is in Ge.

f, 3.047 Ge I' I8  a 5.296 inches

f2 * 3.157 Ge Xg2 a4.%65 inches

*1 0 l a * 2 - 5.130 inches (fo 3. 100 Ge)gO 2

X0 (Plane wavelength at fo 3.807 inches

f, - 2.786 Ge , s m 6. 361 inches

fba3.326 Ge 1  a 4.544 inches

Part Mb

'-* X81 '? 2  . 0.0645 f - f 0.0355
X60

Alternately:

wh a(x60
KO (I-i~g)(0.0355) *0.0645

For!f a fe m 2.78h Gc he a X goand - 7.45

For! f a f6 3.326 Ge a \6* X and *3.55

Ny Fig. 4.03.7, for a 0.5-db ripple n *3 design:

For! f m ( Id dI - 7. 5) , - 55 db.

For f w f6 (Id jV1,1 - 3.55) , - 35 db.
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Table 8.06-1 Continued

Part (c)

For n a 3, O.5-db ripple Tchebyscheff prototype.
by Table 4.05-2(a): , a 1g, a 1.5963,
82 a 1.0967, g * 1.3963, g4 a 1.0000, and 4 1.

wk 9A

a7~ 0a 0.252

1 .. 1-- . aU - 0.0769zo q 92 Z•

J , j+I
x2..+ Z• (3)
Zo  1- .j+12

O-- . 34 . 0.269

x12  g X2 3  a 0.0774

zo  Zo

O__ . A, . 34 L 0.269(5.130)
- a -.486

Z0  a Z0 a 2.840

x2. . X2.3Xo 0.0774(5.130)
0.140

z2 a Z0  a 2.840

By Fig. 8.06-2, with a/X0 a 2.840/3.807 a 0.746:

For XO, and X3 4, d/a a 0.37 and d a 1.050 inches

For X 2 nd X 2, d/e * 0.22 and d m 0.625 inch

Part (d)

9) • -[ten' 2Xj'I.j . ta.n I2Xj.jI] (4)

eI  9 35 -2.819 radians, 02 * 2.989 radias

the spacing between irises is:

1 $ a u 2.302 inches
2w

12 a Ogkg 0 2.441 inabea
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to the f./fo a 2.5/3.10 -0.806 and f . 3.5/3.10 - 1.129 ratios for

the example of Sec. 8.05. The attenuations are seen to be the same for

these corresponding ratios. In fact, using X,01/xI aa a normalized fre-

quency variable, the response of the waveguide filter would be identical

to that of the strip-line filter example in Sec. 8.05, plotted vs. f/fe.

But note that the waveguide filter response plotted as a function of fre-

quency will be quite different. As is seen from the calculations, an

n • 3 design gives an adequate rate of cutoff, and over 30-db attenuation

at both f. and f6.

In Part (c) of the table the dimnrsions of the coupling irises are

determined with the aid of the chart in Fig. 8.06-2, and in Part (d) the

spacings between irises are determined. The iris data in Fig. 8.06-2

are for thin irises, and if the iris is, say, 0.020-inch thick, the error

due to thickness should not be serious for most purposes, since the main

effect will be on the resonant frequency of the cavities. There are

presently no data available which give an accurate thickness correction

for irises of the form in Fig. 8.06-2 with holes as large as are to be

used in this filter. A suggested procedure is to measure the resonator

lengths l, 12, and 13 from the centerline of one iris to the centerline

of the next. This should make the resonant frequencies of the resonators

a trifle high, so that they can be tuned down to the correct frequency

using tuning screws and the alternating short- and open-circuit method

discussed in Sec. 11.05. If a precision design without tuning screws is

desired, the single- or double-resonator test procedures described in

Secs. 11.03 to 11.05 are recommended for precision determination of the

iris sizes and resonator tunings.

The peak attenuation (LA)use between the first and second pass bands

will be about 54 db just as for the example in Sec. 8.05. However, it

should be recalled that this holds only if the TE1 * mode alone is present.

SEC. 8.07, NARROW-BAND CAVITY RESONATOR FILTERS
COUPLED BY SMALL IRISES

The design of cavity resonator filters coupled by small irises can

be carried out in a general fashion by means of Bethe's small-aperture

theory (see Sec. 5.10). For most of the filters discussed in this chapter,

it will be convenient to carry out the design in tepms of the resonator

slope parameters w. or 4, and the inverter parameters K,. , or J.,+I .
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However, in this section it will be more convenient to use the entirely

equivalent approach which deals in terms of the external Q'i, (V)4 and

(Q,)g of each end resonator loaded by its adjacent termination, and the

coupling coefficients k,,+I for the coupling between adjacent resonators.

These matters were introduced in Sec. 8.02, and equations for the external

Q's and coupling coefficients are given in Eqs. (6) to (8) of Figs. 8.02-3

and 8.02-4.

Figure 8.07-1 presents formulas for the external Q's of a rectangular

cavity coupled to a terminated waveguide in any of various ways. In the

equations and in the discussion below A is the free-space wavelength, X5

and X.1 are the guide wavelengths

=* and A 1  , (8.07-1)

s is the number of half guide-wavelengths in the 1, dimension of the

cavity, M1 is the magnetic polarizability of the iris, and the quantities

a, b, al, bl , and 1I are dimensions defined in the figures. Having com-

puted the required values of (MA and (Q,)B from Eqs. (6) and (7) of

Figs. 8.02-3 or 8.02-4, the appropriate equation in Fig. 8.07-I can be

used to solve for the required magnetic polarizability M I. Then, by use

of Figs. 5.10-4(a),(b), the dimensions of the coupling iris can be ob-

tained. It should be noted that M has dimensions of (length)! which

is consistent with the equations in Fig. 8.07-1, and with the normali-

zation of the ordinates in Figs. 5.10-4(a),(b).

Figure 8.07-2 shows formulas for the coupling coefficient k for two

rectangular resonators coupled by a small iris in either the end or side

wall. The significance of the other parameters in the equations is the

same as for Fig. 8.07-1. The required coupling coefficient values for

the couplings between the various adjacent resonators of a filter can be

computed by use of Eq. (8) of Fig. 8.02-3 or Fig. 8.02-4. Then, by use

of the appropriate formula in Fig. 8.07-2, the magnetic polarizability M t

of the various coupling irises can be solved for. As for the end irises,

the dimensions of the internal irises can be determined with the aid of

Fig. 5.10-4(a),(b).
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For narrow-band filters such as those discussed in this section,
the low-pass to band-pass mftpping

" ' / (8.07-2)

where

2 1

and

2 +
wo 2

should give satisfactory accuracy.

As an example of the use of this method we consider the design of a

three-cavity direct-coupled filter having a 0.0l-db pass-band ripple to

operate at a center frequency of 10 Gc in WRI-90 waveguide (a - 0.900 inch,

b s 0.400 inch). We choose the bandwidth to be 50 Sic (v - 0.005) and

choose 1, X8,/2 a 0.7815 (s I 1). The elements of the low-pass prototype

k.-- .,--M 1A

_T _ P-G 0--- -

b,, T1

k M - X t.- a- k 2

(e) 4b)

k • FREE SPACE WAVELENGTH. X91 • GUIDE WAVELENGTH, , • . .j

FIG. 8.07-2 COUPLING COEFFICIENT k FOR RECTANGULAR CAVITIES COUPLED
BY A SMALL IRIS IN THE END WALL OR SIDE WALL
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FIG. 8.07.3 REALIZATION OF NARROW-BAND DIRECT-COUPLED
FILTER USING SMALL IRISES

filter are determined from Table 4.05-2(a) to be go - g4 - 1.000,

91 ' g3 ' 0.6291, and g2 - 0.9702. Figure 8.07-3 illustrates the reali-

zation of this filter. Ae determine from Fig. 8.02-3 that (Q, = (Q,)B5

09g1 ('t/ = 125.8 and that k12 a k2 3 = U,/(co glg 2 ) = 0.0064. Using

Figs. 8.07-1(a) and 8.07-2(a) we find the polarizabilities All for the external and in-

ternal apertures to he 6.62 x 10- 3 and 0.79 x 10- 3 respectively. For the

rectangular end irises we choose d2,'ld = 0.5 (see Fig. 8.07-3). Referring

to Fig. 5.10-4(a), we find from the curve for rectangular irises, an

initial value of d2 = 0.344 inch. However, e2 is an appreciable fraction of

X - 1.18 inches, so that we use E4. (5. 10-3) to determine an approximate

correction and find as final values d2 = 0.31 inch and d, . 0.155 inch.

For the circular middle irises we find - (6M41 )
3 = 0.168 inch (see

Sec. 5.10). If the thickness of the irises is 0.005 inch or less, the

thickness correction of EL,. (5.10-5) is negligible. However, for greater

thickness this correction should be applied.

The presence of the apertures will have the effect of lowering the

resonant frequencies of the resonators slightly from what they were before

the apertures were added. If desired, a small correction in the lengths

of the resonators in Fig. 8.07-3 could be made by applying Eq. (5) of

Fig. 8.06-1. For this example the normalized reactances Xj, j /Z0 can be

obtained from Fig. 5.10-5, which for the centered irises in Fig. 8.07-3

gives

lj~i+l I4(~~~~

Zo jo abto (8.07-3)

where XoIZo and X341Z 0 are for the irises at the ends.
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The design method of this section is based on Bethe'a small-aperture

theory and is very versatile. However, it does rely on the assumption

that the coupling irises are relatively small, which also implies that

the fractional bandwidth w of the filter is small (say, of the order of

0.01 or less). Some discussion of the derivation of the equations in

Figs. 8.07-1 and 8.07-2 will be found in Sec. 8,14.

