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ABSTRACT OF VOLUMES I AND II

This book presents design techniques for a wide variety of low-pass,
band-pass, high-pass, and band-stop microwave filters; for multiplexers;
and for certain kinds of directional couplers. The material is organized
to be used by the designer who needs to work out a specific design quickly,
with a minimum of reading, as well as by the engineer who wants a deeper
understanding of the design techniques used, so that he can apply them to

new and unusual situations.

Most of the design procedures described make use of either & lumped-
element low-pass prototype filter or a step-transformer prototype as a
basis for design. Using these prototypes, microwave filters can be ob-
tained which derive response characteristics (such as a Tchebyscheff
attenuation ripples in the pass band) from their prototype. Prototype
filter designs are tabulated, and data is given relevant to the use of
prototype filters as a basis for the design of impedance-matching networks
and time-delay networks. lesign formulas and tables for step-transforuer

prototypes are alsc given.

The design of microwave filter structures to serve as impedance-
matching networks is discussed, and examples are presented. The techniques
described should find application in the design of impedance-matching net-
works for use in microwave devices such as tubes, parametric devices,
antennas, etc., in order to achieve efficient broad-band operation. The
design of microwave filters to achieve various time-delay (or slow-wave)

properties is also discussed.

Various equations, graphs, and tables are collected together relevant
to the design of cosxial lines, strip-lines, waveguides, parallel-coupled
lines between common ground planes, arrays of lines between ground planes,
coupling and junction discontinuities, and resonators. Techniques for
measuring the Q's of resonators and the coupling coefficients between
resonators are also discussed, along with procedures for tuning filters.
Equations and principles useful in the analysis of filters are collected
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together for essy refersnce and to aid the reader whose backgrcund for
the subject matter of this book may contain some gaps.

Directionsl filters have special sdventages for certain epplica-
tions, and are treated in detail in a separate chapter, as are high-
power filters. - Tunable filters of the kind that might be desired for
preseslector applications are also treated. Both mechanically tunable
filters and filters using ferrimsgnetic resonators, which can be tuned
by varying a biasing magnetic field, are discussed.
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PREFACE TO VOLUMES I AND I1

The organization of this book has three general objectives. The
first objective is to present fundamentai concepts, techniques, and data
that are of general use in the design of the wide range of microwave
structures discussed in thias book. The second objective is to present
specialized data in more or less handbook form so that a designer can
work out practical designs for structures having certain specific con-
figurations, without having to recreate the design theory or the deriva-
tion of the equations. (However, the operation of most of the devices
discussed herein is sufficiently complex that knowledge of some of the
basic concepts and techniques is usually important.) The third objective
is to present the theory upon which the various design procedures are
based, so that the designer can adapt the various design techniques to
new and unusual situations. and so that researchers in the field of
microwave devices may use some of this information as a basis for deriv-
ing additional techniques. The presentation of the material so that it
can be adapted to new and unusual situations is imporcant because many
of the microwave filter techniques described in this book are potentially
useful for the design of microwave devices not ordinarily thought of as
having anything to do with filters. Some examples are tubes, parametric
devices, and antennas, where filter structures can serve as efficient
impedance-matching networks for achieving broad-band operation. Filter
structures are also useful as slow-wave structures or time-delay struc-
tures. In addition, microwave filter techniques can be applied to other
devices not operating in the microwave band of frequencies, as for
instance to infrared and optical filters.

The three objectives above are not listed in any order of importance, nor
is this book entirely separated into parts according to these objectives.
However, in certain chapters where the material lends itself to such
organization, the first section or the first few sections discu*s general
principles which a designer should understand in order to make best use
of the design data in the chapter, then come sections giving design data
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for specific types of structures, and the end of the chaptcr discusses

the derivations of the various design equations. Also, st numerous places
cross references sre made to other portions of the book where information
useful for the design of the particuler structure under considerstion cea
be found. For exsmple, Chapter 11 describes procedures for measuring the
unloaded Q and external Q of resonators, and for measuring the coupling
coefficients between resonators. Such procedures have wide application

in the practical development of many types of band-pass filters and
impedance-matching networks.

Chapter 1 of this book describes the broad range of applications for
which microwave filter structures are potentially useful. Chapters 2
through 6 contain reference data and background information for the rest
of the book. Chapter 2 summarizes various concepts and equations that
are particularly usefu] in the analysis of filter structures. Although
the image point of view for filter design is made use of only at certain
points in this book, some knowledge of image design methods is desirable.
Chapter 3 gives a brief summary of the image design concepts which are
particularly useful for the purposes of this book. Chapters 1 to 3 should
be especially helpful to readers whose background for the material of this
book may have some gaps.

Most of the filter and impedance-matching network design techniques
described later in the book make use of a low-pass prototype filter as a
basis for design. Chapter 4 discusses various types of lumped-element,
low-pass, prototype filters, presents tables of element values for such
filters, discusses their time-delay properties, their impedance-matching
properties, and the effects of dissipation loss upon their responses. In
later chapters these low-pass prototype filters and their various proper-
ties are employed in the design of low-pass, high-pass, band-pass, and
band-stop microwave filters, and also in the design of microwave impedance-
matching networks, and time-delay networks.

Various equations, graphs, and tables relevant to the design of
coaxial line, strip-line, waveguide, and a variety of resonators, coupling
structures, and discontinuities, nr;‘summarized for easy reference in
Chapter 5. Chapter 6 discusses the design of step transformers and pre-
sents tables of designs for certain cases. The step tranaformers in
Chapter 6 are not only for use in conventional impedance-transformer



wud

applications, but also for use as prototypes for certain types of band-
pass or pseudo high-pass filters discussed in Chapter 9.

Design of low-pass filters and high-pass filters from the semi-
lumped-element point of view are treated in Chapter 7. Chapters 8, 9,
and 10 discuss band-pass or pseudo-high-pass filter design using three
different design approaches. Which approach is best depends on the type
of filter structure to be used end the bendwidth rejuired. A tesbulation
of the various filter structures discussed in all three chapters, a
summary of the properties of the various filter structures, and the
section number where design data for the various structures can be found,
are presented at the beginning of Chapter 8.

Chapter 1] describes various additional techniques which are useful
to the practical development of microwave band-pass filters, impedance-
matching networks, and time-delay networks. These techniques are quite
general in their application and can be used in conjunction with the
filter structures and techniques discussed in Chepters 8, 9, and 10, and
elsewhere in the book.

Chapter 12 discusses band-stop filters, while Chapter 1) treats
certain types of directional couplers. The TEM-mode, coupled-transmission-
line, directional couplers discussed in Chapter 13 are related to certain
types of directional filters discussed in Chapter 14, while the branch-
guide directional couplers can be designed using the step-transformer
prototypes in Chapter 6. Both waveguide and strip-line directional filters
are discussed in Chapter 14, while high-power filters are treated in Chapter 15.
Chapter 16 treats multiplexers and diplexers, and Chapter 17 deals with
filters that can be tuned either mechanically or by varying a biasing
magnetic field.

It is hoped that this book will fill a need (which has become in-
creasingly apparent in the last few years) for a reference book on design
data, practical development techniques, and design theory, in a field of
engineering which has been evolving rapidly.
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CHAPTER 1

SOME GENERAL APPLICATIONS OF FILTER STRUCTURES
IN MICROWAVE ENGINEERING

SEC. 1.01, INTRODUCTION

Most readers will be familiar with the use of filters as discussed
in Sec. 1.02 below. However, the potential applications of the material
in this book goes much beyond these classical filter applications to
cover many other microwave engineering prohlems which involve filter-type

structures but are not always thought of as being filter problems.

Thus, the purpose of this chapter is to make clear to the reader
that this book is not addressed only to filter design specialists, but
also to antenna engineers who may need a hroadband antenna feed, to
microwave tube engineers who may need to obtain broadtand impedance
matches in and out of microwave tubes, to system engineers who may need
a microwave time-delay network, and to numerous others having other

special microwave circuit design problems.

SEC. 1.02, USE OF FILTExS FOKR THE SEPARATION OR
SUMMING OF SI1GNALS

The most obvious application of filter structures, of course, is
for the rejection of unwanted signal frequencies while permitting good
transmission of wanted frequencies. The most common filters of this
sort are designed for either low-pass, high-pass, band-pass or band-stop
attenuation characteristics such as those shown in Fig. 1.02-1. Of course,
in the case of practical filters for the microwave or any other frequency
range, these characteristics are only achieved approximately, since there
is a high-frequency limit for any given practical filter structure above
which its characteristics will deteriorate due to junction effects,

resonances within the elements, etc.

Filters are also commonly used for separating frequencies in
diplexers or multiplexers. Figure 1.02-2 shows a multiplexer whith
segregates signals within the 2.0 to 4.0 Gc band into three separate
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channels according to their frequencies. A well designed multiplexer of
this sort would have very low VSWR at the input port across the 2.0 to
4.0 Gec input band. To achieve this result the individual filters must
be designed specinlly for this purpose along with a special junction-
matching network.

Another way that diplexers or muitiplexers are often used is in the
summing of signals having different frequencies. Supposing that the
signal-flow arrowheads in Fig. 1.02-2 are _reversed; in this event, signals
entering at the various channels can all be joined together with negligible
reflection or leakage of energy so that all of the signals will be super-
imposed on a single output line. If signals in these various channel fre-
quency ranges were summed by a simple junction of transmission lines (i.e.,
without a multiplexer), the loss in energy at the single output line would,
of course, be considerable, us a result of reflections and of leakage out

of lines other than the intended output line.

SEC. 1.03, IMPEDANCE -MATCHING NETHORKS

Bode! first showed what the piayvsical limitations were on the broadband
impedance matching of loads consisting of a reactive element and a resistor

in series or in parallel. Later, Fano?

presented the general limitations
on the impedance matching of any load. Flano’s work shows that efficiency
of transmission and bandwidth are exchangeal.le quantities in the impedance

matching of any load having a reactive component.

To illustrate the theoretical limitations which exist on broadband
impedance matching, consider the example shown in Fig. 1.03-1 where the
load to be matched consists

of a capacitor C, and a re-

sistor R, in parallel. A R,
lossless impedance-matching ~0—4
N . LOSSLESS J_ |

network is to he inserted £ —|  IMPEDANCE - MATCHING ¢, 38,
between the generator and _ NETWORK
the load, and the reflec- “‘I;ﬂ;‘
tion coefficient between 2,

A-3827-98
the generator and the
impedance-matching net- FIG. 1.03-1 EXAMPLE OF AN IMPEDANCE-MATCHING
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Z,, -R
zi- +R

r :

(1.03-1)
s

The werk of Bode' and that of Fano? shows that there is a physical limita-

tion on what " can be as a function of frequency. The best possible
results are limited as indicated by the relation*

. ]
J In
0

Recall that for a passive circuit 0 s Tl s 1, for total reflection

l| 7
~ldw ® — . 03-
|9 A.C, (1.03-2)

[’} = 1, and that for perfect transmission "] = 0. Thus, the larger
In |1,T| is the better the transmission will be. But Eq. (1.03-2) says
that the area under the curve of In |1.T| vs w can be no greater than
ﬂ/(BoCl).

If a good impedance match is desired from frequency w, to w,, best
results can be obtained if || = 1 at all frequencies except in the band
from w, to w,. Then In |1/F] = 0 at all frequencies except in the w, to
w, band, and the available area under the In |1/T"| curve can all be con-
centrated in the region where it does the most good. With this specifi-
cation, Eq. (1.03-2) becomes

“p

-

n
R,C,

1
Fldw . (1.03.3)

and if |I’| is assumed to be constant across the band of impedance match,
Il as a function of frequency becomes

JRNNONIS..S | S—
IFI . e(w.-u.)nocl

.(1.03-4)
Pl =« 1 for 0 § o § o and  w, f o fw

.
This relation holds if the impedance matohing network is designed s0 that the reflection coef-
ficieat between a, and the circuit te the left of * iam Fig., 1.03-1 has all of its zeres in
the lefe helf plnno."’