SFC. 8.08, FILTERS USING TWO-PORT, QUARTER-
WAVELENGTH RESONATORS

The filters discussed in Sec. 8.05 use J-inverters of the type in

Fig. 8.03-2(d) along with half-wavelength resonators, and their design

equations can be derived from Fig. 8.02-t as will be outlined in

Sec. 8,14, The filters discissed in Sec. 8.06 use K-inverters of the

type in Fig. 8.03-1(c) along with half-wavelength resonators, and their

design equations can ki derived from Fig. 8.02-3. If quarter-wavelength

resonators are used in an analo~oius way, they themselves have an inverting

effect so that if at one end of each resonator they behave like the series

resonators in Fig. 8.02-3, at their other ends they will operate like the

shunt resonators in Fig. 8.02-t. In this manner it can be shown that

filters can be construc ted using two-port, quarter-wavelength resonators

if they are coupled alternately by K- and J-inverters.
14

Though other types of construction and other types of K- and J-

inverters may also be used, Fig. 8.08-1 gives design data for a TEM-mode

type of filter using quarter-wavelength resonators with capacitive-gap

J-inverters, and shunt inductance K-inverters. Except for the use of

two different kinds of inverters and other minor differences which result

from the fact that the resonators are a quarter-wavelength rather than a

half-wavelength long, the design procedure is much the same as for the

preceding cases. Using the st :p-line construction shown in Fig. 8.05-3(a),

the J-inverter capacitive-gap spacing and the electrical length 0 can be

determined by use of the data in Figs. 8.05-3(a),(b), and (c).

Figures 8.08-2(a) to 8.08-4(b) show data for inductive-stub K-inverters.

Note that the ordinates on these graphs are normalized with respect to

frequency in Gc, and that due to the junction effect the 0 values are not

always negative in this case.

Figure 8.08-5(a) shows a filter with six quarter-wavelength reso-

nators designed using the charts just discussed." The construction is
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0 jin to M-1 Zil JIrjsi+1

where so' 61l ... g. are as defined in Fig. 4.04-1, c. isdefinedin

Fig. 8.02-1(a), and w is the fractional bandwidth definedbelow. In

this structure, impedance inverters (with parameters K) 1 .,,) alternate

with admittance inverters (with parameters J7 J
+
1 ), and Z0 - l/Y0 is

the characteristic impedance of the line between inverters.

Using K 1 , inverters of the form in fig. 8.03-1(c) and J + in-
verters of the form in Fig. 8.03-2(d), the X )+,, a j ]' and

4 1 ,+ 1 valuescan be computed from the equations in those figures. Then

= ,- tj..+ 
]  

radians (4)

where the 0k.k+! are negative.

Using the construction shown in rigs. 8.08-5(a), the gap spacings a

and the 4 values for the J _ inverters may be determined by

Figs. 8.0S-a) (b), (c). 'he stub lengths and 46 values for the
Kj~je I inverter. may be determined by Figs. 8.08-2(s) to 8.08-4(b).

To map low-pass prototype filter response to corresponding band-

peas filter response use the approximation

.'. 4 -.1-), 5
where

--l , (6)

and

(00 (7)

FIG. 8.08-1 DESIGN EQUATIONS FOR FILTERS WITH TWO-PORT,

QUARTER-WAVtELENGTH RE SONATORS
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FIG. 8.08-4(a) K/[Zo(fo)Gc] Vs. (fOGcFOR A SHUNT INDUCTANCE K-INYERTER
DESIGNED TO PERMIT RELATIVELY LOOSE COUPLINGS IN BAR
TRANSMISSION LINE
The characteristic impedance of the resonator transmission line is

Z* I/Y0 - 50 ohms, and (fO)Gc is the resonant frequency in Ge
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FIG. 8.08-4(b) 0/fOG vs. )G FOR THE K.INYERTER IN FIG. 8.08-4(a)



SOURCE: Reference 11, by G. L. Matthaei. (BY courtesy of the
Ramo-Wooldridg.e Div, of the Thopson-lamo.Wooldridge Corp.)

FIG. 8.08.5(a) A FILTER WITH SIX, \014 RESONATORS IN BAR CONSTRUCTION
The response is shown in Fig. 8.08.5(b)

quite rugged, and no dielectric support material is re.~uired. The reso-

nators in this filter were tested in pairs by the methods described in

Seca. 11.04 and 11.05 to insure that their tuning was correct. The de-

sign pass band was fran 2.6 to 3.4 Gc, and as can be seen from

Fig. 8.08-5(b), this was achieved with good accuracy. The mapping de-

fined in K.4s. (5) to (7) in Fig. 8.08-1 is not quite as accurate, however,

for this type of filter as for the type in Fig. 8.05-1. In this case,

the predicted attenuation at 2.4 Gc is about 40 db, which is only about

2 dh more than was measured; however, the predicted attenuation at 3. 7 GC
is about 37 db as against a measured attenuation of 32 db.
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This type of filter has several advantages over analogous filters
using half-wavelength resonators.1A The quarter-wavelength resonators

are, of course, shorter which gives a smaller filter for a given number

of resonators. A filter with half-wavelength resonators equivalent to

the filter in Fig. 8.08-5(8) would have a second psas band centered at
about twice the center frequency of the first pass band, or at about

6 kM. However, in this quarter-wavelength-resonator t~ype of filter,

the second pass band is centered roughly three times the band-center of

the first pass band, or at about 9 kMc in Lhis case. This pprticular

filter has about 61.5 db attenuation at 6 kMc.

Quarter-wavelength resonators of the type described have an addi-

tional advantage in that their reactance or susceptance slope parameters

are half as large as for corresponding half-wavelength resonators.

40 - -------

30-- I 4 _ __ __

.7 2

.9 % 9ANOWIOTH

to 1-05 o. USING go.(7) -

IN FIG 8.0s-1

to-

1.4 RA I.A 0 M 3.4 U & 4.0

FIG.AC -G

SOURCE: Refernce 11, by G. L. Mauha.). (By counesy of the
Ranvo-RWoodridgo Div. of the Thompsoin-Remo-Ioo~dridje Corp.)

FI.3.08-5(b) THE ATTENUATION CHARACTERISTIC
OF THE FILTER IN FIG. 8.&S-(e)
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Because of this, for a given bandwidth and pass-band shape the couplings

are considerably looser for the quarter-wavelength than for the half-

wavelength resonatcr types of filters. 'This calls for karger capacitive

gaps so that tolerances are less of a problem, and it also results in

considerably higher maximum attenuation (LA)usB in the stop band above

the pass band. Also, because of the shorter resonatore and looser

couplings the circuit is more nearly lumped, and as a result, the design

equations in Fig. 8.08-I will be found to give filters with specified

pass-band characteristics accurately for greater bandwidths. They should

give good results for many filters having bandwidths as large as 30 percent.

As in the preceding cases, the equations are more accurate for larger

bandwidths if the pass-band ripple tolerance is 0.5 to 1.0 db than if a

very small tolerance such as 0.01 db is called for.

For this type of filtor, the maximum attenuation between the first

and second pass band is always finite (just as for the filters in

Secs. 8.05, 8.06, and 8.07), but in this case, the attenuation levels

off to a maximum value near co * 2w0. This maximum upper-stop-band attenu-

ation can be estimated by use of the formula

(LA)USB 20 logl. XO1 (B 2) (B.!.,)( /X...)]+ ( ~~ -6.2 d
/Y- n + 1 6 .0 2 -6 .0 . d t,

Zo 0 Zo

(8.08-1)

where

X z(8.08-2)

Bj. jj.j I

B YO 
(8.08-3)
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and the K,,.I/Z 0 and Jj,/+1/Y 0 are computed by use of Eq. (1) to (3) in

Fig. 8.08-I. An n-resonator filter of this type will have an (n + 1)-

order pole of attenuation (Sec. 2,04) at c - 0. For that reason, this

type of filter will have a very fast rate of cutoff below the pass band,

as can be seen in the case of the response in Fig. 8.08-5(b).

SEC. 8.09, FILTERS WITH PARALLEL-COUPLED
STRIP-LINE RESONATORS

Figure 8.09-1 presents design equations (which are a modified form

of equations due to Cohn15 ) for filters using half-wavelength strip-line

resonators, positioned so that adjacent resonators parallel each other

along half of their length. This parallel arrangement gives relatively

large coupling for a given spacing between resonator strips, and thus,

this construction is particularly convenient for printed-circuit filters

up to about 10 or 15 percent bandwidth.15  For larger bandwidths the

resonators can be constructed from bars having a rectangular cross section

(which permits tighter coupling), and for that case the wide-band filter

equations in Chapter 10 are recommended.

The use of the equations in Fig. 8.09-1 is best illustrated by use

of an example. Let us suppose that a low VSWR in the pass band is de-

sired so that a 0.01-db ripple, Tchebyscheff prototype is to be used in

the design. The desired fractional bandwidth is assumed to be w - 0.10,
and the design center frequency is to be fo = 1207 Mc. We shall assume

that 25-db attenuation is required at f - 1100 Mc. Then, by mapping

Eqs. (6) to (8) in Fig. 8.09-1 for f - 1100 Mc,

Iw \ 02 (' Oo (f f

2 (1100 -1207\ 17-0 I ? ] -1.77
0.10 1207 /

By Fig. 4.03-4 it is found that r.n n - 6 design has 29 db attenuation for

1W'/&J' - 1 * 0.77 while an n - 5 design has LA • 18.5 db. Thus, n - 6

is required. By Table 4.05-2(a), the desired n * 6 prototype parameters

are 90 - 1, gi * 0.7813, g2 * 1.3600, 93 - 1.6896, 94 - 1.5350,

9$ - 1.4970, g6 * 0.7098, g 1.1007, and * - 1.
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0(1

to M I 1 (2)

nj (3)

.--, t __T._ __ ...$I

where go, #I, . . +1 are as defined in Fig. 4.04-1. we is as defined in

Fig. 8.02-1(a), andwis the fractional bandwidth defined below. The J. are
admittance inverter parametersandYoisthe characteristic 

admittance of the

terminating lines. The even- and odd-mode impedances of the strips are

4-I +1 J1)2• + + )
, 80 j*to a 0 "00

= -+(5)
10J+ ]to ft 0 "0 0

and the strip dimensions can be determined by use of Sec. .5.05.