Equation (1.03-4) says that an ideal impedance-matching network for
the load in Fig. 1.03-1 would be a band-pass filter structure which would
cut of f sharply at the edges of the band of impedance match. The curves
in Fig. 1.03-2 show how the || vs @ curve for practical band-pass
impedance-matching filters might look. The curve marked Case 1 is for the
impedance matching of a given load over the relatively narrow band from
w, to w,, while the curve marked Case 2 is for the impedance matching of
the same load over the wider band from «w, to », using the same number of
elements in the impedance-matching network. The rectangular |°| character-
istic indicated by Eq. (1.03-4) is that which would be achieved by an

optimum hand-pass matching filter with an infinite number of elements.*

| —————————
z
g CASE | CASE 2
e
- =
§ w
55 : '
3 1
- § 1 1
(%3 ] t
us3 ! f
@ ! |
w |
« ! ' ] !
0 \ N e
° we Wo wy wy
RACIAN FREQUENCY, w A-3527-9¢

FIG. 1.03-2 CURVES ILLUSTRATING RELATION BETWEEN BANDWIDTH AND DEGREE OF
IMPEDANCE MATCH POSSIBLE FOR A GIVEN LLOAD HAVING A REACTIVE
COMPONENT

The work of Fano?

shows that similar conditions apply no matter what
the nature of the load (as long as the load is not a pure resistance).
Thus, for this very fundamental reason, efficient broadband impedance-
matching structures are necessarily filter structures. In this book
methods will be given for designing impedance-matching networks using

the various microwave filter structures to be treated herein.

Sinple matching netvorks can give very great improvements is impedance match, and as the
sunber of matching elements is incressed the improvement {or additional element rapidly
bocomes smaller and smaller. For this reason fairly simple matching networks cea give
perforssnce which comes close to the theoretically optimum perforsance for an infinite
susber of impedonce-matching elements.



SEC. 1.04, COUPLING NETWORKS FOR TUBES AND
NEGATIVE-RESISTANCE AMPLIFIERS

A pentode vacuum tube can often be simulated at its output as an
infinite-impedance current generator with a capacitor shunted across the
terminals. Broadband output circuits for such tubes can be designed as
a filter to be driven by an infinite-impedance current generator at one
end with only one resistor termination (located at the other end of the
filter). Then the output capacitance of the tube is utilized as one of
the elements required for the filter, and in this way the deleterious
effects of the shunt capacitance are controlled.’ Data presented later
in this book will provide convenient means for designing microwave broad-
band coupling circuits for possibhle microwave situations of a similar
character where the driving source may be regarded as a current or voltage

generator plus a reactive element.

In some cases the input or output impedances of an oscillator or an
amplifying device may be represented as a resistance along with one or
two reactive elements. In such cases impedance-matching filters as dis-
cussed in the preceding section arc necessary if optimum broadband perform-

ance is to be approached.

Negative-resistance amplifiers are yet another class of devices which
require filter structures for optimum broadband operation. Consider the
circuit in Fig. 1.04-1, where we shall define the reflection coefficient
at the left as

A-3827-97

FIG. 1.04-1 CIRCUIT ILLUSTRATING THE USE OF FILTER STRUCTURES
IN THE DESIGN OF NEGATIVE-RESISTANCE AMPLIFIERS



Z, - Ry
ry = z, 7R, (1.04-1)
and that at the right as
r, - D% (1.04-2)
[, + R4

Since the intervening band-pass filter circuit is dissipationless,

|r1| = Ir3l (1.04-3)

though the phases of I'} and [’y are not necessarily the same. The available

power entering the circulator on the right is directed into the filter
network, and part of it is reflected back to the circulator where it is
finally absorbed in the termination R;. The transducer gain from the

generator to R, is

P

- Inl

avail

(1.04-4)

where P

wvail 18 the available power of the generator and P_ is the power

reflected back from the filter network.

If the resistor A, on the left in Fig. 1.04-1 is positive, the
transducer gain characteristic might be as indicated bty the Case 1 curve
in Fig. 1.04-2. In this case the gain is low in the pass band of the
filter since |F,| * IF,I is small then. However, if fij is replaced by a
negative resistance i = “R,. then the reflection coefficient at the
left becomes

A Bl e B (1.04-5)
l = 7 " = - v . -
Z, + Ro A Ho
As & result we then have
L " 1
|r3| b |r1| = . (1.04-6)

™y
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= |ry|” on |r"f?

"
Povait

CASE !

W ———p 8-3827-90

FIG. 1.04-2 TRANSDUCER GAIN BETWEEN GENERATOR IN FIG. 1.04-1
AND THE CIRCULATOR OUTPUT
Case 1 is for Ry Positive while Case 2 is for Ry Replaced by
Rs = -Ro

Thus, replacing R, by its negative corresponds to IF,I being replaced by
|r‘;| = l/lf",l, and the transducer gain is as indicated by the curve marked
Case 2 in Fig. 1.04-2. Under these circumstances the output power greatly
exceeds the available power of the generator for frequencies within the
pass band of the filter.

With the aid of Eqs. (1.04-1) and (1.04-6) coupling networks for
negative-resistance amplifiers are easily designed using impedance-
matching filter design techniques. Practical negative-resistance elements
such as tunnel diodes are not simple negative resistances, since they also
have reactive elements in their equivalent circuit. In the case of tunnel
diodes the dominant reactive element is a relatively large capacitance in
paralle]l with the negative resistance. With this large capacitance preasent
satisfactory operation is impossible at microwave frequencies unless some
special coupling network is used to compensate for its effects. In
Fig. 1.04-1, C, and Rj on the left can be defined as the tunnel-diode
capacitance and negative resistance, and the remainder of the band-pass
filter circuit serves as a broadband coupling network.

Similar principles also apply in the design of broadband coupling
networks for masers and parametric amplifiers. In the case of parametric
amplifiers, however, the design of the coupling filters ia complicated
somewhat by the relatively complex impedance transforming effects of the
time-varying element.! '



The coupling network shown in Fig. 1.04-1 is in s lumped-element
form which is not very practical to construct at microwave frequencies.
However, techniques which are suitable for designing practicul microwave
filter structures for such applications will be given in later chapters.

SEC. 1.05, TIME-DELAY NETWORKS AND SLOW-
WAVE STRUCTURES

Consider the low-pass filter network in Fig. 1.05-1(a) which has a

voltage transfer function £, E,. The transmission phase is defined as

¢ = arg o~ radians (1.05-1)

The phase delay of this network at any given frequency o is

T
t, = — seconds (1.05-2)
a)
while its group delay is
g
t, = — seconds (1.05-3)

da,'

where ¢ is in radians and @ is in radians per second. Under different

circumstances cither phase or group delay may be important, but it is

6? L L.
A I S B
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FIG. 1.05-1(a) LOW-PASS FILTER DISCUSSED IN SEC. 1.05
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FIG. 1.05-1(b) A POSSIBLE |E/E, | CHARACTERISTIC FOR THE FILTER IN
FIG. 1.05-1(e), AND AN APPROXIMATE CORRE SPONDING
PHASE CHARACTERISTIC

group delay which determines the time required for a signal to pass

. . .
through a circuit %6

Low-pass ladder networks of the form in Fig. 1.05-1(a) have zero
transmission phase for @ = 0, and as « becomes large
\ n7

P, - 7; radians (1.05-4)

w-®

where n is the number of reactive elements in the circuit. Figure 1,05-1(b)
shows a possible |Eo/56| characteristic for the filter in Fig. 1.05-1(a)
along with the approximate corrésponding phase characteristic. Note that
most of the phase shift takes place within the pass band w = 0 to w = w,.
This is normally the case, hence a rough estimate of the group time delay

in the pass band of filters of the form in Fig. 1.05-1(a) can be obtained from

That is, if there is no smplitude distortion and dd/dw is conatant scross the frequensy band of
the signal, then the owtput aignal will be an exact replice of the input gigaal but displeced ia
time by ty seconda.

10



t, ~ — seconds

where n is again the number of reactive elements in the filter.

in some cases t, may vary appreciably within the pass band, and Eq. (1.05-5)

is very approximate.

(1.05-5)

Of course,

Figure 1.05-2(a) shows a five-resonator band-pass filter while
Fig. 1.05-2(b) shows a possible phase characteristic for this filter.
In this case the total phase shift from @ = 0 to w = ® is A7 radians,

>

it
. T T

X b

A-3827-100

al

FIG. 1.05-2(a) A BAND-PASS FILTER CORRESPONDING TO THE

LOW-PASS FILTER IN FIG. 1.05-1(a)
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¢ — radions
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FIG. 1.05-2(b) A POSSIBLE PHASE CHARACTERISTIC FOR THE FILTER

IN FIG. 1.05-2(0)
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where n is the number of resonators, and a rough estimate of the pass-
band group time delay is

t, = —— seconds (1.05-6)

wvhere w, and w, are the radian frequencies of the puss-band edges.

In later chapters more precise information on the time delay character-
istics of filters will be presented. Equations (1.05-3) and (1.05-6) are
introduced here simply beceuse they are helpful for giving a feel for the
general time delay properties of filters. Suppose that for some system
application it is desired to delay pulses of S-band energy (.95 microseconds,
and that an operating bandwidth of 50 Mc is desired to accommodate the
signal spectrum and to permit some variation of carrier frequency. If
this delay were to be achieved with an air-filled coaxial line, 49 feet
of line would be required. Equation (1.05-6) indicates that this delay
could be achieved with a five-resonator filter having 50 Mc bandwidth.

An S-band filter designed for this purpose would typically be less than
a foot in length and could be made to be quite light.

In slow-wave structures usually phase velocity

l
l[’ = t— (1-05‘7)
’
or group velocity
l
v, * ?: (1.05-8)

is of interest, where ! is the length of the structure and t, and t, are
as defined in Eqs. (1.05-2) and (1.05-3). Not all structures used as
slow-wave structures are filters, but very many of them are. Soume
examples of slow-wave structures which are basically filter structures
are waveguides periodically loaded with capacitive or inductive irises,
interdigital lines, and comb lines. The methods of this book should be
quite helpful in the design of such slow-wave structures which are
basically filters.




SEC. 1.06, GENERAL USE OF FILTER PRINCIPLES IN THE
DESIGN OF MICROWAVE COMPONENTS

As can be readily seen by extrapolating from the discussions in
preceding sections, microwave filter design techniques when used in their
most general way are fundamental to the efficient design of a wide variety
of microwave components. In general, these techniques are basic to precision
design when selecting, rejecting, or channeling of energy of different fre-
quencies is important; when achieving energy transfer with low reflection
over a wide band is important; or when achieving a controlled time delay
is important. The possible specific practical situations where such con-
siderations arise are too numerous and varied to permit any attempt to
treat them individually herein. However, a reader who is familiar with
the principles to be treated in this book will usually have little trouble

in adapting them for use in the many special design situations he will
encounter.
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CHAPTER 2

SOME USEFUL CIRCUIT CONCEPTS AND EQUATIONS

SEC. 2.01, INTRODUCTION

The purpose of this chapter is to summarize various circuit theory
concepts and equations which are useful for the analysisof filters. Though
much of this material will be familiar to many readers, it appears
desirable to gather it together for easy reference. In addition, there
will undoubtedly be topics with which some rcaders will be unfamiliar.

In such cases the discussion given here should provide a brief intro-

duction which should be adequate for the purposes of this book.

SEC. 2.02, COMPLEX FREQUENCY AND POLES AND ZEROS

A “sinusoidal’’ voltage
e(t) = |E | cos (wt + @) (2.02-1)
may also be defined in the form
e(t) = Re [E_e’®'] (2.02-2)
where t is the time in seconds, w is frequency in radians per second, and

E, = IE_IeM is the complex amplitude of the voltage. The quantity £_,

of course, is related to the root-mean-square voltage £ by the relation

ExE /2.
Sinusoidal waveforms are a special case of the more general waveform
e(t) .= |E_|e° cos (wt + @) (2.02-3)
= R (Eer] (2.02-4)

where £ = |E.|ci¢ is again the complex amplitude. 1In this case

15
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p = o+ jw (2.02-5)

is the complex frequency. In this
general cese the waveform may be a
pure exponential function as illus-
trated in Fig. 2.02-1(a), it may

be an exponentially-varying sinusoid
FIG. 2.02.1() SHAPE OF COMPLEX-FREQUENCY % illustrated in Fig. 2.02-1(b),
WAVEFORMWHEN p = o + |0 or it may be a pure sinusoid if

P e o

A-3087-A2

In linear, time-invariant
circuits such as are discussed in this book complex-frequency waveforms
have fundamental significance not shared by other types of waveforms.
Their basic importance is exemplified by the following properties of

linear, time-invariant circuits:

(1) If a‘“steady-state” driving voltage or current of complex
frequency p is applied to a circuit the steady-state
response seen at any point in the circuit® will also
have a complex-frequency waveform with the same frequency
p. The amplitude and phase angle will, in general, be
different at different points throughout the circuit.

But at any given point in the circuit the response ampli-
tude and the phase angle are both linear functions of
the driving-signal amplitude and phase.

(2) The various possible natural modes of vibration of the
circuit will have complex-frequency waveforms. (The
natural modes are current and voltage vibrations which
can exist after all driving signals are removed.)

The concepts of impedance and tranafer functions result from the
first property listed above, since these two functions represent ratios
between the complex amplitudes of the driving signal and the response.

As a result of Property (2), the transient response of a network will
contain a superposition of the complex-frequency waveforms of the various
natural modes of vibration of the circuit.

The impedance of a circuit as a function of complex frequency p will
take the form

¢ Unless atated othervise, o linear, time-invarient cireuit #il) be wnderstoed.

16
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v
P
&

E £ ap" +a _p"l o+ ... +ap +a,
2p) = 7+ T 0 = - . (2.02-6)
s b.p* + b._lp"" t ... +bpt bo

By factoring the numerator and derominator polynomials this may be
written as

a,) p=p)p=py)lp=pg) ...
Z(p) = ( (2.02-7)

b, ) G ~pdlp-p) - pg) ...

At the frequencies p = p,, py. Pg, ... etc., where the numerstor polynomial
goes to zero the impedance function will be zero; these frequencies are
thus known as the zeros of the function. At the frequencies p » Py Py
Pg. ..., etc., where the denominator polynomial is zero the impedance
function will be infinite; these
frequencies are known as the poles
of the function. The poles and

zeros of a tranafer function are I~~~
defined in a similar fashion. /\\"ss = ——
o = AF

A circuit with a finite num- u___u.
ber of lumped, reactive elements N
will have a finite number of poles -~
and zeros. However, a circuit A-sear-02
involving distributed elements g 207.1(b) SHAPE OF COMPLEX-FREQUENCY
(which may be represented as an WAVEFORMWHENp = o + jw
infinite number of infinitesimal ANDo < 0

lumped-elements) will have an

infinite number of poles and zeros.

Thus, circuits involving traansmission lines will have impedance functions
that are transcendental, i.e., when expressed in the form in Eq. (2.02-7)
they will be infinite-product expansions. For example, the input impedance
to a lossless, short-circuited transmission line which is one-quarter wave-
length lomg at frequency w, may be expressed as

1

Z(p) = Zo tanh (lEL)

2w0
mwm 2 (2k -1\ [p + j2kw,) [p = j2ka,)
- 2, 2w, ;7];( 2k )[p +j(2k = Dw,[p - j(2k - ”wo](z.oz-a)
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where £, is the characteristic impedance of the line. This circuit is
seen to have poles at p = #j(2k - 1)w, and zeros at p = 0 and %j2kw,,
where # = 1, 2 3, ..., ®

Regarding frequency as the more general p = o + jw variable instead
of the unnecessarily restrictive jw variable permits & much broader point
of view in circuit analysis and design. Impedance and transfer functions
become functions of a complex variable (i.e., they become functions of
the variable p = 0 + jw) and all of the powerful tools in the mathematical
theory of functions of a complex variable hecome available. It becomes
very helpful to define the properties of an impedance or transfer function
in terms of the locations of their poles and zeros, and these poles and
zeros are often plotted in the complex-frequency plane or p-plane. The
poles are indicated by crosses and the zeros by circles. Figure 2.02-2(a)
shows such a plot for the lossless transmission line input impedance in
LEq. (2.02-8) while Fig. 2.02-2(b) shows a sketch of the shape of the
magnitude of this function for p = jw. The figure also shows what happens
to the poles and zeros if the line has loss: the poles and zeros are all
moved to the left of the jw axis, and the |Z(jw)| characteristic becomes

rounded off.

The concepts of complex frequency and poles and zeros are very helpful
in network analysis and design. Discussions from this point of view will
be found in numerous books on network analysis and synthesis, including
those listed in References 1 to 5. Poles and zeros also have an electro-
static analogy which relates the magnitude and phase of an impedance or
transfer function to the potential and flux, respectively, of an analogous
electrostatic problem. This analogy is useful both as a tool for mathe-
matical reasoning and as a means for determining magnitude and phase by
measurements on an analog setup. Some of these matters are discussed in
References 2, 3, 6, and 7. Further use of the concepts of complex fre-

quency and poles and zeros will be discussed in the next two sections.

SEC. 2.03, NATURAL MODES OF VIBRATION AND THEIR RELATION
TO INPUT-IMPEDANCE POLES AND ZEROS

The natural modes of vibration of a circuit are complex frequencies
at which the voltages and currents in the circuit can “vibrate” if the
circuit is disturbed. These vibrations can continue even after all
driving signals have been set to zero. It should be noted that here the

18
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FIG. 2.02.2 THE LOCATIONS OF THE POLES AND ZEROS OF A SHORT-CIRCUITED
TRANSMISSION LINE WHICH IS A QUARTER-WAVELENGTH LONG WHEN
P *iw
The Magnitude of the Input Impedance for Frequencies p = jw is also
Sketched

word vibration is used to include natural modes having exponential wave-

forms of frequency p = o as well as oscillatory waveforms of frequency
p =0t juw

Suppose that the input impedance of a circuit is given by the function

2oy E (e =p) e = py)lp = pg) ...
Z(p = T = . (2.03-1)
1 b =p)l-p) -pg) -

Rearrenging Eq. (2.03-1),

Z = IZ(p) . (2.03-2)
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If the input terminals of this circuit are open-circuited and the circuit
is vibrating at one of its natural frequencies, there will be a complex-
frequency voltage across Z(p) even though I = 0. By Eq. (2.03-2) it is
seen that the only way in which the voltage £ can be non-zero while I = 0
is for Z(p) to be infinite. Thus, if Z(p) is open-circuited, natural
vibration can be observed only st the frequencies p,. p,. Py, etc., which
are the poles of the input impedance function Z(p). Also, by analogous
reasoning it is seen that if Z(p) is short-circuited, the natural fre-
quencies of vibration will be the frequencies of the zeros of Z(p).

Except for special cases where one or more natural modes may be
stifled at certain points in a circuit, if any natural modes are excited
in any part of the circuit, they will be observed in the voltages and
currents throughout the entire circuit. The frequency p, =0, + jag of
each natural mode must lie in the left half of the complex-frequency
plane, or on the jw axis. If this were not so the vibrations would be
of exponentially increasing magnitude and energy, a conditien which is
impossible in a passive circuit. Since under open-circuit or short-
circuit conditions the poles or the zeros, respectively, of an impedance
function are natural frequencies of vibration, any impedance of a linear,
passive circuit must have all of its poles and zeros in the left half
plane or on the jw axis.

SEC. 2. 04, FUNDAMENTAL PROPERTIES OF TRANSFER FUNCTIONS

Let us define the voltage attenuation function E‘/EL for the network
in Fig. 2.04-1 as

. E, clp ~p))p ~py) (= pg) ... (2081
B e » 2- -
(p) E, (b =pP)lp-p,)p-pg) ... )

[~ .

| T ARIANT ] 1
B = ‘“ﬂ"l’m“ o " ;"

b

Tia

FIG. 2.04-1 NETWORK DISCUSSED IN SECTION 2.04



vhere ¢ is a real constant and p is the complex-frequency variable. We

shall now briefly summarize some important general properties of linear,
passive circuits in terms of this transfer function and Fig. 2.04-1.

(1)

(2)

(3)

(4)

(5)

(6)

(1)

The zeros of T(p), i.e., p,. py, Py, ... are all fre-
quencies of natural modes of vibration for the circuit.
They are influenced by all of the elements in the
circuit so that, for example, if the value for R_or
R, were changed, generally the frequencies of all the
natural modes will change elso.

The poles of T(p), i.e., p,, Py Pgr ..., along with

any poles of T(p) at p = 0 and p = ® are all frequencies
of infinite attenuation, or “poles of sttenuation.”
They are properties of the network alone and will not

be changed if B' or R, is changed. Except for certain
degenerate cases, if two networks are connected in
cascade, the resultant over-all response will have the
poles of attenuation of both component networks.

In a ladder network, a pole of attenuation is created
wvhen a series branch has infinite impedance, or when
a shunt branch has zero impedance. If at a given fre-
quency, infinite impedance occurs in series branches
simultaneously with zero impedance in shunt branches,
a higher-order pole of atteiuation will result.

In circuits where there are two or more transmission
channels in parallel, poles of attenuation are created
at frequencies where the outputs from the parallel
channels have the proper magnitude and phase to cancel
each other out. This can happen, for example, in
bridged-T, lattice, and parallel-ladder structures.

The natural modes [zeros of T(p)] must lie in the left,
half of the p-plane (or on the jw axis if there are
no loss elements).

The poles of attenuation can occur anywhere in the
p-plane.

If E is a zero impedance voltage generator, the zeros
of Z. = in Fig. 2.04-1 will be the naturel frequencies

of vibration of the circuit. These zeros must there-
fore correspond to the zeros of the attmnuation function
T(p). (Occasionally this fact is obascured becausc in
some special cases cancellations can be carried out be-
tween coincident poles and zeros of T(p) or of Zi_.
Assuning that no such cancellations have been carried
out even when they are possible, the above statement
always holds.)
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(8) If the zero impedance voltage generator E_ were replaced
by an infinite impedance current generator I_, then the
natural frequencies of vibration would correspond to the
poles of Z . . HLedefining T(p) as T'(p) -'I./E,_, the
zeros of T (p) would in this case still be the natural
frequencies of vibration but they would in this case be
the same as the poles of £, .

Let us now consider some examples of how some of the concepts in the
statements itemized above may be applied. Suppose that the box in
Fig. 2.04-1 contains a lossless transmission line which is one-quarter
wavelength long at the frequency w,. Let us suppose further that
R‘ =R, » Z,, where Z; is the characteristic impedance of the line.
Under these conditions the voltage attenuation function T(p) would have
a p-plane plot as indicated in Fig. 2.04-2(a). Since the transmission

line is a distributed circuit there are an infinite number of natural
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FIG. 2.04-2 TRANSFER FUNCTION OF THE CIRCUIT IN FIG. 2.04-1 [F THE BOX CONTAINS
A LOSSLESS TRANSMISSION LINE A/4 LONG AT wy WITH A CHARACTERISTIC

IMPEDANCE Zo # R, = R



modes of vibration, and, hence there are an infinite array of zeros to
T(p). 1In all impedance and transfer functions the number of poles and
zeros must be equal if the point at p = ® is included. In this case there
are no poles of attenuation on the finite plane; they are all clustered
at infinity. As a result of the periodic array of zeros, |T(jw)| has an
oscillatory behavior vs » as indicated in Fig. 2.04-2(b). As the value of
R' = R, is made to approach that of £;, the zeros of T(p) will move to the
left, tae poles wiil stay fixed at infinity, and the variations in lT(jw)|
will become smaller in amplitude. When B‘ = R, = Z,, the zeros will have
moved toward the left to minus infinity, and the transfer function
becomes simply

E /20,

= = T(p) = 2e

E (2.04-2)

which has iT(}m)' equal to two for all p = jo.

From the preceding example it is seen that the transcendental function
e? has an infinite number of poles and zeros which are all clustered at
infinity. The poles are clustered closest to the p = *o axis so that if
we approach infinity in that direction ef becomes infinite. If we approach
infinity via the p = =0 axis e” goes to zero. On the other hand, if we
approach infinity along the p = ju axis, e? will always have unit magnitude
but its phase will vary. This unit magnitude results from the fact that
the amplitude effects of the poles and zeros counter balance each other
along the p = ju axis. The infinite cluster of poles and zeros at infinity

forms what is called an essential singularity.