To map the low-pass prototype response to the band-pass filter response use

the approximation

• (- ) (6)
"'11

where

I O (7)ed0

wo w2 + (8)

and w, and o.2 are as defined in Fig. 8.02-1(0).

FIG. 8.09.1 DESIGN EQUATIONS FOR FILTERS WITH PARALLEL-COUPLED RESONATORS

469



Table 8.09-1

LESIGN PARAMETERS FOB1 EXPEIME.NTAL PARALLEL- COUPLED) STIIIP- LINE -R(ESONATOR FILTER

-' i j 1y Z,)jIj+ (Z.. ) ,~i 'j, j+I 8j~j~l I 'i.,+l

0 0.449 92.5 ohms 37.6 ohms 0.236 inch 0.021 inch 0.073 inch

1 0.1529 58,8 ohms 43.5 ohms 0 346 inch 0.110 inch 0.084 inch

2 0.1038 55.7 ohms 45.3 ohms 0.360 inch 0.158 inch 0.085 inch

3 0.0976 55.4 ohms 45.6 ohms 0.361 inch 0.163 inch 0.085 inch

SOUJRCE: Finsl Report, Contract DA 36-039 SC-6462S. SI; reprinted in InI rhs. Parr?
(see Hof. 15 by S. B. Cohn).

Table 8.09-1 shows the Jj,,. 1 y0 1 (Z,,)jjl and (Z.. ),,,+, values

as computed from the ejuations in Fig. 8.09-1. This filter was con-

structed15 using polystyrene dielectric with a r.lative dielectric constant

of 2.55. Using a 0.5-inch ground plane spacing and copper-foil reso-

nators of negligible thickness, by use of Figs. 5.05-3(a),(b) the dimen-

sions of the strip widths Wand the gaps s~, 1  were obtained and

they are as is also shown in 'fable 8.09-1. The significance of these

dimensionxt is further illustrated in Fig. 8.09-2.

The dimensions d, J-1+ indicated in Table 8.09-1 and Fig. 8.09-2 gre

resonator length corrections to account for the fringing capacitance from

do,-

I ,

-4 23- W2 W

231 W2

do,

SOURnCE: Final report, Contact DA 36-039 SC-6462S, SRI; reprinted
in IRE Tran., PGUTT (set Ref. 15 by S. H. Cohn).

FIG. 8.09-2 LAYOUT OF PARALL EL-COUPL ED- RESONATOR FILTER
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the end of each strip. The basic length I indicated in the Fig. 8.09-2

is a quarter-wavelength at frequency w0 in the medium of propagation,

while the actual strip lengths are shortened by the amount d ,/+]. Al-

though lable 8.09-1 indicates some variation in the d ,,I values, Cohn is

has found that a constant correction of d,,+, , 0.165b (where b is the

ground-plane spacing) is apparently satisfactory.

As a result of the filter

being designed from an antimetric 2/ b.SOOin.

prototype filter (see Sec. 4.05), " .0o7oin.

the resulting parallel-coupled 0126 6r2 .S5

microwave filter has symmetry 50-ohm 0._,o 0
COAX 0.9 W0.372

about its center. For that reasun

only the dimensions of half the 4,81 STRP

filter are shown in Table 8.09-1. ,- ,,,-W

The input and output lines are of

50 ohms impedance which rejuires FIG. 8.09-3 COAXIAL-LINE TO STRIP-LINE
that they be 0, = 0.372 inch wide JUNCTION

as determined from Fig. 5.04-1

with b - 0.50, t = 0, and E =

2.55. Figure 8.09-3 shows the manner in which the input and output

strips were beveled to give a low-reflection transition from the printed-

circuit strip line to coaxial line.

Figure 8.09-4 shows a photograph of the completed printed-circuit

filter with its upper hall' removed. The circles in f'ig. 8.09-5 show

measured attenuation values while the solid curve shows the theoretical

attenuation as computed from the low-pass prototype attenuation with the

aid of the mappings in Eqs. (6) to (8) of Fig. 8.09-1. As can be seen

from the figure, the agreement is very good. Of course, as a result of

dissipation loss, the pass-band attenuation is considerably above the

0.01 db theoretical value for a lossless filter. Working back from

the measured attenuation using Els. (4.13-2), (4.13-8), and Fig. 4.13-2,

the Q of the resonators in this filter is estimated to be roughly 600.
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SOURCE: Final Report, Contract DA 36-039 SC-64625, SRI; reprinted
in IRE Troaa.. PGMTT (no* Rat. 15 by S. B. Cohn).

FIG. 8.09-4 PHOTOGRAPH OF THE EXPERIMENTAL PARALLEL-COUPLED FILTER
WITH ITS COVER PLATE REMOVED
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SOURCE: Final report, Contract DA 36-039 SC-6462S, SRI; reprinted
in IRE Tm..s., PGMTT (see Ref. 15 by S. B. Coke).

FIG. 6.09.5 THEORETICAL AND MEASURED
ATTENUATION FOR THE FILTER
IN FIG. 8.09-4

SEC. 8.10, FILTERS WITH QUARTER-WAVELENGTH COUPLINGS

As has been previously mentioned, quarter-wavelength lines can be

used satisfactorily as K- or J-inverters in narrow-band filters (i.e.,

filters with bandwidths of the order of a few percent or less).

Figure 8.10-1 shows a filter with quarter-wavelength lines for inverters

and presents the appropriate design equations. The '"/4 and 77/2 terms in

the equations for the normalized resonator susceptance slope parameters

4'1oreprepent correction terms for the added selectivity introduced

by the quarter-wavelength lines.4 The particular structure shown gives

perfect transmission at the midband frequency woo, hence, it is only

applicable for achieving responses that have this property (i.e., no

reflection loss at w,). Therefore, the data given is valid for use with

the maximally flat low-pass prototypes in Tables 4.05-l(a),(b), having

any value of n, but only for Tchebyscheff prototypes in Tables 4.05-2(a),

(b), having an odd number of reacti~e elements n.*

Tahbyasbef respoes seureaPeadiag toea even can also be askieved with tis typ of filter if the
seeplial lanes s. allowed %o lave Y' values different from that of the terminations. Is Iris.3.-1
th ling ane all the eoan, for eiapti.ity.
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yov o ~

00

I I-

(2)

(3

Tor mnpl-passfiltri responen correodingr Thband-pass filterl responsed
j • odd 'Ca

where the go, 9. . S,,+ are an defined in Fig. 4.04-1, ' isdefined inFig. 8.02-1(a)the P, I re susceptanceslope parameters defined in Fig . 8.02-4,
w is as def ined below. A0 is the propagation waelelngth at the midband frequency
€wO , and Yo i athe admittance of the transmission line connecting theresonators.

To map low-pass filter response to corresponding band-pass filter response

use (for narrow-band designs):

WwJ

where

(6)

and e0o, w' and i are as defined in Fig. 8.02-1(b).

FIG. 8.10-1 DESIGN EQUATIONS FOR FILTERS WITH QUARTER-WAVELENGTH COUPLINGS
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C~ie resonators for 11iters of

this type can lie formed from semi-

lumped elements, cavities with~ loop

couplingS, resonant irises,5 and

other means. Jne common way of ts aWOC1

realizing tile desireu resonators .0

is illustrated in tig. 8.10-2.1 1In (a

this case, thme resonator used isa a ... G T ~------ 1 NEO j-
ilalf-wavelen,th resonator with d as a- a s
li-inverter at each end, as indicated X oX
at (b) in the filure. The It'-inverters

tend to reflect low-impedance levels

to thle ends of the half-wavelength I:. K

line section which, it canl be shown, V2T

will make it. operate like a series (b)

resonator (see .Sec. 3.1t). I-owever,
ELECTRICAL LENGTH4 ARE DEFINED AT

this series resonmiice operation FREQUENCY wo

when viewed from thme outside through' A-3,?- $1

thme A-inverters looks like a shunt FIG. 8.10-2 REPLACEMENT OF ASHUNT
resonance eliiValent to that of the RESONATOR BY AHALF-
shunt-tuned circuit shown in WAVELENGTH RESONATOR

Fi8. 8.10-2(a), using waveguide WITH TWO K-INVERTERS
The K-Inverters shown are of

and inductive irises of' shunt re- the type definedin Fig. 8.03.1(c)
actance Xto realize the K' in-
verters, thie resulting 'luarter-

wave length-coupled waveguide filter takes thle form shown in Fig. 8. 10-3.

Note that the half-wavelength resonators are corrected for the electrical

length (P, associated with the K-inverters, and that the iuarter-wavelenitil

coupling lengths should ue corrected in a similar way.

The main advantage of this type of filter appears to be that tile

resonators are easily tested individually. If a waveeuide joint is placed

in the center of each 4uarter-wavelength coupling, the filter can easily

be disassembled and each resonator checked by itself. Each resonator

should, of course, resonate atwo and if Fig. 8.10-1 calls for a sus-
ceptance slope parameter of 4 for the jth resonator, then if the reso-

nator is connected to matched source and load waveguides of the same
dimensions (and characteristic admittance Y.), the resonator should
exhibit a doubly loaded Q of



Qj 1 j 0Q - (8. 10-1)
'Y b -f.

where f, and f. are the 3-db points of the transmission through the

resona tor.