Figure 2.04-3 shows a iLand-pass filter using three transmission-line
resonators which are a quarter-waveiength long at the frequency w,, and
Fig. 2.04-4(a) shows a typical transfer function for this filter. In the
example in Fig. 2.04-4, the response is periodic and has an infinite
numbher of poles and zeros. The natural modes of vibration [i.e., zeros
of T(p)] are clustered near the jw axis near the frequencies Jwy, J3wy,
ijo, etc., for which the lines are an odd number of quarter wavelengths
long. At p = 0, and the frequencies p = J2wy. J4w,, jb6w,, etc., for which
the lines are an even number of quarter-wavelengths long, the circuit
functions like a short-circuit, followed by an open-circuit, and then
another short-circuit. In accordance with Property (3) above, this
creates third-order poles of attenuation as indicated in Fig. 2.04-4(a).
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The approximate shape of IT(jw)l
is indicated in Fig. 2.04-4(b).
If the termination values R. and

R, were changed, the positions of

- the natural modes [zeros of T(p)]
1 would shift and the shape of the
S f'LA:T pass bands would be altered.
MG : However, the positions of the
poles of attenuation would be
unaffected [see Property (2)).
L e The circuit in Fig. 2.04-3

FIG. 2.04-3 A THREE-RESONATOR, BAND-PASS .® Mot very practical because
FILTER USING RESONATORS CON- the open-circuited series stub
SISTING OF AN OPEN-CIRCUITED in the middle is difficult to
STUB IN SERIES AND TWO SHORT- . .
CIRCUITED STUBS IN SHUNT construct in a shielded structure.

The filter structure shown in
Fig. 2.04-5 is much more common
and easy to build. It uses short-
circuited shunt stubs with con-
necting lines, the stubs and lines all being one-quarter wavelength long
at frequency w,. This circuit has the same number of natural modes as
does the circuit in Fig. 2.04-3, and can give similar pass-band responses
for frequencies in the vicinity of p = jwo, j3mo, etc. However, at
p =0, j2wo, j4a5, etc., the circuit operates like three short circuits
in parallel (which are equivalent to one short-circuit), and as a result
the poles of attenuation at these frequencies are first-order poles only.
It can thus be seen that this filter will not have as fast a rate of cut-
off as will the filter in Fig. 2.04-3 whose poles on the jw axis are
third-order poles. The connecting lines between shunt stubs introduce
poles of attenuation also, but as for the case in Fig. 2.04-2, the poles
they introduce are all at infinity where they do little good as far as
creating a fast rate of cutoff is concerned since there are an equal
number of zeros (i.e., natural modes) which are much closer, hence more
influential.

These examples give brief illustrations of how the natural modes and
frequencies of infinite attenuation occur in filters which involve trans-
mission-line elements. Reascning from the viewpoints discussed above can
often be very helpful in deducing what the behavior of a given filter
structure will be.

4

e

v



o 1 13w 4F
)
T eE e —m——— e r
P-PLANE o0 T u, 1
3
- ot r Eg o
IEL— -|T()u)|
o5 T -l (a) (b)
3 —j2w,
0: - -’3“0

A-3%27-7

FIG. 2.04-4 VOLTAGE ATTENUATION FUNCTION PROPERTIES FOR THE FILTER
IN FIG. 2.04-3

The Stubs are One-Quarter Wavelength Long ot Frequency w,

CINERWRN

AAA
>
i

fe— M —pd

A-3527-0

FIG. 2.04-5 A BAND-PASS FILTER CIRCUIT USING SHORT-
CIRCUITED STUBS WITH CONNECTING LINES
ALL OF WHICH ARE A QUARTER-WAVELENGTH
LONG AT THE MIDBAND FREQUENCY w,



SEC. 2.05, GENERAL CIRCUIT PARAMETERS

In terms of Fig. 2.05-1, the general circuit parameters are defined
by the equations

. E, = AE, +B(-I,)

(2.05-1)
Il = CE2 + D(-Iz)
or in matrix notation
E| A B Ez
= (2.05-2)
Il C DJ '12J

These parameters are particularly useful in relating the performance of
cascaded networks to their performance when operated individually. The
general circuit parameters for the two cascaded necworks in Fig. 2.05-2
are given by

(AcAO * B.C‘) (AoBb + BCD.)
= . (2.05-3)
(C-At + D-Cb) (Clhb + Duob)

! I L p——e
- ]~ A, B, A B,
—E-' i NETWORK 2 ¢ I: ‘ [;. l’] . l;. ;l
- -t
A-3027-9 b ~
.
FiG. 2.05-1 DEFINITION OF CURRENTS < a-3827-0
AND VOLTAGES FOR
TWO-PORT NETWORKS FIG. 2.05-2 CASCADED TWO-PORT NETWORKS
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By repeated application of this operation the general circuit parameters
can be computed for any number of two-port networks in cascade.
Figure 2.05-3 gives the general circuit parameters for a number of common

structures.

Under certain conditions the general circuit parameters are inter-

related in the following special ways: If the network is reciprocal
AD - BC = 1 . (2.05-4)
If the network is symmetrical

A = D . (2.05-5)

If the network is lossless (i.e., without dissipative elements), then
for frequencies p = Ju, A and D will be purely real while B and C will

be purely imaginary.

If the network in Fig. 2.05-1 is turned around, then the square
matrix in Eq. (2.05-2) is

where the parameters with t subscripts are for the network when turned
around, and the par.meters without subscripts are for the network with
its original orientation. In hoth cases, £ and I, are at the terminals

at the left and £, and I, are at the terminals at the right.

dy use of kqs. (2.05-6), (2.05-3), and (2.05-4), if the parameters
A', B', ¢', D' are for the left half of a reciprocal symmetrical network,

the general circuit parameters for the entire network are

A B | (1 + 2B'C')(24'B')
= | . (2.05-7)
c Db (2¢'D')(1 + 2B'C")
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SEC. 2.06, OPEN-CIRCUIT IMPEDANCES AND
SHORT:CIRCUIT ADMITTANCES

In terms of Fig. 2.05-1, the open-circuit impedances of a two-port
network may be defined by the equations

2 I+ 2,1, = E|

(2.06-1)

Physically, z;, is the input impedance at End 1 when End 2 is open-
circuited. The quantity z,, could be measured as the ratio of the
voltage £, I, when End 1 is open-circuited and current I, is flowing in

End 2. The parameters z,, and z,, may be interpreted analogously.

In a similar fashion, the short-circuit admittances may be defined

in terms of Fig. 2.05-1 and the equations

Y By oty B =
(2.06-2)
YarEy t vaEy = I,

In this case y;, is the admittance at End 1 when End 2 is short-circuited.
The parameter y,, could be computed as the ratio I, ‘E, when End 1 is
short-circuited and a voltage £, is applied at End 2.

Figure 2.06-1 shows the open-circuit impedances and short-circuit
admittances for a number of common structures. For reciprocal networks
2, =25, and ¥, * ¥y, For a lossless network (i.e., one composed of
reactances), the open-circuit impedeances and the short-circuit admit-

tances are all purely imaginary for all p = jw.

SEC. 2.07, RELATIONS BETWEEN GENERAL CIRCUIT PARAMETERS
AND OPEN- AND SHORT-CIRCUIT PARAMETERS

The relationships between the general circuit parameters, the open-
circuit impedances, and the short-circuit admittances defined in
Secs. 2.05 and 2.06 are as follows:
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where

n,.n n
A = AD-DC = 21718 . 12
(.ll)’ .,l
) (2.07-4)
= 1 (for reciprocal networks)
nacnoo "..
A, = 23,2, " 2,3, = : " h (2.07-5)
("..) )
n..nl. n..
S T TR T T n)? . " (2.07-6)
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If any of these various circuit parameters are expressed as a function
of complex frequency p, they will consist of the ratio of two polynomials,
each of which may be put in the form

polynomial = c(p - pl)(p - p,)(p =Py ... (2.07-7)

where ¢ is a real constant and the p, are the roots of the polynomial.

As should be expected from the discussions in Secs. 2.02 to 2.04, the
locations of the roots of these polynomials have physical significance.
The quentities on the right in Eqs. (2.07-1) to (2.07-6) have been intro-
duced to clarify this physical significance.

The symbols n ., n ., n ., and n __ in the expressions above represent
polynomials of the form in Eq. (2.07-7) whose roots are naturai frequencies
of vibration of the circuit under conditions indicated by the subscripts.

Thus, the roots of n,, are the natural frequencies of the circuit in

8
Fig. 2.05-1 when both ports are short-circuited, while the roots of n__
are natural frequencies when both ports are open-circuited. The roots
of n_, are natural frequencies when the left port is open-circuited
while the right port is short-circuited, and the inverse obtains for n .
The symbols ®»,, and »,, represent polynomials whose roots are poles of
attenuation (see Sec. 2.04) of the circuit, except for those poles of
attenuation at p = ®. The polynomial m,, has roots corresponding to the
poles of attenuation for transmission to End 1 from End 2 in Fig. 2.05-1,

while the polynomial ®,, has roots which are poles of attenuatica for



transmission to End 2 from End 1. If the network is reciprocal, &, = n,,.
These polynomials for a given circuit are interrelated by the expression®

Raoas = Moo ~ Mi2®s, (2.07-8)

and, as is discussed in Ref. 8, they can yield certain labor-saving
advantages when they themselves are used as basic parameters to describe

the performance of a circuit.

As is indicated in Eqs. (2.07-4) to (2.07-6), when the determinants
4, 4, and A, are formed as a function of p, the resulting rational
function will necessarily contain cancelling polynomials. This fact can
be verified by use of Eqs. (2.07-1) to (2.07-3) along with (2.07-8).
Removal of the cancelling polynomials will usually cut the degree of the
polynomials in these functions roughly in half. Analogous properties
exist when the network contains distributed elements, although the
polynomials then become of infinite degree (see Sec. 2.02) and are most
conveniently represented by transcendental functions such as sinh p and

cosh p. For example, for a lossless transmission line

¥

. ™p - 1 2 —_— o
n, = n, 4% cosh—o- = Ao:f!; [(m-o] {lp + j(2k l)wo][p J(2k 1)0,0]}

.. np np 1 , .
n,, = sinh 2 2o, ;’Z: (2‘”0) [(p + J2~0°)(P }2&»0)]
(2.07-9)
n, * Z: sinh il 4
0

"y " Myt 4
where Z, is the characteristic impedance of the line, and w, is the radian
frequency for which the line is one-quarter wavelength long. In this case,
R, = A, is a constant since all of the poles of attenuation are at in-
finity (see Sec. 2.04 and Ref. 8). The choice of constant multipliers for
these “polynomials’” is arbitrary to a certain extent in that any one multi-
plier may be chosen arbitrarily, but this then fixes what the other con-
stant multipliers must be.!
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SEC. 2.08, INCIDENT AND REFLECTED WAVES, REFLECTION COEFFICIENTS,
AND ONE KIND OF TRANSMISSION COEFFICIENT

Let us suppose that it is desired to analyze the transmission across
the terminals 2-2' in Fig. 2.08-1 from the wave point of view. Uy

definition

E +E = E (2.08-1)

where £ is the amplitude of the incident voltage wave emerging from

the network, £, is the reflected voltage wave amplitude, and £ is the
transmitted voltage wave amplitude
(which is also the voltage that would

1 be measured across the terminals 2-2').

2
~, NETWORK ¢—| L EJ so that £ = 0 and E, = E. Replacing
‘ I Y the network and generator at (a) in

o) 2, Fig. 2.08-1 by a Thevenin equivalent
generator as shown at (b), it is
readily seen that since for Z‘ = ZL'

EI = E, then

E
2 oc¢
€oc ¢ l | £ = 5 (2.08-2)

0] a-3s2r-13 where £ _ is the voltage which would

be measured at terminals 2-2' if they
FIG. 2.08-1 CIRCUITS DISCUSSED IN
ilsii.LzY.glsSFVR;gmeS'l'WAVE- and (2.08-2) the voltage reflection

coefficient is defined as

E, 2, -z
M oe— & ——— (2.08-3)
E, "7 2 :

An analogous treatment for current waves proceeds as follows:

I +1 = 1 (2.08-4)

]
Note that ao reflection of the voltage wave does not necesserily imply maximum pover transfer.
For ne reflection of the voltage vave z = ZL. vhile for mexisua pever trensfer zZ, = lz where
Ii is the cemplex conjugste of Z.
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If Z, = 4Z,, there will be no reflection*

were open-circuited. Using Eqs. (2.08-1)

WL,



where I, is the incident current amplitude, I is the reflected current

r
amplitude, and I is the transmitted current amplitude which is also the

actual current passing through the terminals 2-2'. The incident current is

IIC
I -;— . (2.08-5)

where I, is the current which would pass through the terminals 2-2' if
they were short-circuited together. The current reflection coefficient

is then defined as

Ir YL - ys

r‘ =z — = T ———— =z = . -
. 7 T r (2.08-6)

where Y' = 1.Z, and YL = 1,Z,.

In addition, sometimes the voltage transmission coefficient
E
Ty T vz " 1+ (2.08-7)
t
is used. The corresponding current transmission coefficient is

. — ) (2.08-8)

T =_I..=....._.__,1+F
Il L s

It will be noted that these transmission coefficients 7 and T, are not

the same as the transmission coefficient t discussed in Sec. 2.10.

SEC. 2.09, CALCULATION OF THE INPUT IMPEDANCE OF
A TERMINATED, I'WO-POKT NETWORK
The input impedance (£, ), defined in Fig. 2.09-1 can be computed
from Z, and any of the circuit parameters used to describe the perform-
ance of a two-port network. In terms of the general circuit parameters,

the open-circuit impedances, and the short-circuit admittances,



2 ' NETWORK )

(:“\h (lu.).

A-9527- 10

FIG. 2.09-1 DEFINITION OF INPUT IMPEDANCES
COMPUTED IN SEC. 2.09

AZ2 + B
(2,)), = ——— (2.09-1)
in cz, +D
223
-3, - — (2.09-2)
2y, * 2,
Y2 * 1,
. , (2.09-3)

Yalyg, * 1) -y,

respectively, where Y, = 1/Z,. Similarly, for the impedance (Z,.), in
Fig. 2.09-1

Dz, + B
z. ), = —0— (2.09-4)
in’ 2 sz + A
Tt (2.09-5)
= 2 - —— . -
oy, v 2y
gt
= (2.09-6)

Yoy + 1)) =y,

where ¥, = 1/Z,.

SEC. 2.10, CALCULATION OF VOLTAGE TRANSFER FUNCTIONS

The transfer function l:‘./E’z for the circuit in Fig. 2.10-1 can be
computed if any of the sets of circuit parameters discussed in Secs. 2.05
to 2.07 are known for the network in the box. The appropriate equations are



E, AR, +B % CR\R, + DR
= . , (2.10-1)
52 R2

(2, + R (295 * R)) = 2,24,

= ’ (2.10'2)
2,8,

and

iy * G ygq * Gy) = 9,7y,

= - . (2-10'3)
=¥0 G,

Transfer functions such as the E‘ E, function presented above are
commonly used but have a certain disadvantage. This disadvantage is
that, depending on what the relative size of R, and H, are, complete
energy transfer may correspond to any of a wide range of 'E'/Ez{ values,

Such confusion is eliminated if the trensfer function

E,) R, [E

2 Tavasl 1 2 < .)

— = T\ (2.10-4)
E, 2 Vn \g,

is used instead. The quantity

g, A E 10-5
2 avasl b 2 R—l I (2. -5)

will be referve¢d to herein as the uvatrlable voltage, which is the voltage
across R, when the entire available power of the generator is absorbed by

R,. Thus. for complete energy transfer ](Ezh'.“/Ezl = ] regardless

4
€ ' NETWORK 2 gm

*
€
: g4

G, * 1M, Gye /Ry

A-3827-18

FiG. 2.10-1 A CIRCUIT DISCUSSED IN SEC. 2.10

b



of the relative sizes of R, and Rl‘ Note that (£,) has the same

phase as E'.

avail

In the literature a transmission coefficient t is commonly used where

T . — 2ﬁ(fi) (2.10-6)
[(Et)anil/E2] Rl E‘ ‘ . )

Note that this is not the same as the transmission coefficients 7 or 7,
discussed in Sec. 2.08. The transmission coefficient t is the same,
however, as the scattering coefficients 5, = S,,, discussed in Sec. 2.12.
Also note that t is an output/input ratio of a “voltage gain’ ratio,
while the function in Eq. (2.10-4) is an input/output ratio or a *voltage

attenustion’ ratio.

SEC. 2.11, CALCULATION OF POWER TRANSFER FUNCTIONS
AND “ ATTENUATION"

One commonly used type of power transfer function is the insertion

loss function

P ( R )2 E|?

20 2 [

i - (2.11-1)
P, R, + R,/ |E,

where Hl, Rz' E‘, and £, are defined in Fig. 2.10-1, and IE‘ E,I can be
computed by use of Eqs. (2.10-1) to (2.10-3). The quantity P, is the
power absorbed by R, when the network in Fig. 2.10-1 is in place, while
P,, is the power in R, when the network is removed and R, is connected
directly to R, and E..

Insertion loss functions have the same disadvantage as the E‘/Ez
function discussed in Sec. 2.10, i.e., complete power transfer may cor-
respond to almost any value of P, /P, depending on the relative sizes of
R, and R,. For this reason the power transfer function

P_. (B ) E
avail 1 2 I 1

———— o e | ] a— —— (211_2)
P, 4 \R,/IE, le]?
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will he used in this book instead of insertion loss. The function P.".“/l-'2
is known as a transducer loss ratio, where P, is again the power delivered
to Ry in Fig. 2.10-1 while

Punil = 4R (211'3)

is the availabhle power of the generator composed of E' and the internal
resistance H,. Thus, for complete power transfer ¥, . /P, = 1 regardless
of the relative size of R and R,. Note that t in Eq. (2.11-2) is the

transmission coefficient defined by Eq. (2.10-6).

It will often be desirable to express P, .,

/P, in db so that

L, = 10 log,, (P, Py db . (2.11-4)

avail

Herein, when attenuation is referred to, the transducer loss (t.e.,
transducer attenuaticn) in db as defined in Eq. (2.11-4) will be under-

stood, unless otherwise specified.

If we define L, = 10 log,, P,

attenuation in db is

0 P2 as insertion loss in db then the

2
(R, + Ry)

L, = L, +10log, W db . (2.11-5)

Note that if A, = K, then insertion loss and transducer attenuation are
the same.

If the network in

Fig. 2.11-1 contains dis-

LOSSLESS NETWORK SEPARATED
INTO TWO PARTS

N

sipative elements which

cannot be neglected, then . 4 N

L, may be computed by use o= | _r
of Eqs. (2.11-4), (2.11-2), ¢q ! "'\ I"* 3"“ *!.g €
and any of Eqs. (2.10-1)

to (2.10-3). However, if l l T

the network in the box may 2, o 2 (Zinly R
be regarded as lossless

(i.e., without any FIG. 2.11-1 A NETWORK DISCUSSED IN SEC. 2.11
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dissipative elements), then some simplifications can be taken advantage of.
For example, as discussed in Sec. 2.05, for a dissipationleass network A
and D will be purely real while B and C will be purely imaginary for fre-
quencies jw. Because of this, the form

P B + CR R\?

avail 1 172

——— . — (AR + DR )2 + <__..._> ] (2.11-6)
P, 4n,n,|: 2 ! j

becomes convenient for computation. This expression applies to dissipa-
tionless reciprocal networks and also to non-reciprocal dissipationless
networks for the case of transmission from left to right. If we further
specify that R, = R, = R, that the network is reciprocal (i.e., AD - BC =
1), and that the network is symmetrical (i.e., A = D), then Eq. (2.11-6)
becomes

B it L LY(B R 2 2.11-7)
P, 4\ JR J ' T

Furthermore, it is convenient in such cases to compute the general circuit
parameters A', B', C', D' for the left half of the network only. Then by
Eqs. (2.05-7) and (2.11-7), the transducer loss ratio for the over-all

network is

b,

Plnil A'B’ C'D'R ?
= 1+ - - (2.11-8)
JR J

In the case of dissipationless networks such as that shown in
Fig. 2.11-1, the power transmission is easily computed from the generator
parameters and the input impedance of the dissipationless network termi-
nated in Rz' This is because any power abhsorbed by (Zh)l must surely
end up in R,. The computations may be conveniently made in terms of the

voltage reflection coefficient [" discussed in Sec. 2.08. In these terms

Pnuil 1 1
S e (2.11-9)
2 |e]? 1 - |3
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where
(Z,,), - R

. = 2.11-10
! Z;,), * R ( )

and R, and (£, ), are as defined in Fig. 2.11-1. The reflection coef-

ficient at the other end is

r (Z,2)y - By
a5, (2.11-11)
(‘Zin)Z + R2
and for a dissipationless network
iy = 0, (2.11-12)

so that the magnitude of either reflection coefficient could be used in
Eg. (2.11-9). (It should be understood in passing that the phase of I

2

is not necessarily the same as that of I', even though Eq. (2.11-12) holds.]

The reflection coefficient

Zb_zc
P e — 11-
o 7 Tz, (2.11-13)

between Z and Z, in Fig. 2.11-1 cannot be used in Eq. (2.11-9) if both

Z, and Z, are complex. However, it can be shown that

e _ o
l‘b [.

ER I | O Z < Z, (2.11-14)

where Z? is the complex conjugate of £,. Thus, if £ = R + jX_ and
Z, =R, +jX,, by use of Eqs. (2.11-14) and (2.11-9) we obtain

Pauil (Rc + Hb)z + (X. M Xb)z (2.11-15)
P, 4R R, ' R

For cases where £ = Z, such as occurs at the middle of a symmetrical

network, Eq. (2.11-15) reduces co
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P R

Pu-il Xn 2
—_— = ] t|— . (2.11-16)
2 .

Another situation which commonly occurs in filter circuits is for
the structure to be antimetrical® about its middle. In such cases, if
Z,and £, in Fig. 2.11-1 are at the middle of a antimetrical network,

then for all frequencies

N
"
N

(2.11-17)

where R, is a real, positive constant. Defining 4, again as R_ + jX
by Eqs. (2.11-17), (2.11-14), and (2.11-9),

R R R OIR5)

(2.11-18)
The quantity #, is obtained most easily by evaluating
R, = Vi i, = real, positive (2.11-19)

at a frequency where £, and £, are both known to be real. The maximally
flat and Tchebyscheff low-pass prototype filter structure whose element
values are listed in Tables 4.05-1(a), (b) and 4.05-2(a), (b) are
symmetrical for an odd number n of reactive elements, and they are
antimetrical for an even number n of reactive elements. The step trans-
formers discussed in Chapter 6 are additional examples of artimetrical

circuits.

SEC. 2.12, SCATTERING COEFFICIENTS

In this book there will be some occasion to make use of scattering
coefficients. Scattering coefficients are ususlly defined entirely from
a wave point of view. However, for the purposes of this book it will be

sufficient to simply extrapolate from previously developed concepts.

.
This tera was coined by Guillemia, See pp. 371 and 467 of Ref. 2.
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The performance of any linear two-port network with terminations

S
11’ 712
S,,, and §,,. With reference to the two-port network in Fig. 2.11-1,

can be described in terms of four scattering coefficients: S

8,, »[[and S,, =T, are simply the reflection coefficients at Ends 1
and 2, respectively, as defined in kqs. (2.11-10) and (2.11-11). The
scattering coefficient Szl is simply the transmission coefficient, t,
for transmission to End 2 from End 1 as defined in Eqs. (2.10-5) and
(2.10-6). The scattering coefficient, S|,, is likewise the same as the
transmission coefficient, t, for transmission to End 1 from End 2. Of
course, if the network is reciprocal S,, = 5, ,. The relations in

Sec. 2.11 involving t, I';, and Iy, of course, apply equally well to

t =S =S“,I‘

12 L =5, and I’y = 8,,, respectively.

Thus, it is seen that as far as two-port networks are concerned,
the scattering coefficients are simply the reflection coefficients or
transmission coefficients discussed in Secs. 2.10 and 2.1]1. However,
scattering coefficients may be applied to networks with an arbitrary
number of ports. For example, for a three-port network there are nine

scattering coefficients, which may be displayed as the matrix

St S, S

700 (2.12-1)

2

Fur an n-port network there are n® coefficients. 1In general, for any
network with resistive terminations,
Z ) - #
5 e 1T . i (2.12-2)
Iy ] (Z ) + &R )
in’ 2

is the reflection coefficient hetween the input impedance (Z, ) at

in’y
Port j and the termination B, at that port. For the other coefficients,

analogously to Eqs. (2.10-5) and (2.10-6),

E
S —t (2.12-3)

ARFFT (£))

Jj avail
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where

(&) il
yVavair By 7{; (E‘)h . (2.12-4)

The voltage Ej is the response across termination Rj at Port j due to a
generator of voltage (E'), and internal impedance H, at Port k. In com-
puting the coefficients defined by Eqs. (2.12-2) to (2.12-4), all ports

are assumed to always be terminated in their specified terminations Rj.