To summnarize the procedure for the design of a 4uarter-wavelen,;th

coupled wave ,-uide filter of the type iin Fig. 8.10-3, the number of reso-

nators and the value for wA and the required number n of resonators

should bie determined by use of lE>js. (6) to (8) in Fig. 8.06-1, as dis-

cussed in Sec. 8.04. * Th cn uAshould be used to replace w in E js. (1)

to (1) in Fig. U". 10-1 (sinice gutide- wavelengt~i variation controls the

bandwidth in thiS CaSe) anid the normalized susceptance slope parameters

P'Y should be determined usi nt the desiried lumped-element prototype

parameters. 13y Fig. 8.10-2

AK

T7 (8.10-2)

since Z,- I ")'() flavin, values for the Al 7o the dimensions of the dis-

contianuities an~d their corresponding .. valu tes can be dletermined as

previouskl ijscisseil int Sec. 3.06. '1 le radian electrical spacings u1 and

X, X, X2 X , X3 En-I Xe 
5
n

1( 1 +T+l

FIG. 8.10-3 WAVEGUIDE FILTER USING SHUNT-INDUCTIVE IRISES
AND QUARTER-WAVELENGTH COUPLINGS
The p, are as indicated in Figs. 8.10-2 and 8.03.1(c)

See See. 8.14 f.,r discutsion of the use of Ago/As as a frequency parameter in design of wave-
guide filters.
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e,.1,! (with respect to guide wavelength) of the discontinuities are
then determined as indicated in Fig. 8.10-3.

SEC. 8.11, LUMPED-ELEMENT, COUPLED-RESONATOR FILTERS

At the lower microwave fre4uencies it may be possible to use semi-

lumped elements, and analysis in terms of the lumped-element structures

in Fig. 8.11-1 or 8.11-2 may be helpful. The structure in Fig. 8.11-1

approximates that in Fig. 8.02-4 using lumped, shunt resona.ors B, (-)

and lumped J-inverters of the form in Fig. 8.03-2(b). In Fig. 8.11-1

the capacitances C,1 are the effective capacitances for determining the

resonant frequency and susceptance slope parameters of the resonators.

But, the actual shunt-capacitor elements used are smaller than tlae C,,,

as indicated in Eqs. (8) to (10). This is because the negative shunt

capacitance of the J-inverters must be subtracted from the positive

resonator capacitance to give the net shunt capacitance actually inserted

in the circuit. The end coupling capacitances Col and C3.., 1 are treated

in a somewhat different manner, as discussed in Sec. 8.14, in order to

prevent having to deal with a n.gative shunt capacitance next to the

terminations GA and G .  Note that GA, G., and the C,, may be given any

values desired.

The circuit in Fig. 8.11-2(b) is the exact dual of that in Fig. 8.11-1

if L,0 and L ,.l are chosen to equal M01 and M.,.,I, respectively, which

will make L0 and L..1 zero. The equations are slightly modified from

those in Fig. 8.11-1, however, in order to also accommodate the circuit

form in Fig. 8.11-2(a).

The low-pass to band-pass mappings shown in Figs. 8.11-1 and 8.11-2

are accurate for narrow bandwidths only; however, Cohn' has shown that

the approximate mapping

"o

- (8.11-1)

2 -

where

'o (0 w1  + W c 1e 2  (8.11-2)
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C0 1  Cis Cll CO., , ,no.

j - A a

44 .€,, is * - ", •m

h-Nt? - ae
L#

For definitions of the g1 , w1, w ', w2, and the J see Figs. 4.04-1,

+.02-1(s),(b), 8.02-4, and 8.03-2(I,).

Choose values for GA' C", Cr2'... Crna and G8 . Than:

LI *~to 1 ( 1)

2 -_ I T)l
+

I) to a C+'I W

010

a C

T'or , (4)

where r is defined below.

The coupling capacitances are:

Jo

Co 01- 0 (5)

-,+,+-- (6)
,+j= 1  

o n-I 0=o

J. ~
C..+I • .n+ 2 (7)

.

FIG. 8.11-1 DESIGN FORMULAS FOR CAPACITIVELY COUPLED LUMPED-ELEMENT FILTERS
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The net shunt eapactaneees are:

C1  " Crl -C -1" C (8)

C j I-02 to *- a C,, - cj-.. -cj.jl, (9)

Ca • CPA " CM-1.6 - a',a+ (10)

where the Cjaj+ 1 are given by Eqs. (5) to (7) and

A

C

"A,1 L.... (12)

For mapping low-pass prototype response approximately to band-pass response use,
if - 1 .105.

n ( ,., (13)

where
0= ii (14)

'0 = '01 ~ (15)

For atf// > 1.05 see text for a suitable mapping and definition of a and w

FIG. 8.11-1 Concluded
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Cr; Cra Cr Crn

MO, Mot M
2  

Mn,n5 (a)

I C , Ll g re Ln C

A Idt  I23 Mn, .nl

For definitions of the g,, &;, ', e]' w2' and the K1jj,+: see Figs. 4.04-1, 8.02-1(a),(b),

and 8.03-1(s).

(loose values for R4 RB' Lr1 L,1' .... , Lr,,. L where the Lrj are related to the L as
indicated in Eqs. (15) to (19) below.

Crj o = .L---oL.a (1)
rj 0

K0  F 1 - (2)

*,Lr j~rl

where w is as defined below.

The mutual couplings are:

---r- (6)

" j -l,1  tof-I 1 (6)

Ks. " ,, ,s. '. (7)

The series inductances drawn at (b) above are

LO a LO -N 01  (8)

FIG. 8.11-2 DESIGN FORMULAS FOR INDUCTIVELY COUPLED, LUMPED-ELEMENT FILTERS
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Li LPI - MOI - M12 (9

L" LrR " MR-'m " MR,A+1 (11)

L4+ 1  LrR+l - M -,.+ 1 (12)

where

N*I +(L,o N 0 M 
(1O

111," (11 )

A

+ (Lr" ' - NM , )oid . . . 1L P ,

, (14)

For form shown at (a) above, the LPj are the total loop inductances and

LPO -L, 0  (15)

L L Ll N01 -1M (16)

L Pj).U2toR_ 1 a L,.j (17)

Lp X Lra + Mo, -me, (18)

LPA+l a LrX+l (19)

For mapping low-pas response approximtely to band-pass response, if €j//& 1 1.05 use

1(20)

a (W1?)

where

- (21)

v " *(22)

For //cj > 1.05, see text for a suitable mapping and definition of w eand 0

FIG. 8.11-2 Concluded
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gives good results to bandwidths around 20 percent. A definition* of

w for use in such cases is
1

SEC. 8.12, BAND-PASS FILTER1S WITH WIDE STOP BANDSA

All of the filter structures di.%cused su far that involve trans-

mission lines tend to have additional pass bands at frequencies which

are multiples of their first pass-band fretuencies, or at least at fre-

juencies which are odd multiples of their pass-band frejliency.

Figure 8.12-1 shows a filter structure which when properly designed can

be made to be free of higher-order pass bands up to quite high frequencies.

The shunt capacitances G' in Fig. 8.12-1 are riot necessary to the opera-

tion of the device, but are stra) capacitances that will usually be

associated with the coupling capacitances C ,s, 1. At the pass-band center

frequency of the filter, each resonator line is somewhat less than a

quarter-wavelength long, as measured from its short-circuited end to its

open-circuited end. (They would all be exactly a 4uarter-wavelength long,

if it were ot for the capacitive loading due to the C' and the C )

As seen from the connection points at which the resonator lines are

attached, at midband the short-circuited portion of each line looks like

a shunt inductance, while the open-circuited portion looks like a shunt

capacitance, so the circuit is very similar to that in Fig. 8.1!-1.

The circuit in Fig. 8.12-1 will tend to have additional pass bands
when the length of the transmissions line resonators is roughly an odd

multiple of a quarter-wavelength long. However, it can be seen that such

pass bands can be suppressed if, when a line is resonant, the length from

the short-circuited end of the line to the connection point is exactly

one-half wavelength or a multiple thereof, while the-electrical distance

from the open-circuited end to the connection point is exactly an odd

multiple of one-quarter wavelength. Under these conditions the connection

point of such a resonator is at a voltage null, and the resonance looks

like a series resonance which short-circuits the signal to ground, instead

The definition of r used here differ& from the w' that Cohn uses for this case, by a factor of N/ .

This fact is consistent with the equations ased herein and gives the sam end result. The w defimed here

is fractioral bandwidth, while Cohn's a' is not.
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For definitions of the w o . O' 1 . , and the Jljl; see Figs. 4.04-1,
8.02-1(a),(b), 8.02-4, and 8.03-2(b).

Choose values for GA Go, and Y0 and estimate:

.I / 4. a -81 (1)

, . (-LC,_., * Wo C . ) (2)

+ + a ,R + (3)
J - % m ' ~ -o C , P 0 A . + 1 2

Obtain slope parameters . from the Yo, nd Fig. 8.12-2 or Fig. 8.12-3 or

Eq. (8.12-4).

x

J01" ()

j,.j+l1 =I to M-1 . j." +

m,.+ " or (6)

(Continued on p. 484)

FIG. 8.12-1 DATA FOR BAND-PASS FILTERS WITH WIDE STOP BANDS
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where r is given by (11) below.

"jocol J0 (7)

5dc,.+ .,x+4 (9)

For mapping low-pass prototype response approximately to band-pass response

use

2(10

where

3 (12)

FIG. 8.12.1 Concluded
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of a shunt resonance which passes the signal. Since for this higher reso-

nance the connection point has zero voltage, the C, and the C have

no effect on the higher resonant frequency. By designing the various

resonators to suppress different pass bands. it should be possible to

make the stop band extend very far without any spurious pass bands.