If an n-port network is reciprocal,
S, v S, (2.12-5)

éy Egs. (2.11-9)and (2.11-12) for a dissipationless reciprocal two-port

network
1 = Is,,l2 + IS,,!2 . (2.12-6)
[$,,1 = Is,,] . (2.12-7)
and
S, = S, - (2.12-8)

The analogous relation for the general n-port, dissipationless, reciprocal
network is

] = 8T (s) (2.12-9)

where [S] is the scattering matrix of scattering coefficients [as illus-
trated in Eq. (2.12-1) for the case of n = 3], [S]‘ is the same matrix
with all of its complex numbers changed to their conjugates, and [I] is

an nth-order unit matrix. Since the network is specified to be reciprocal,
Eq. (2.12-5)applies and [S] is symmetrical about its principal diagonal.

For any network with resistive terminations,

Is, .I’ . 5 (2.12-10)
- irh (Pnnil)l



where P) is the power delivered to the termination R, at Port j, and

(P".“). is the available power of a generator at Port k. In accord with

Eq. (2.11-4) the db attenuation for transmission from Port k to Port j

(with all specified terminations connected) is

L, = 20 log,,|— db (2.12-11)

)
a

VAL

Further discussion of scattering cocflicients will be found in Ref.

SEC. 2.13. ANALYSIS OF LADDER CIRCUITS

Ladder circuits often occur in filter work, some examples being the
low-pass prototype filters discussed in Chapter 4. The routine outlined

below is particularly convenient

for computing the response of 1, 1,
—— ——
such networks. e -
2, 2
* +* *
The first step in this rou- | L i T T
. . . Eo(T, Y Y
tine 1s to characterize each ° : | T T ¢
sertes branch by its impedance - = =

and the current flowing through

|
|
the branch., and each shunt [ o

. {2in), Vind,
branch by its admittance and the .
voltage across the bhranch. This
characterization is illustrated FIG. 2.13-1 A LADDER NETWORK EXAMPLE
in Fig. 2.13-1. Then, in general DISCUSSED IN SEC. 2.13

terms we define

F, = serics impedance or shunt admittance of (2.13-1)
Branch &
U, = serics-branch current or shunt-branch (2.13-2)

voltage of dranch k

U 2= series-branch currert or shunt-branch (2.13-3)
voltage for the last branch on the right

Ly, = current or voltage associated with the (2.13-4)
driving generator on the left.

In general, if Branch 1 is in shunt, U  should be the current of an
infinite-impedance current generator; if Branch 1 is in series, U, should
be the voltage of a zero-impedance voitage generator. Then, forall cases,
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Avg = 1 = -
a
4 F A Ua-s
s * a atl = U
f
L!
a=2
Al'l = l‘l‘lAl + Al*l = —U—
(2.13-5)
Upar
A, = F A t A, - U

A = F A + A =

Thus A, is the transfer function from the generator on the left to

Branch m on the right. If we define

(F,,), = timpedance looking right through Branch kR if (2.13-6)
Branch kis in series, or admittance looking
right through Branch k i f Branch k is in shunt,

then

(F,), =

(2.13-7)

To illustrate this procedure consider the case in Fig. 2.13-1.
There = = 4 and

5
EC



. 2

AJ = ZSAO + AS = T
4

Il

A, = YzAs‘rA‘ = T
4

EO

A‘l = ZIA2 +A3 = —l"—
‘4

Thus, A, is the transfer function between £ and £,. 'The impedance

(Zin)l and admittance (Y”)2 defined in the figure are

A
/'/ ) - __1_
“an’t
n ‘42
- .»\2
r2 =
n ,‘1
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CHAPTER 3

PRINCIPLES OF THE IMAGE METHOD FOR FILTER DESIGN

SEC. 3.01, INTRODUCTION

Although the image method for filter design will not be discussed in
detail in this book, it will be necessary for readers to understand the
image method in order to understand some of the design techniques used
in later chapters, The objective of this chapter is to supply the nec-
essary background by discussing the physical concepts associated with
the image method and by summarizing the most useful equations associated
with this method. Derivations will be given for only a few equations;
more complete discussions will be found in the references listed at the

end of the chapter.

SEC. 3.02, PHYSICAL AND MATHEMATICAL DEFINITION OF IMAGE
IMPEDANCE AND [MAGE PROPAGATTON FUNCTION

The image viewpoint for the apalysis of circuits is a wave viewpoint
much the same as the wave viewpoint commonly used for analysis of trans-
mission lines. [In fact, for the case of a uniform transmission line the
characteristic impedance of the line is also its image impedance, and if
Y, is the propagation constant per unit length then ¥,l is the image
propagation function for a line of length . However, the terms image
impednnce and tmage propagation function have much more general meaning
than their definition with regard to a uniform transmission line alone

would suggest.

Consider the case of a two-port network which can be symmetrical,
but which, for the sake of generality, will be assumed to be unsymmetrical
with different impedance characteristics at End 1 than at End 2.
Figure 3.02-1 shows the case of an infinite number of identical networks
of this sort all connected so that at each junction either End 1s are
connected together or End 2s are connected together. Since thz chain of

networks extends to infinity in each direction, the same impedance Z,, is
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—~=0—i < —0- —— —

| 2 tllo 2 lnj‘r-l t-l-r-t .__e___
|

hpe—
€TC. TO €rc. T0
INFINITY 2 il Ziz INFINITY
A-3827-19

FIG. 3.02-1 INFINITE CHAIN OF IDENTICAL NETWORKS USED FOR
DEFINING IMAGE IMPEDANCES AND THE IMAGE
PROPAGATION FUNCTION

seen looking both left and right at a junction of the two End 1s, while
at a junction of two End 2s another impedance Z;, will be seen when
looking either left or right. The impedances le and le' defined as in-
dicated in Fig. 3.02-1, are the image impedances for End 1 and End 2,
respectively, of the network. For an unsymmetrical network they are

generally unequal.

Note that because of the way the infinite chain of networks in
Fig. 3.02-1 are connected, the impedances seen looking left and right at
each junction are always equal, hence there is never any reflection of a
wave passing through a junction. Thus, from the wave point of view, the
networks in Fig. 3.02-1 are ail perfectly matched. If a wave is set to
propagating towards the right, through the chain of networks, it will be
attenuated as determined by the propagation function of each network, but
will pass on from network to network without reflection. Note that the
image impedances Z,, aid Z;, are actually impedance of infinite networks,
and as such they should be expected to have a mathematical form different
from that of the rational impedance fuuctions that are obtained for finite,
lumped-element networks. In the cases of lumped-clement filter structures,
the image impedances are usually irrational functions; in the cases of
microwave filter structures which involve transmission line elements, the

image impedances are usually both irrational and transcendental.

An equation for the image impedance is easily derived in terms of the
circuit in Fig. 3.02-2. If Z, is made to be equal to Z,, then the impedance
Z,, seen looking in from the left of the circuit will also be equal to Z,,.
Now, if A, B, C, and D are the general circuit parameters for the box on
the left in Fig. 3.02-2, assuming that the network is reciprocal, the



general circuit parameters A , B , C

.l ‘l
and D, for the two boxes connected as _
shown can be computed by use of ! 2 2 |E
Eq. (2.05-7). Then by Eq. (2.09-1) ["’—' —o
Tin
2 A.Z, + B. A-3827-19
in " Tz +D (3.02-1)
s L ]

FIG. 3.02-2 CIRCUIT DISCUSSED IN SEC. 3.02

Setting Z, = Z, = Z,, and solving for
Z“ in terms of A, R, C, and D gives

AB

Zyo (3.02-2)

The same procedure carried out with respect to End 2 gives

DB
z, = 1/a : (3.02-3)

Figure 3.02-3 shows a network with a generator whose internal imped-
ance is the same as the image impedance at Fnd 1 and with a load impedance
on the right equal to the image impedance at Knd 2 With the terminations

matched to the image impedances in this manner it can be shown that

["l le
ok e” (3.02-4)
2 12
I, 13
—_— —

Iy ' -

Eq E i NETWORK 2f«, E2 |212

2y 33

A-3527-20

FIG. 3.02-.3 NETWORK HAVING TERMINATIONS WHICH
ARE MATCHED ON THE IMAGE BASIS
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or

E Z
1 I?
E_ ;—" s e7 (3.02-5)
2 ‘11
where
y = a+jB8 = In [VAD + VBC) (3.02-6)

is the image propagation function, & is the image attenuation in nepers,*
and 8 is the image phase in radians. Note that the /77:7E;: factor in

Eq. (3.02-5) has the effect of making ¥ independent of the relative imped-
ance levels at Ends 1 and 2, much as does the Vﬁ;7§: factor in Eq. (2.10-4).
An alternative form of Eq. (3.02-5) is

y = a+ 38 = |In -— (2.02-7)

where I, = F,/Z  and I, = E,/Z,, ere as defined in Fig. 3.02-3.

It should be emphasized that the image propagation function defines
the transmission through the circuit as indicated by Eq. (3.02-4),
(3.02-5), or (3.02-7) unly 1f the terminations match the image impedances
as wn Fig. 3.02-3., The effects of mismatch will be discussed in Sec. 3.07.
For a reciprocal network the image propagation function is the same for
propagation in either direction even though the network may not be
symmetrical.

SEC. 3.03, RELATION BETWEEN THE IMAGE PARAMETERS AND GENERAL
CIRCUIT PARAMETERS, OPEN-CIRCUIT IMPEDANCES, AND
SHORT-CIRCUIT ADMITTANCES

The transmission properties of a linear two-port network can be de-
fined in terms of its image parameters as well as in terms of the various
parameters discussed in Secs. 2.05 to 2.07. Any of these other parameters
can be computed from the image parsmeters and vice versa. These various
relationships are summarized in Tables 3.03-1 and 3.03-2. For simplicity,
only equations for reciprocal networks are included.

* Te change aepers to decibels multiply nepers by 8.686.



Table 3.03-1

IMAGE PARAMETERS IN TERMS OF GENERAL CIRCUIT PARAMETERS,
OPEN-CIRCUIT IMPEJANCES, OR SHORT-CIRCUIT ADMITTANCES

IMAGE IN TERNS OF IN TERMS OF IN TERMS OF IN CONVENIENT
PARAMETER A,8,C,D ‘ll'.lz s 'zln .22 ’ll',lz = ’21"22 MIXED FORM
z l/ég. 311 % [ Y22 T
n 22 4 m
Toe & y f]
z I/ 22 &, 1 222
I & ) Yaz & Y22
- - ¥ -1 ———
y=a + j8 | ecoth '1/& cota™l, /AL 22 corn~l, 1122 coth Wz vy
% % = ecoth™ V3
22723
Ve 4 'y y
cosh™ WVAD eub-l(%-g) cosh l( 11 22)
21 Y21
B VA
linh-lm sinh l(—ﬁ) nnh-l(—J-)
21 Y
where . = 211229 T 22 '
A T YpYzaT Y2 o
Table 3.03-2

GENERAL CIRCUIT PARAMETERS, OPEN-CIRCUIT IMPEDANCES,
AND SHORT-CIRCUIT ADMITTANCES IN TERMS OF IMAGE PARAMETERS

Z
A = 1/#: coshy B = VZ 7y, sinh ¥
c sinh ¥ p Z X
T B e = cosh ¥
YZrylyg V7,
vi,.2
n - lll coth ' 2 * snnﬁ'y
Iy % i ' tgg ™ %, cothy
TV
2
yi = Ypeothy Y2 * s—q-iml‘y
Y1t Y2 ' Yog = Ypg cothy
where Y“ = z}; and Y” . -z:;
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SEC. 3.04, IMAGE PARAMETERS FOR SOME COMMON STRUCTURES

The image parameters of the L-section network in Fig. 3.04-1 are

given by
Z,, = VZ,Z,6+2Z,) (3.04-1)
z Oned Zg
a
- VIZ NS (3.04-2) 2, — 2| - 2y
¢
e ° A-5927-21
zz,
Zyp, = T (3.04-3)  FIG. 3.04-1 AN L-SECTION NETWORK
Zl(zl + ZO)
ZIZG
. > (3.04-4)
1 +—
z¢
ZG’
y = coth"iqyfl * 5 (3.04-5)
‘s
Zl
= cosh™1y/1 t (3.04-6)

1 _Z'
= inh” V . .04-
sin Z (3.04-7)

Note that by Eqs. (3.04-2) and (3.04-4)

ZCZC

Z s — . (3.04-8)
I le

For the symmetrical T-section in Fig. 3.04-2

Z, = Z

- VZ(Z, + 2Z,) (3.04-9)

12



2z
y = 2 mh"1/1 + -z—" (3.04-10)

. o 2, 2, o
7 Iy —» 2 - Ity
 }
= 2 cosh”! (1 +—->(3.o4-11) o= L -
226 A-sser-n
> FIG. 3.04-2 A SYMMETRICAL T-~SECTION NETWORK
[
= 2 minh~? ;E: (3.04-12)

Note that the circuit in Fig. 3.04-2 can be formed by two L-sections as
in Fig. 3.04-1 put back to back so that Z, in Fig. 3.04-2 is one-half of
Z, in Fig. 3.04-1. Then Z,, will be the same for both networks and 7y for
the T-section is twice that for the L-section.

For the 7-section in Fig. 3.04-3 the image admittances are

Yoo o= Y, = P (Y[ +2Y)) (3.04-13)
and
2¥
v = 2 coth™} 1+7— (3.04-14)
1
Y,
= 2 cosh™l{] + — (3.04-15)
ay,

7
1

2 sinh™ 14/ — (3.04-16)
V 2y,

A m-section can also be constructed

from two half sections back to

back, so that Yl = l/Ze and o T Yy —
Y3 = 1/(22¢). For Fig. 3.04-1, Yy, —]| Y, Yo | - vy,
Y” - l/Z,2 will then be the same o 1.

as YI! - Yll in Fi8~ 3.04-3, while A-3527-23

¥ for Fig. 3.04-3 will again be
twice that for Fig. 3.04-1,

FIG. 3.04.3 A SYMMETRICAL 7-SECTION NETWORK
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For a uniform transmission line of length I, characteristic impedance
Zo, and propagation constant ¥, = &, + j3, per unit length,

Z,, = 2, = 2, (3.04-17)
y = oyl o= oa, o+ B, (3.04-18)

SEC. 3.05, THE SPECIAL IMAGE PROPERTIES OF DISSIPATIONLESS

NETWORKS
/‘11
Z’l s _— (3.05'1)
Y

v = a+j8 = coth™! «zllyll . (3.05-2)

For a dissipationless network, we may write for frequencies p = jw

By Table 3.03-1

while

qy ot TG, (3.05-3)
and
- —'l—' (3.05-4)
SLNTY RN '

where j(X,, ) is the impedance at End 1 of the network with End 2 open-
circuited, and j(X, ) is the impedance at End 1 with End 2 short-
circuited. Then by Egqs. (3.05-1) to (3.05-4), for dissipationless net-
works

Z,, = vV-(X )X(X )l (3.05-5)
and

(3.05-6)
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The inverse, hyperbolic cotangent function in Eq. (3.03-6) is a
multivalued function, whose various possible values all differ by
multiples of jm. For this reason, it is convenient to write Eq. (3.05-6)
in the form

(3.05-17)

where the inverse hyperbolic function is to be evaluated to give an
imaginary part having minimum magnitude, and where the appropriate value
for the integer n must be determined by examination of the circuit under
consideration. Equation (3.05-7) also has the equivalent form

y = a+ b = + 7(2n - 1)127- . (3.05-8)

Two distinct cases occur in the evaluation of Eq. (3.05-5) and
Eq. (3.05-7) or (3.05-8) depending on whether (X _) and (.\’”_)1 have the
same sign or opposite signs. These two cases will be summarized

separately.

Case A, Condition for a Pass Band--In this case (X”)l and (X, )

1
have opposite signs and

Zyy = o4~ )l(X ) = real and positive. (3.05-9)

oe¢ s¢c
i

It cawn be shown that, at the same time, the condition

Z,z a 1/;:i°‘izkk::)2 = real and positive, (3.05-10)

must also exist, where (Xc‘) and (X.e) are the open- and short-circuit
impedances measured from End 2. Under these conditions, Eqs. (3.05-7)
and (3.05-8) yield for a and 8,

a = 0 (3.05-11)
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Moy -

radians

(3.05-12)

1
ISR |

radians

Note that for this pass-band case, the attenuation is zero while the phase

is generally non-zero and varying with frequency. In Eqs. (3.05-11) and
(3.05-12) the n7 term has been omitted since the multivalued nature of
these inverse trigonometric functions will be familiar to the reader
(though perhaps the multivalued nature of inverse hyperbolic functions
may not).

Case B, Conditions for a Stop Band—1In this case (X, ) and (X")l
[and also (X")z and (x'°)z] have the same sign. Then

= - = -
Z,l v (X”)I(X”)l )X,l (3.05-13)
and
Z,2 . V-(X”)I(X")2 = )X, (3.05-14)

are both purely imaginary. Both X, , and X,, must have positive slopes
vs. frequency, in accord with Foster’'s reactance theorem. If
(X")l > (X")l Eq. (3.05-7) should be used to obtain a and §:

nepers (3.05-15)

and

B = nam radians . (3.05-16)



If (X")l < (X )l. Eq. (3.05-8) should be used, and it gives

nepers (3.05-17)

and

5 = (2»-1)% radians . (3.05-18)

Note that for this stop-band case the image attenuation is non-zero and
will varvwith frequency. Meanwhile, the image phase is constant vs,
frequency at some multiple of 7, or odd multiple of 7/2. However, it will
be found that the image phase can make discrete jumps at points in the

stop band where there are poles of attenuation for frequencies jw.

A similar analysis for dissipationless networks can be carried out
using the various other expressions for the image parameters in Secs.3.03
and 3.04. The various equations given for the image propagation constant
will involve inverse hyperbolic functions of a purely real or purely
imaginary argument. Due to the multivalued nature of these inverse
hyperbolic functions care must be taken in evaluating them. Table 3.05-1
should prove helpful for this purpose. Note that in some cases a different
equation must be used depending on whether |u| or|v| is greater or less than
one. This is hecause, for example, cosh™ !y when taken to be a function of
a real variable cannot be evaluated for w = |ul < 1; if however, w is a
function of a complex variable the above example has a value, namely,
J(cos™!u). The proper value of the integer n to be used with the various
equations in Table 3.05-1 must be determined by examination of the circuit
at some frequency where the transmission phase is easily established. As
was done in the case of Eqs. (3.05-11) and (3.05-12), the n7 terms have
been omitted for forms involving inverse trigonometric functions since
their multivalued nature is much more widely familiar than is that of in-

verse hyperbolic functions.
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Teble 3.05-1

EVALUATION OF SOME INVERSE HYPERHOLIC FUNCTIONS
FOR PURELY REAL OR PURELY IMAGINARY ARGUMENTS

In general), W= U ¢+ ¥, wsu ¢ )y, and n is an integer (pesaitive, nagative or sero)

Punction Case of v s & Csse of v » )¢

i lel >1

=0+ j(-cot'lu)
¥ = coth v jan

" s cothle
i o] <1
=0+ j[(un-lv) - f]
Peeamhlu e m- 0§
vesim e | 0= -1 sinhle ¢ jnn il 1,
n = odd
ifv>1 ,
¥=coshly 4 j(2n - 1) §
n = even
ifv<-l
If Ivl s | BN
W=0+jsinly
#acoshe | 1f Jul>1
n = even n = odd
ifu>l , ifv>0
" =cosh™lu ¢ jnm ¥=ainh v+ yn -1 F
a = odd n = even
ifu<-l. ifv<o
HEAMES!

ms0+j coaly

SEC. 3.06, CONSTANT-k AND m-DERIVED FILTER SECTIONS

Constant-k and m-derived filters are classic examples of filters
which are designed from the image point of view. Their properties will
be briefly summarized in order to illustrate some of the image properties
of dissipationless networks discussed in the preceding section, and to
provide reference data. The filter sections shown are all normalized so
that their image impedance is Ry = 1 ohm at w' = 0 and their cutoff fre-
quency occurs at w, = 1 radian/sec. However, these normalized circuits
can easily be chang.d to other impedance and frequency scales. Each
resistance, inductance, or capacitance is scaled using



(%)
R - 7*_6R (3.06-1)

R w! 7 -
L = (R—o) (—I)L' (3.06-2)
o/ \@;

w) e
C = F—) w—C (3.06-3)

where R', L', and C' are for the normalized circuit and R, L, and C are

or

corresponding elements for the scaled circuit. The ratio Ro/R; defines
the change in impedance level while wl/w; defines the change in frequency
scale.

Figure 3.06-1(a) shows a normalized constant-k filter half section.

Its image impedances are

Z, = 1= (")} (3.06-4)
and
1 1
z,, = . : (3.06-5)

Its propagation function is

y = a+jB = 0+ sinlo (3.06-6)

for the 0 § w' § 1 pass band, and
- ”
Y = a+jB = coshlo’ 4 — (3.06-7)
for the 1 § w' § ® stop band, where @ is in nepers and 8 is in radians.

Figures 3.06-1(b), (c) show sketches of the image impedance and
attenuation characteristics of this structurc. Note that, as discussed
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in Sec. 3.05, Z,, and Z, are purely real in the pass band and purely
imaginary in the stop band. Also note that @ = 0 in the pass band while
B is constant in the stop band.

Figure 3.06-2(a) shows a “series, m-derived’’ half section. Its
image impedainces are

P vl - (@2 (3.06-8)

Z," s —— : (3.06-9)
where

W B ——— . (3.06-10)

Note that Eq. (3.06-8) is i1dentical to Eq. (3.06-4), but Eq. (3.06-9)
differs from Eq. (3.06-5). The propagation function is

]
vy = at B = o+15cos“ 1 - (3.06-11)

’

in the 0 $ @' § 1 pass band,

1 -1 m? 7
Yy = ry cosh - 1] +j ry (3.06-12)

2
(“%) - (1 - m?)
[

in the 1 = w' ¢ w, stop band, and

1
Yy = —2--<:osh'l 1 - +J0 (3.06-13)

in the wy § @' § @ stop band.
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Figures 3.06-2(b) and (c) show sketches of the image impedance and
propagation characteristics of this structure. Note that introducing a
series resonance in the shunt branch in Fig. 3.06-2(a) has produced a
pole of attenuation at the frequency w, where the shunt branch short-
circuits transmission. (See discussion in Sec.2.04.) Note that
z, . =R in the pass band in Fig. 3.06-2(b) is more nearly constant

Ine

than is R, in Fig. 3.06-1(b). This property of m-derived image impedances

makes them helpful for improving the impedance match to resistor
terminations.

The “shunt m-derived’’ half section in Fig. 3,06-3(a) is the dual of
that in Fig. 3.06-2(a). The image impedances are

vl = (@')?
Zigg = ———— , (3.06-14)

z,, » ———— (3.06-15)

where again

-
—

ém — , (3.06-16)
In this case Z,, in Eq: (3.06-14) differs from Z,, in Eq. (3.06-4), but
Eqs. (3.06-15) and (3.06-5) are identical. The image propagation function
for this section is the same as that in Eqs. (3.06-11) to (3.06-13).

Figures 3.06-3(b) and (c) show sketches of the image characteristics of

this filter section. In this case, a pole of attenuation is produced at

the frequency w, where the series branch has apole of impedance which blocks
all transmission. The image impedance Z,, is seen to be more nearly con-
stant in the pass band than was Z,, in Fig. 3.06-1(b). Thus, m-derived

half sections of this type are also useful for improving the impedance

match to resistor terminations,

Figure 3.06-4(a) and (b) show how constant-k and m-derived half sec-
tions may be pieced together to form a sizeable filter., In this case,

three constant-k half sections are used along with two, series, m-derived,
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half sections. The two m-derived sections hsve m = 0.5, which introduces

a pole of attenuation at w, = 1,16 snd greatly increases the rate of cutoff
of the filter. As indicated in Fig. 3.06-4(a) the sections are all chosen
so that the image impedances match at each junction. Under these conditions
when the sections are all joined together, the image attenuation and the
image phase for the entire structure are simply the sum of the image atten-
uation and phase values for the individual sections. Likewise, with all of
the sections matched to each other, the image impedances seen at the ends
are the same as the image impedances of the end sections before they were
connected to the interior sections.