The Bj in Eqs. (1) to (3) in Fig. 8.12-1 are ausceptances which

account for effects of the C! and C. on the tuning of the resonators

and on their susceptance slope parameters at the inidband frequency W0"

The total susceptance of the jth resonator is then

B (W) " Y. tan (O-- - cot + . (8.12-1)j (o &) 0 ) + Wo ji  (.21

0 0 0

where Y0 is the characteristic admittance of the resonator line, 0., is

the electrical length of the open-circuited portion of the resonator line

at frequency w0, and 6., is the electrical length of the short-circuited

portion at the same frejuency. At frequency ca we require that B(coo) =0

which calls for

B'
m cot - tan 9.j (8.12-2)

Yo0

In order to short-circuit pass bands at 3 c, or Sw0, etc., it is only

necessary that & j 6,/2, or &., x 60,/4, etc., respectively, as

previously discussed. Having related 6., and &,,, one may solve

Eq. (8.12-2) for the total electrical length requir-d at frequency W.

in order to give resonance in the presence of the susceptance Bj. If

Ij is the resonator length, then

- 1 (8.12-3)
NO/4 w/

where X0 is the wavelength in the medium of propagation at the frequency

W*. Applying Eq. (1) of Fig. 8.02-4 to Eq. (8.12-1) gives, for the

susceptance slope parameter t' normalized with respect to Y.,
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S 2 - + 2 +2 (8.12-4)
0 Co & siI0 T

Figure 8.12-2 ullows a plot of I ,/(&0/4) and Pj/ovs. BI for reso-
nators which are to suppress transmission at the 3wo pass band.

Figure 8.12-3 shows corresponding~ data for resonators designed to sup-
press the pass band in the vicinity of 5-)0

Mi~en using the design ddta in fig~s. 8.12-1 to 8.12-3, some iteration

in the design calculations will be necessar) if hidhl accuracy is desired.

10- 1.? - - T - - ~~~~

0.6 -1.6

0.6 1.5

0.? - 4

~0.6 1.3

0.5 1.2

0.4 - 1.1 __ _ _____y , 43

0 020 0.40 0.60 Q960 100 1.20 1.40

. NOftMALIZEO CAPACITIVE SUSGEPTANCE

FIG. 8.12.2 CHART FOR DESIGN OF RESONATORS TO SUPPRESS THE SPURIOUS PASS
BAND IN THEVICINITY OF 3w0
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%.0 7 - '1

1.02

0.1 -0.__-___

0.8

0 020 0.4 060 0.8 100 1.20 1.40

YO . NORMALIZED CAPACITIVE SUSCEPTANCE f-a-4

FIG. 8.12-3 CHART FOR DESIGN OF RESONATORS TO SUPPRESS THE SPURIOUS
PASS BAND IN THE VICINITY OF 5r,

This is because the BJ must be known in order to compute the coupling
Icapacitances C,,,1 (and usually the C') accurately, while in turn the

C and C' must be known in order to determine the Bj accurately.
However, since the Bf' generally have a relatively minor influence on
the coupling capacitance values C,.,1, required, the calculations con-
verge quickly and are not difficult. First the Bj are estimated and
corresponding values of the C.,.I and C' are obtained. Then improved
values for the B are computed, and from them improved values for the

Cj'j-1 and 1,/(4 0/4) are obtained. These latter values should be
sufficiently accurate.

Figure 8.12-4 shows a possible form of construction for the filters
under consideration. The resonators are in 50-ohm (Yo - 0.020 mhos)
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rectangular-bar strip-trinamission-line form, with small coupling tabs

between the resonator bars. The spacing between resonators has been

shown to give adeluate isolation between resonators as evidenced by tests

on trial, two-resonator and four-resonator designs.16 Figure 8.12-5(a)

Shows a plot of estimated coupling capacitance C , i * vs. gap spacing Y'

for various amouints Of Coupling Lab) overlap x. 'he similar data in

Fig, 8.12-5(b) arp for the shunt capacitance to ground C"+ Of an indi-

vidual tab in the j,j -liLh couplinl. Usin3 the data in rig. 8,12-5(o),

the jun~ctionI capacitance C,' for the jth junction is

(" ''i c;,,.1  ,C. (8.12-5)

where C' introduces an additional junction shunt susceptance like that

for the 7-junctions in .Sec. 5.07. Caiculations from measurements on the

two- resonator filter ment ioned above suggest that C+ should be takert as
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0010"

COUPLING- -______ ~ -COUPLING
TAB- TAB

0.010"

RESONATOR BAR .1 1316 16 -41

FIG. 8.12.6 DEFINITION OF THE JUNCTION REFERENCES
PLANES FOR THE CONSTRUCTION IN
FIG. 8.12.4

about -0.O .:10 >f. * ..pp, roxifat e renferic e planes for fixing the lengths

of the olen- and short-circuitei sides Of the resonator are shown in

rig. 8.12-6. In fixing the length of the open-circuited end, allowance

must be made for the tringini capacitance from the end of the bar. It

is estimated that, in order to correct for this capacitance, the length

1 (see 8igs. 8.12-2, -3, -6) should be reduced by about 0.055 inch.

The two-risoiator filter biiilt il the construction in Fig. 8.12-4

was intended to slppress the 3,,', pass hand, but at first did not do so.

Ihe reason sas that the open- ard short-circuited sides of the resonators

did not reflect. short-circuits to the connection points at exactly the

same frequencies, as they must for high attenuation. To correct this,

"balance" tunin4 screws were added at two points on each resonator indi-

cated by the arrows in Fig. 8.12-4. In addition, pass-band tuning screws

were placed directly over the coupling-tab junction of each resonator.

The negative sign merely indicates that with the jun'caiow reference planes being used, some
capacitance mst he subtracted in order to represent the junction.--
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Th balance screwb were adjusted first to give high attenuation in the

vicinity of 3(,)0 and then the pass-band tuning screws were adjusted using

the procedure discussed in Sec. 11,05. Since the pass-band tuning screws

are at a voltage null point for the resonance in the vicinity of 3wo, the

adjustment of the pass-vand tuning screws will not affect the balance

tuning adjustment of the resonators. However, it should be noted that

the balance adjustment must be made before the pass-band tuning adjustment

since the setting of the balance tuning screws will affect the pass-band

tuning.

3" ... . - . -.. .. .... f - ..

30 ... - . .... -: . ..
x

* 25.......- ... ' - I 4 .

0

o I

z20

FIG .8 .1.

2

n 8

109

5

100 1020 1040 1060 1080 1100 1120 1K0

FREQUENCY -M RA-2320-TO-149

FIG. 8.12-7 THE MEASURED RESPONSE OF A FOUR.
RESONATOR FILTER OF THE FORM IN
FIG. 8.12.4
The solid lie is the measured response
while the x's represent attenuation vajues
mapped from the low-pass prototype using
Eq. (10) in Fig. 8.12-1
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FIG. 8.12.8 THE STOP-BAND RESPONSE OF A FOUR-RESONATOR
FILTER OF THE FORM IN FIG. 8.12.4

Figures 8.12-7 and 8.12-8 show the measured response of a four-
resonator filter constructed in the form in Fig. 8.12-4 using the design
data discussed above. As can be seen from Fig. 8.12-7, the bandwidth is

about 10 percent narrower than called for by the points mapped from the

low-pass prototype (which are indicated by x's). This is probably due
largely to error in the estimated coupling capacitances in Fig. 8.12-5.

If desired, this possible source of error can be compensated for by
using values of v which are 10 percent larger than actually required.

The approximate mapping used is seen to be less accurate on the high side
of the response in Eig. 8.12-7 than on the low side for this type of filter.

'he four-resonator filter discussed above was designed using one pair
of resonators to suppress the 3w,0 resonance and a second pair to suppress
the 5aco resonance. Since the two sets of resonators had their higher
resonances at somewhat different frequencies it was hoped that balance

tuning would be unnecessary. This was practically true for the 3WO reso-
nance since high attenuation was attained without balance tuning of the
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resonators intended to suppres a that, resonance. Hlowever, there was a
small dip in attenuation at abewowt 3. 8 kMc (see Fig. 8. 12-8) which

probably could easily have beemu removed by balance tuning,

The pass band near Scowo uld not disappear in this case no mqtter

how the balance screws were adjusted on the resonators meant to suppress

that pass band. Some experime-intation with the device suggested that this

was due to a resonance effect in the coupling tabs, which was greatly

aggravated by the fact that tit e resonators involved were the end reco-

nators (which have relatively large coupling capacitances). This dif-

ficulty can probably be avoide.d by putting the resonators to suppress

pass bands near 5(,or higher in the inta.rior of the filter and putting

the resonators to suppress the pass band near 3ed0 at the ends of the

filter. Also, keeping the cougiping tabs as short as possible should help.

SEC. 8.13, COMB-LINE, BAND- PASS FILTERS

Figure 8. 13-1(a) shows a scomb-l ine band-pass filter in strip-line

form and Fig. 8.13-1(b) presenrts design equations for this type of filter.

The resonators consist of line elements which are short-circuited at one

end, with a lumped capacitance C; between the other end of each resonator

line element and ground. In F ig. 8. 13-1(a) Lines 1 to n, along with their

associated lumped capacitances C, to C. comprise resonators, while Lines 0
and n + I are not resonators bout simply part of impedance- trans forming

POINTS

NODAL I 2 jS'NODAL
POINT 0 ~POINT n+1

FIG. 8.13-11(a) A COMB.LINE, BAND-PASS FILTER
The modal points are defined for us. in
the, design equation dereivatlis
dis-cussed in Sec. 8.14
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Choose the normalied characteristic adittance Y@J/YA so s to give

good resonator unloaded Q'a. (See text.) Then compute:

AI Y. (cot aQ + ac.C2

A to a A/

where 0 ta the electrical length of the resonator elements at the mid-

band frequency w..

Compute:

(2)

1. ] +1 A) ] !  (3)

j'A to X-1 W1

(4)
A

where v is the fractional bandwidth defined below.

The nnrmalized capacitances per unit length between each line and ground

are

C 37h.7 Y

37 7 Y A( - 1 + G tan e o *

C3767Y , 11'j .+A . _F.ltan a 0 tan 6o 5
J. o - A A 0

,3767Y A.0,o j tan + + . ,

A "A

FIG. 8.13-1(b) DESIGN EQUATIONS FOR COMB-LINE FILTERS
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where c is the absolute dielectric constant of the medium of propagation,
and e is the relative dielectric constant.

le normalized mutual capacitances per unit length between adjacent

lines are:

C 376.7 YA CO

Cj 37. A 0J 1tn 0 6

376.7 Y

The lumped capacitances Cs are:

C" =Y" 0 (7).51 cAYj ot e0
S'lFA '07

A suggested low-pass to band-pass transformation is

0(B)

where

w A'2 "o (9)
110

and

o 2 (10)

FIG. 8.13-1(b) Concluded
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sections at the ends. Coupling between resonators is achieved in this

type of filter by way of the fringing fields between resonator lines.

With the lumped capacitors C' present, Lhe resonator lines will be less

than A0/4 long at resonance (where &0 is the wavelength in the medium of

propagation at midband), and the coupling between resonators is predomi-

nantly magnetic in nature. Interestingly enough, if the capacitors C'

were not present, the resonator lines would be a full &0/4 long at

resonance, and the structure woul,' have no pass band!17 This is so

because, without some kind of reactive loading at the ends of the reso-

nator line elements, the magnetic and elrctiic coupling effects cancel

each other out, and the comb-line structure becomes an all-stop structure.'

For the reasons described above, it is usually desirable to make the

capacitances C' in this type of filter sufficiently large that the reso-

nator lines will fie /. '8 or less, long at resonance. Besides having

efficient coupling between resonators (with sizeable spacings between

adjacent resonator lines), the resulting filter will be quite small. In

this type of fi lter, the second pass band occurs when the resonator line

elements are somewhdt over a half-wavelength long, so if the resonator

lines are .0,/8 long at the primary pass band, the second pass band will

be centered at somewhat over four times the frequency of the center of

the first pass band. If' the resonator line elements are made to be less

thanl ,0/8 long at the primary pass band, the second pass band will be
even further removed. lhus, like the filter in Sec. 8.12, comb-line

filters also lend themselves to achieving very broad stop bands above

their primar. pass bands.

Since the coupling between the resonators is distributed in nature,

it is convenient to work out the design of the resonator lines in terms

of their capacitance to ground C, per unit length, and the mutual

capacitances C,.,. per unit length between neighboring lines j and j + 1.

These capacitances are illustrated in the cross-sectional view of the

line elements shown in Fig. 8.13-2. Fringing capacitance effects beyond

nearest neighbors will be neglected. Figure 8.13-2 also defines various

dimensions for the case where the resonator lines are to be constructed

in rectangular-bar strip line. Using the design formulas in Fig. 8.13-1(b),

the distributed line capacitances will be computed in normalized form to

However, if every other unloadad, A0/4 resonat wers turned eand for ead so that the structure
had open- and .hort-crcuit.d .e, alternating, the band-stop stricteir would boe. o a ba nd.
pass structure. The resulting onfiguratlon is that of the stordigital filters diseussed Is
Sec*. 10.06 aad 10.07.
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FIG. 8.13-2 DEFINITIONS OF THE LINE CAPACITANCES AND SOME OF
THE DIMENSIONS INVOLVED IN COMB-LINE FILTER DESIGN

give C / and CJ 1 /e values, where e is tLie absolute dielectric constant

of the medium of propagation. Then by use of the charts and formulas in

Sec. 5.05 the corresponding rectangular-bar line dimensions w and j-j I

in Fig. 8.13-2 can be determined for specified t and b.

To carry nut the design of a comb-line filter by use of Fig. 8.13-1(b),

the low-pass prototype filter parameters g0 , g.. ..... , and (,o' are

selected in the usual manner (Secs. 8.02 and 8.04). The low pass to band-

pass mapping indicated in Eqs. (8) to (10) is a commonly used, simplified,

narrow-band mapping, but unfortunately it is not outstandingly accurate

for this type of filter when the bandwidth is as large as 10 percent or so.

From the trial design described below, the largest error is seen to occur

on the high side of the pass band where the narrow-band mapping does not

predict as large a rate of cutoff as actually occurs. The reason that the

actual rate of cutoff tends to be unusually large on the high-frequency side

of the pass band is that the structure has infinite attenuation (theoretically)

at the frequency for which the resonator lines are a quarter-wavelength long.

Thus, the steepness of the attenuation characteristic on the high side will

depend to some extent upon the choice of -, the electrical length of the

resonator lines at the pass-band center frejuency. Although the simplified

mapping in Eqs. (8) to (10) of Fig. 8.13-1(b) cannot account for these more

subtle effects in the response of this type of filter, it is sufficiently

accurate to serve as a useful guide in estimating the number of resonator&

required for a given application.

Next the tcr;inating line admittance Y' , the midband electrical length

6 0 of the resonator lines, the fractional bandwidth w, and the normalized

line admittances Y'.j 1 A must all be specified. As indicated above, it is
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usually desirable to make &0 a 7/4 radians or less. The choice of the

resonator line admittances Y., fixes the admittance level within the

filter, and this is important in that it influences the unloaded Q's

that the resonators will have. At the time of this writing the line

characteristic admittances to give optimum unloaded Q'a for structures

of this type have not been determined. However, choosing the Y., in

Eq. (1) of Fig. 8.13-4(b) to correspond to about 0.0143 mho (i.e., about

70 ohms), appears to be a reasonable choice. [The admittance Y., in

Fig. 8.13-1(b) is interpreted physically as the admittance of Line j

with the adjacent Lines j - 1 and j + 1 grounded.] The remainder of the

.calculations proceed in a straightlorward m anner as presented in the

figure. As mentioned above, having the C/e and C,2 +,/E, the required

line dimensions are obtained from the data in Sec. 5.05.

Table 8.13-1 summarizes various parameters used and computed in the

design of a trial four-resonator, comb-line filter designed for a frac-

tional bandwidth of w - 0.10, and 0.l-db Tchebyscheff ripple. Due to a

misprint in the table of prototype-filter element values which were used

for the design of this filter, the g, element value is, unfortunately,

off by about 10 percent. However, a computed response for this filter

revealed that this error should not have any sizeable effect on the shape

of the response. In this design t-0 a 1/4 radians so that the resonator

lines are &.0/8 long at the midband frequency, which was to be 1.S Gc.

Table 8.13-1

VARIOUS PARIAMETEHS WHICH WEIIE SPECIFIED O COMPUTED IN THE
I)ESIGN OF TIlE THIAL, FOU-RJESONATOIR, COMB-LINE FILTER

, !LL . .+I,, ajj* C.
_ A (nh (in .he&

0 and 4 2.130 0.116 0 and 5 5.404 0.362

1 and 3 0.0730 0.550 0.337 1 and 4 3.022 0.152
2 0.0572 0.431 0.381 2 and 3 4.119 0.190

go a 1 93 a 1.7703 va 0.10 Igo=w/4 radian

81 a 1.08800 64 a 0.8180 YA a 0.020 mho 6=0.625 inch

92 a 1.3061 gs 1.3554 4/Y - 0 870) t -0.188 inch

a I Ya / a 0.677 .1 to 4

This value should have been #I a 1.105 for a true O.1-db ripple
prototype.
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12 0.1170,914

a 0 '

0.334 DIA.

DOW 0.156 DIA.

2 MODIFIED UG-II67/U CONNECTORS SECIO 2 -

4.195 A-1421-98

FIG. 8.13.3 DRAWING OF THE TRIAL, FOUR-RESONATOR, COMB-LINE FILTER
Additional dimensions of electrical importance are given in Table 8.13-1

Note that Y,)I 'A a 0.677 which with YA a0.020 rilho makes Y., 0.0135 mho,

or 11Y.' a 74 ohlms. T[he electrically important dimensions of this filter

are summarized in Table 8.13-1 along with kigs. 8.13-2 and 3. Figure 8.13-4

shows the completed filter with its cover plate removed.

The filter was tuned using a slotted line and the alternating short-

circuit and open-circuit procedure described in Sec. 11.05. To adjust the

capacitance of an individual resonator, first its sliding block (shown in

Fig. 8.13-3) was adjusted to give slightly less than the required resonator

capacitance, and then the tuning screws on the resonator were used to bring

the resonator to the exact desired frequency. In this case the bandwidth

was sufficiently large so that the alternating short-circuit and open-

circuit procedure did not give entirely satisfactory results as evidenced

by some lack of symmetry in the pass-band response. However, it was found

that this could be easily corrected by readjusting the tuning screws on the

end resonator** while using a sweep-generator and recording-reflectometer

Sice the sad resemexers have adjacest .ouplias which are qaite differer from these of the
interior reseeters, it is mesally the sad reseator$ that csues tunijg Jifficuiii.. wha aging
the ellerastial short-circuit and epeo-eiresit procedure.
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set-up. After the tuning was completed, the measured input VSWR was as

shown in Fig. 8.13-5 and the measured attenuation as shown in Fig. 8.13-6.

rhe VSWIH characteristic in Fig. 8.13-5 corresponds to roughly a

0.2-db Tchebyscheff ripple rather than a 0.1-db ripple. The discrepancy

is believed to be due to the fact that coupling effects beyond nearest-

neighbor lines have been neglected in the design procedure in Fig. 8.13-1.

If a smaller ripple were necessary, this could be achieved by small ad-

justment of the spacings s0 1 and s45 between the input line and the first

FIG. 8.13-4 A FOUR-RESONATOR COMB-LINE FILTER WITH ITS COVER
PLATE REMOVED
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rEsonator, and between Itesontor 4 and the output line. A similar

phenomenon occurred in the interdigital line filter example d'scussed

in Sec. 10.06. In that. case the size of the ripples was easily reduced

by decreasing the sizes of end- a lpacings s01 and S,,, I . In the

case of Fig. 8.13-5, the ripples were not considered to be sufficiently

oversized to warrant expenditure ou time. on additional ,dustment.s.

From the VSWfi character- Tble 8.13-2

istic in Fig. 8.13-5 the meas- (ThIPAI.4ON OF ATTNF T O VALUES OBTAINEI) BY

ured fractional bandwidth at "AI'NG AND flY \II:ASUBEAIENT

the equal-VSWP-ripple level APPING f BY MAPPING EASUED

is found to be v - 0.116 in- CONDITIONS. (Ge) (db) (db)

stead of the specified v - A Original Specifications,
0.100. This somewhat ovcr- w a 0.10, .10-db 1.25 41.5 39

Tchebscheff Hippie,

size bandwidth may also be f0 =1.491 Gc 1.70 36.5 39

due to coupling effects 0 easured Specifications,

beyond nearest neighbor line w a 0.116, 0.20-db 1.25 39.5 39
Tchebyscheff Ripple,

elements, which were neglec- f0 s1.491 Gc 1.70 34.0 39

ted in the derivation of the

design equations in Fig. 8.13-1(b). Table 8.13-2 compares attenuation

values computed by use of the mapping Eqs. (8) to (10) of Fig. 8.13-1(b)

as compared to the actual measuired values. Conditions A are for the

original specifications while Conditions B are for the v a 0.116 frac-

tional bundwidth and approximately 0.2-db ripple indicated by the VSWR

characteristic in Fig. 8.13-5. Note that in either case the attenuation

predicted by the mapping for f - 1.25 Gc (f below f0 ) has come out close

to being correct, while the attenuation predicted by the mapping for

f a 1.70 Gc (f above fo) is somewhat low, for reasons previously discussed.

SEC. 8.14, CONCERNING THE DERIVATION OF SOME
OF THE PRECEDING EQUATIONS

For convenience in using the preceding sections for practical filter

design, some background theoretical matters have been delayed until this

section: Let us first note how the design equations for the general,

coupled-series-resonator case in Fig. 8.02-3 are derived.

In Sec. 4.12 it was shown that the lumped-prototype circuit in

Fig. 8.02-2(a) can be converted to the form in Fig. 4.12-2(a) (where R,

and the L ,_may be chosen arbitrarily1, and the snme transmission

$12



response will result. This low-pass circuit way be transformed to a

corresponding lumped-element band-pass circuit by uae of the transformation

W1,. . -( --t (8.14-1)

where

Co -

w - (8.14-2)
(no

to, = 2 1 , (8.14-3)

and to', taJ, to, coo, w,, and e2 are as indicated in Figs. 8.02-1(a), (b)

for the case of Tchebyscheff filters. hen the series reactances o'L.

in Fig. 4.12-2(a) transform as follows:

'L j 1-(8.14-4)

= L,1 - (8.14-5)
L' C, ea

where

L, and Cj 8.14-6)

This reasoning may then be used to convert the low-pass circuit in

Fig. 4.12-2(a) directly into the band-pass circuit in Fig. 8.02-2(c).

To derive the corresponding general equations in Fig. 8.02-3 we can

first use the function

X,(co) L C,rW- (8.14-7)

for the resonator reactances in Fig. 8.02-2(c) in order to compute the

resonator slope parameters

'U



WdXj (Wo)~
- L,, -W (8.14-8)

Then by EIs. (8. 14-6) and (8.14-8)

L(8.14-9)

Substitution of this result in the eqluations in Fig. 4.12-2(a) yields

E .s. (2) to (4) in Fig. 8.02-3.

Etuations (6) anti (7) in Fig. 8.02-3 can be derived by use of

Eq. (8.14-8), Fig. 4.12-1, and the fact that the external ) of each end

resonator is simply ,'oLj or l, divided by the resistive loading re-

flected through the adjacent impedance inverter, The basis for Eq. (8)

in Fig. 8.02-3 can be seen by replacing the idealized impedance inverters

in ig. 8.02-2(c) 1,) inverLes of the form in Fig. 8.03-1(a), yielding a

circuit similar to that in Fig. 8.11-2(b) with the equivalent transformer-

coupled form shown in Fig. 8.11-2(a). Then the coupling coefficients of

the interior resonators of the filter are

k" 0 M j 1  (8.14-10)) ,) + , 1 ) -1i t o 0- 1 O ) w P

Equation (8) in Fig. 8.02-3 will be seen to be a generalized expression

for this samfe quantity. For example, for Fig. 8.11-2, Kj, (A = * Mj j@+1

and the x, - ,,OLPI. If these luantities are substitutes in E-1. (8.14-10),

Eq. (8) of Fig. 8.02-3 will result.

Tlie derivations of the equations in Fig. 8.02-4 follow from

Fig. 4.12-2(b) in exactly the same manner, but on the dual basis. The

equations for the K- or J-inverter parameters for the various filter

structures discussed in this chapter are obtained largely by evaluation

of the reactance or susceptance slope parameters x or ' for the particular

resonator structure under consideration, and then inserting these quantities

in the equations in Fig. 8.02-3 or 8.02-4. Thus the derivations of the

design equations for the various types of filters discussed in this chapter

rest largely on the general design equations in Figs. 8.02-3 and 8.02-4.
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The Capacitively-Coupled Filters of See. 8.05-Let us now derive

the resonator, auscephance slope parameters for the capacitive-gap-

coupled transmission-line filter in Fig. 8.05-1. In this case, the

resonator lines are roughly a helf-wavelength long in the pass band of

the filter, and if ZL is the impedance connected to one end of a reso-

nator line the impedance looking in at the other end will be

Z- + jZ0 tan
ZL  0 w0

Zia ZO + iZ ta - (8.14-12)L o L O .,ea

Filters of the form in Fig. 8.05-1 which have narrow or moderate bandwidth

wi!l have relatively small coupling capacitances. It can be shown that

because of this each resonator will see relatively large impedances at

each end. Applying this condition to Eq. (8.14-12), IZLI Z. and at

least for frequencies near &), El. (8.14-12) reduces to

1
i " 1(8.14-13)

YL + jB(W)

where

8((,) - yell -- ( 8.14-14)

YL a l/ZL and YO lIZo (8.14-15)

Thus, Zi. looking into the line looks like the load admittance Y in

parallel with a resonator susceptance function B(w). Applying Eq. (1)

of Fig. 8.02-4, to Eq. (8.14-14) for the jth transmission line resonator

gives, for the susceptance slope parameter

jr Y. (8.14-16)
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Since all of the lines in Fig. 8.05-1 have the same characteristic edmit-

tance Y0. all of the &. are the same in this case. InsertingEq. (3.14-16)
in Eqs. (2) to (4) in Fig. 8.02-3 yields E:js. (1) to (3) of Fig. 8.05-1.

It is interesting tG note that filters of the type in Fig. 8.05-1 can also

be constructed using resonators which are nominally n half-wavelengths

long at the desired pass-band center frequency (,)0" In that case the

susceptance slope parameters become

(8.14-17)

The Oaveguide Filters in Sec. 8, L6-TThe waveguide filter in Fig. 8.06-1
with shunt-inductance couplings is the dual of the capacitively-coupled

filter in ig. 8.05-1 except for one important factor. This factor is that
the additional frequency effect due to the dispersive variation of the guide
wavelength A in the waveguide must also be accounted for. It can be shown

that the response of the waveguide filter in Fig. 8.06-1 will have the same
form as that of an ejuivalent strip line filter as in Fig. 8.05-1 if the
waveguide filter response is plotted with I/A as a frequency variable
instead of ,. flhus, the equations in Fig. 8.06-1 are simply the duals of
those in Fig. 8.05-1 with frequency ratios , ,),1/',, and r,2/ao replaced

by corresponding guide-wavelength ratios /A 5 0 /A 5 , 1A 0 / &6, and &#/42 ,

where &,, is the guide wavelength at midband. The half-wavelength reso-

natora in this case have a series-type resonance with slope parameter

71
2 z o  

(8.14-18a)

Equation (8.1,1-18a) applies to waveguide resonators only if the frequency

variable is in terms of reciprocal guide wavelength (or .A o/A.); however,
it applies to TEt-mode resonators on either a frequency or reciprocal-

guide-wavelength basis. If radian frequency ais to be used as the fre-
quency variable of a waveguide filter, the slope parameter must be
computed including the additional effects of A as a function of frequency.

Using o as the frequency variable, the slope parameter

77 - 0 G 80 (8.14-18b)
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discussed in Sec. 5.08 must be used. Yn an actual filter design the

difference between the slope parameters given by Kis. (8.14-18a) and

(8.14-18b) is compensated for by the fact that the tractional bandwidthw
in terms of frequency will be different from the fractional bandwidth 'A
in terms of guide wavelength by the factor (A.50/A0)

2, at least for narrow-
band cases. [See Eq. (7) of Fig. 8.06-l.3 T1he reciprocal guide wavelength
approach, appears to be the most natural for most waveguide cases, though

either may be used.

Insertion of Eq. (8.13-18a), RA - R8 .= and wA (in place of w') in
Eqs. (2) Lo (4) of Fig. 8.02-3 gives Els. (1) to (3) of iig. 8.06-1.

The Narrow-Band, Cavity Filters of Sec. 8.07-As an example of the
derivation of the e4uationa in Sec. 8.07, consider the case of Fig. 8.07-1(a)
which shows a cavity connected to a rectangular waveguide propagating the

TE10 mode by a snall iris with~ magnetic polarizability M, (see Sec. 5.10).
The fields within the c.ivit-y in UKS units are

ill1~F- cos-$i
coSA al 21

77X $77Z

H,1  1 1,cs- o (8.14-19)

H.- - sin -sin -
sal a 21

In these equations vj.u/e . 376.6 ohms (the intrinsic impedance of free
space), X is free space wavelength and s is the number of field variation
along the length, 11, of the cavity. The normal mode fields in the wave-

guide are

)81
Ey H FLO icog!!

Ha H coos1 e (8.14-20)
a



A 71X jle.t+(Iw7/A ) 8.4-0
I, -jl - sin e (8.14-20)

2a I Cant.

where A8 is given by Eq, (8.07-1). \re define .), as

)l (8.14-21)

where , = 271f is the ,agular resonance frequency, ;I is stored energy

within the Cdvity and 1) is the average power lost throui the iris to

the terminating guide.

The stored energy within the cavity is

I: = 7I , I ,Ix dy 11z = 2sl ; 2  (8.14-22)

where we have used Et* (8. 13-19).

The power lost throu,h the iris is

2
,A* .S.

1, L (8. 14-23)

where A., the amplitude of the normal mode fields excited in tile termi-

nating guide, is given by

A (8. 14- 24)

The amplitude of the tangential normal-mode magnetic field in the termi-

nating waveguide at the center of gravity of the window is II, and Hl is

the amplitude of the tangential magnetic field in the cavity at the center

of gravity of the window. The quantity S is the peak power of the normal

mode in the rectangular waveguide or

s. 2 cos-. dx dy

F OAS(8.14-25)
0 2A



Substituting Eqs. (8.14-24) and (8.14-25) into Eq. (8.14-23) we find

J rA7 4v13'jH! (8. 14-2Vl
I0  ab. 5

When Eq. (8.14-26) and Eq. (8.14-22) are substituted in Eq. (8.14-21) we

find

= a~b~bl~/ ~(8.14-27)

as given in Fig. 8.07-1(a).

When two resonant cavities are connected to,ether by a small iris as

shown in Fig. 8.07-2(a) they will have two natural resonant frequencies

eo a nd (,, -V' When the tangential magnetic fields are pointing in the

same direction on either side of the iris the cavities will oscillate at

frequency which is the natural resonant freq~uency of a cavity with no

iris. When the tangential ma~'netic fields are pointing in opposite direc-

tions on either side tf time window, time natural resonant frequency is

- .o. When Noa is small the coupling coefficient k can be defined as

k - - (8.14-28)
r E) Cjjj 1, 1j2 dx dy dz

Substituting ElI. (8.13-1IQ) into EA. (8.13-28) we find

k M .~ib (8. 14-29)

as for Fig. 8.07-2(a).

- The Quarter-Wavelength-Resonator Filter of Sec. 8.08-As discussed

in Spc. 8.08, the filter structure in F4g. 8.08-1 looks like the filter

type in Fig. 8.02-3 when observed from its K-inverters, but looks like

the filIter type in Fig. 8.02-4 when observed fromt its .I-inverters. Trhus,

at one end of each quarLer- wave length resonator u reactance slope param-

eter applies, while at the other end a amsceptance slope patrameter applies.



Ily analysis similar to that in Eqs. (8.14-11) to (8.14-16) it can be

shown that for quarter-wavelength resonators exhibiting series resonance

77

-"Z o  (8.14-30)

and when exhibiting shunt resonance

77

" 'Y0 (8.14-31)

Insertion of these equations in the appropriate equations in Figs. 8.02-3

and 8.02-4 gives Eis. (1) to (3) of Fig. 8.08-1.

The Parallel-Coupled Filters of Sec. 8.09-The equations presented

in Fig. 8.09-1 can be derived by showing that for narrow or moderate band-

widths each of the parallel-coupled sections j,j + 1 of length I in

Fig. 8.09-1 is equivalent to a J-inverter with a length of line on each

side, the lines being a ,juarter-wavelength long at frejuency w0. A com-

plete derivation of the equations in Fig. 8.09-1 (in somewhat different

form) can be found in Ref. 15.

The ,Quarter-Havelength-Coupled Filters of Sec. 8.10-The design

eluations (1) W (4) in Fig. 8.10-1 can be derived from those in

Fig. 8.02-1 by setting GA, G. , and the inverter parameters Jj * all

equal to YO0 and then solving for the A/}0 ' ,s previously discussed in

Sec. 8.10, the /;,"t and 7;,2 terms were introduced in these ejuations to
account for the added selectivity introduced by the quarter-wavelength

lines.4 The correction is 7711/ for the end resonators which have only one,

quarter-wavelength line adja cent to them, and is twice as large for the
interior resngdtors which have a quarter-wavelength line on each side.

Note that L,' z,7/.1 correction per quarter-wavelength line corresponds to

the ,!)0 V '.ies for the quarter-wavelength resonators discussed in con-

nection with Eq. (8.1,1-31).

The Lumped-Element Filters of Sec. 8.11-Ihe resonator susceptance

slope parameters for the capacitively-coupied, lumped-element filter in

Fig. 8.11-1 are simply

(8.14-2)
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and these vnlues inserted in Eqs (2) to (4) of Fig. L 2-4 yield Eqs. (2)

to (4) in FiS. 8.11-1. ihe J-inverters in this case t of the form in

Fig. 8.03"24(b). The negative shunt capacitances required for these in-

verters are lumped with the resonator capacitances Cri to yield the some-

what smallear net shunt capacitance actually used in constructing the filter.

However, in the case of the inverters between the end resonators and the

terminationm, this procedure does not work since there is no way of absorb-

ing the nagamtive capacitance that would appear across the resistor termi-

nation. This difficulty in analysis can be avoided by analyzing the end

couplings irs a somewhat different way.

LookiaM from R1esonator I in Fig. 8.11-1 out towar/ C and G in

series, the admittance is 1

//

where e01 ; '.t,(oi" .'.e.while, looki.g left from Ilesonator 1 inFeig. 8.02-4

into thme J a nverter thme conductance

01

y A -B1 - (8.14-34)

in seen. ,Iiiin fl (; in J".4 (1.14-34) to the~ real p~art of Yin 14q (8.14-33)
and solvin l 0or C0 1 gives iq. (5) in ii. 8.1I-I, and ensures that the con-

ductance aiding on ilesontor I will h ti se afn' as that clled for by tte

weneral euiot- in jig. 8.02-4. !he imaginary part of 1 iDJI*r . 0 -:4

can lie deal. with mti si'antoriliy Iby retplacinmg it biy a shiun /+
suceptlnce ",vte of the lill Si ?.l wimih tiei leds t I".t1. ce in

0"'01
ig. 8.11.1. , i ne 1 effectively icrese th e shureta cpair o tnqe

Ileaolnator I, tLii aamounlt Simoua hi b Subtrlac:te, Iroii (. as &ndi , inl

adri. (8) in Pigi. 8.11-1 when c11-ting tie l ,iurlt Ca i-i eitance t a e used

id c;onstruct. ing oniesonat.r I. If clurse, tie same reasoning tpa c ia fort

deniera of-lju'e Gio i Fig.8..2 4.l at V tihi other pnd of _ie kilter.

it beiuim d deael ied Wly tie irniceehlr dis cusaed cngive is a sehsary H 'or

ti.e lUmlpeo le-mlnent ciruit in Fig. iz -I who it las ot necessary for the

11
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and 2, 2 and 3, etc. Note that the line admittances in Fig. 8.14-1 are
defined in terais of the line capacitances per unit length Ci and C ,i.!
as defined in Fig. 8.13-2, times the velocity of propagation (which gives
the dimensions of admitLance). This representation of a comb-line filter
is approximate, and neglects the effects of fringing capacitances beyond
nearest neighbors.

17

The design equations in Fig. 8.13-1(b) are based on the general
equations in Fig. 8.02-4. In order to modify the circuit in Fig. 8.14-1
to a form such that the data in Fig. 8.02-4 can be easily applied, the
series stubs between Nodal Points I and 2, 2 and 3, etc., in Fig. 8.14-1
were iuc,, 7,crdLed into J-inverters of the form in Fig. 8.03-4, which gave
the result shown in Fig. 8.14-2. Since each of the iniverter.= '. J+ con-
sists of a pi configuration of a series stub of cloaracteristi,: admittance
Y, and two shunt st.,,bs of characteristic admittance -Y, it was necessary
to increase the characteristic admittances of the actual shunt stubs on
each side in order to compensate for the negative admittances ascribed to
the inverters. This is why the shunt stubs 2 to n - 1 in Fig. 8.14-2 now
have the admittances )' = v (C, J C,. 1 ., + C,. ,,) instead of .just v CJ.
The portion of the circuit in Fig. 8.1t-I between Nodal Points 0 and 1 has
been converted to the form shown in Fig. 8.14-2 by use of a simplifyink
constraint which brings about the properties summarized in Fig. 5.09-3(a).

When applying the general relations in Fig. 8.02-4 to the circuit in
Fig. 8.14-2 to derive design eluations for comb-line filters, the admittance-
inverter parameters J , + are, of course, evaluated at midband, and the
resonator slope parameters are computed from the resonator circuits con-
sisting of the lines of admittance Y shunted uy the lumped capacitances
C'. The terminating Pdmittance G., in Fig. 8.14-2 is specified so thatA
Gri j 0o/1'A' where the value of J.1 is as given in Fig. 8.02-4.
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