The circuit in Fig. 3.06-4(b) would have the transmission character-
istics indicated in Fig. 3.06-4(c) if it were terminated in its image im-
pedances at both ends. However, since in practice resistor terminations
are generally required, this tranamission characteristic will be consider-
ably altered (mainly in the pass band) due to the reflections at both ends
of the filter. In order to reduce the magnitude of these reflections ef-
fects, it is customary with filters of this type to introduce m-derived
half-sections at each end of the filter with the impedance Z;, or Z, .
next to the termination resistor. Vith m = 0.6, these image impedances
are relatively constant in the pass band and it becomes possible to greatly
reduce the reflection effects over much of the pass band. These matters
will be discussed further in Secs. 3.07 and 3.08.

SEC. 3.07, THE EFFECTS OF TERMINATIONS WHICH MISMATCH THE
IMAGE IMPEDANCES

The resistance terminations used on dissipationless filter structures
cannot match the image impedance of the structure except at discrete fre-
quencies in the pass band. As a result of the multiple reflections that
occur, the performance of the filter may be considerably altered from that
predicted by the image propagation function. This alteration is most severe
in the pass band and in the stop hand near cutoff. Formulas which account
for the effects of such terminal reflections are summarized below.

Consider the circuit in Fig. 3.07-1 whose image impedances, Z,, and
Z,,, may differ considerably from R, and R,. The voltage attenuation
ratio, E./E’, may be calculated from the image psrameters and the termi-
nations using the equation

(1
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E, z,, [1 - e-=vr,,r,,]
E—--z—e'y

2 Zyq T T
where
r Rl le
Il
Rl + Z’l
and
R, - 2
1
r 2 2

1z ° R, + R,

are the reflection coefficients at Ends 1 and 2 while

2z

‘11
T . ——
11
Ry +7,,
and
2Bz
T

re *© R, +Z,,

(3.07-1)

(3.07-2)

(3.07-3)

(3.07-4)

(3.07-5)

are the transmission coefficients (see Sec. 2!08). Note that these re-

flection and transmission coefficients are defined with respect to the

image impedances rather than with respect to the actual input impedances

Z d .
( "‘)1 an (Zn)z



The actual input impedance seen looking in End 1 with End 2 termi-
nated in R, is ’

1+,,e"2
(Zi-)l = Z, L . (3.07-6)
1 - r,ze'27

By analogy, (Zi_)2 in Fig. 3.07-1 is

1+ r,xe'27
(Zin) = Z,2 —— . (3.07-7)
2 1 - r’le'27

Fquations (3.07-1) to (3.07-7) apply whether the circuit has dissipation

or not.

For a dissipationless network at pass band frequencies where
y= 0t j"”‘n-l.z.a. ... Eq. (3.07-6) shows that

z,) = —R&, (3.07-8)
12

while at frequencies where vy = 0 t )(2n - 1)("/2)ln-1,2.s. e

g

(3.07-9)

where Z,, and Z;, will be purely real. Analogous expressions also exist
for (Zi-)z'

Equation (3.07-1) is quite general, and it can be used with
Eqs. (2.11-2) and (2.11-4) for computing the attenuation of a network.
However, simpler expressions (about to be presented) can be used if the network
is dissipationless. Such expressions become especially simple if the dis-
sipationless network is symmetrical (i.e., Z,, = Z,,) and has symmetrical
terminations (i.e., R, = R,). Another case of relative simplicity is that
of a dissipationless antimetrical network (see Sec. 2.11) with antimetrical
terminations. Such a filter will satisfy the conditions
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Z . — 07-
n 7r, (3.07-10)
kg
Ry = 5= (3.07-11)
2

at all frequencies, where K is a positive, real constant. The constant-k
half section in Fig. 3.06-1 is an example of an antimetrical network. The
filter in Fig. 3.06-4 also satisfies the antimetry condition given by

Eq. (3.07-10).

For dissipationless symmetrical networks with symmetrical terminations,

Z,, = I, in the pass band and the attenuation is

I 10 1 1+1(—€13-“'>2 in2 5| db (3.07-12)
“ %610 v \k, n,, /) % 07-

while in the stop band Z,, = ;X,, and

WA TELIRS
Ly = 101log|) 4+ —[— +—) sinh? «| db . (3.07-13)
s\n, X,/

Similarly for dissipationless antimetrical networks with antimetrical

terminations, in the pass band

1 "u "1 : ?
L, = 10 log,, l+: —"—l'-n—’-: cos® £ db (3.07-14)

while in the stop band Eq. (3.07-13) applies just as for the symmetrical
case., For the symmetrical case

F,l - r,, (3.07-15)
while for the antimetrical case

Y (3.07-16)



For the dissipationless symmetrical case the stop-band image phase is o
multiple of 7 radians, while in the dissipatic..leas antimetric case it is
an odd multiple of 7/2 radians.

The actual pass-band attenuation which will result from mismatched
image impedances is seen by Eqs. (3.07-12) and (3.07-14) to depend strongly
on the image phase, 8. For given Z,, and R, it is easily shown that the
maximum possible pass-band attenuation in a dissipationless symmetrical
or antimetrical network with symmetrical or antimetrical terminations,
respectively, is

a? + ]
) db (3.07-17)

L, = 20 log,, ( -

where

Z k,
or —
R, n

with either definition giving the same answer. For symmetrical networks,
the value given by Eq. (3.07-17) applies when 8 = (2n - 1)7/2 radians

while L, = 0 when 8 = n7 radians (where n is an integer). For antimetrical
networks Eq. (3.07-17) applies when 8 = n7v radians while L, = 0 when

£ = (2n - 1)7/2 radisns. Figure 3.07-2 shows a plot of maximum L, vs. a,
and also shows the corresponding input VSVR.

SEC. 3.08, DESIGN OF MATCHING END SECTIONS TO IMPROVE THE
RESPONSE OF FILTERS DESIGNED ON THE IMAGE BASIS

As mentioned in Sec. 3.06, one way in which the pass-band response
of constant-k filters can be improved is to use m-derived half sections
at the ends. Experience shows that a half section with & about 0.6 will

cause Z,, or Z to give the best approximation of a constant resistance

”a
in the pass bnn;, and hence will cause the ends of the filter to give the
beat match to resistor terminations. As an example, Fig. 3.08-1 shows the
normalized filter structure in Fig. 3.06-4(b) with matching sections added
to improve the pass-band match to the one-ohm terminations shown. The
matching sections also introduce poles of attenuation at wy = 1.25, which

will further sharpen the cutoff characteristics of the filter.
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In the design of microwave filter structures on the image basis, it
is often desirable that the matching end sections be of the same general
form as the main part of the filter. Consider the case of a wide band,
band-pass filter to be constructed using filter sections as shown in
Fig. 3.08-2(a). The filter sections have image characteristics as shown
in Fig. 3.08-2(b), (c). Figure 3.08-3 shows the left half of a symmetrical
filter formed from such sections. In this filter the interior sections of
the filter are all alike, but two sections at each end are different in
order to improve the pass-band match to the terminations. The design of

such end sections will now be considered.

As is seen from Fig. 3.08-2(c), each section of the filter has a mid-
band image phase shift of 5 = 7/2. The total midband image phase shift
for the end matching network in Fig. 3.08-3 at f, is thus £ = 7. At mid-
band, then, the end matching network will operate similarly to a half-
wavelength transmission line, and in Fig. 3.08-3

Z . = R . (3.08-1)
n /-!o [ ]

Thus, if Z, is the image impedance of the interior sections of the filter,
and Z, is the image impedance of the sections in the end matching network,
then if

z = R (3.08-2
Tyar, J )
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a perfect match is assured at f,, regardless of the size of Z!. at that

frequency. At pass-band frequencies f ,, and f, ,,, where the image phase
shift of the end matching network is ( = 7/2 and 37/2, respectively,

z,,)?

7iu R
[ §

(3.08-3)

similarly to Eq. (3.07-9). Thus, setting Z, = Z, and solving for Z,,
gives

Z,, = VIR, (3.08-4)

as the condition for a perfect impedance match when 8 = 7/2 or 37/2 for
the end matching network. Dy such procedures a perfect impedance match
can be assured when the end matching network has 7/2, 7, or 37/2 radians

image phase.

Figure 3.08-4 shows how the image impedance of the end matching net-
work might compare with the image impedance of the interior sections for
a practical design. In this case H. is made a little less than Z, for
the interior sections at fo' but Z, and Z,. are both made to be equal to
R' at f_and f,, a little to each side of f,, so that a perfect matchwill
be achieved at those two frequencies. This procedure will result in a
small mismatch in the vicinity of f,, but should improve the over-all re-
sults. The end matching network is made to be more broadband than the
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interior sections of the filter so that the £ = 7/2 and 37/2 phase shift
points will occur near the cutoff frequencies of the interior sections,
The end matching network is designed so that Fq. (3.08-4) will be satis-
fied, at least approximately, at these two frequencies in order to give

a good impedance match close to the cutoff frequencies of the filter. In
this particular example there are only three degrees of freedom in the
design of the end matching network, namely the size of C.. the size of
(Zo)', and the length of the transmission lines in the sections of the end
matching network. One degree of freedom is used in fixing the center fre-
quency of the response, another may be used for setting Z,. . R' at fre-
quency f_ in Fig. 3.08-4, and another may be used for satisfying

Eq. (3.08-4) at f_,,. Although matching conditions are not specifically
forced at frequencies f, and f, ,, in Fig. 3.08-4, they will be approxi-
mately satisfied because of the nearly symmetrical nature of the response
about f,.

The design procedure described above provides a perfect impedance
match at certain frequencies and assures that the maximum mismatch through-
out the pass band will not be large. 1In addition it should be recalled
that perfect transmission will result at pass-band frequencies where the
image phase of the over-all filter structure is a multiple of 7 radians,
as well as at points where the image impedances are perfectly matched.
These same principles also apply for the design of matching sections for
other types of filters.

”



SEC. 3.09, MEASUREMENT OF IMAGE PARAMETERS

Occasionally it will be desirable to measure the image parameters of
a circuit. A general method is to measure the input impedance at one end

for open- and short-circuit terminations at the other end. Then

Z’l = "(Zo‘.)l(z.c)l (3.09'])
Zyy v v, 2,0 (3.09-2)

and for a reciprocal network

(3.09-3)

In these equations (Z _) and (Z,,) are impedances measured at End 1 with
End 2 open-circuited and short-circuited, respectively. Impedances “z,.)
and (Z.e) are corresponding impedances measured from End 2 with Fnd 1

open-circuited or short-circuited.

If the network has negligible dissipation and is symmetrical, a con-

venient method due to Dawirs?

can be used. Using this method the network
is terminated at one port in a known resistive load R, and its input im-
pedance Z, =R, + jX. is measured at the other port. Then the image

impedance Z, can be computed from Z‘n and R, by the equation’

(3.09-4)

which applies for both the pass and stop bands.

Dawirs® has expressed this method in terms of a very useful chart
which is reproduced in Fig. 3.09-1. This chart should be thought of as
being superimposed on top of a Smith chart®’ with the zero “wavelengths
toward generator’ point coinciding with that of the Smith chart. Then

1
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to obtain the image parameters, Zin measured as discussed above, is nor-
malized with respect to R,. Next, the point Z, /R, is first plotted on

a Smith chart, and then scaled to the same point on this chart by use of

a scale and cursor. In the pass band the Z, /R, points will fall within
either of the two heavy circles marked “cutoff circle,” while in the stop
band the Z, 'R, points will fall outside of these circles. Further details
of the use of the chart are perhaps best illustrated by examples.

Suppose that Zin/HL = 0.20 + ; 0.25. Plotting this point on a Smith
chart and then rescaling it to this chart gives the point shown at 4 in
Fig. 3.09-1. The circles intersecting the vertical axis at right engles
give the image impedance while the nearly vertical lines give the phase
constant. Following the circle from point A around to the vertical axis
gives a normalized image impedance value of R, R, = 0.35, while the phase
constant is seen to be approximately 0.37 2. This chart uses the term
“characteristic impedance' for image impedance and cxpresses the image
phase in wavelengths for specific reference to transmission lines. How-
ever, the more general image impedance concept also applies and the cor-
responding image phase in radians (within some unknown multiple of 7) is
simplv 27 times the number of wavelengths. Thus in this case

2 = 0,37(27) + n7 radians.

If Z, R, gave the point /' in Fig. 3.09-1, the filter would be cut
off, hence, the image impedance would be imaginary and a would be non-
zero. In this case the image impedance is read by following the line to
the outer edge of the chart to read jX, B, = j 1.4, while the image at-
tenuation in db is read from the horizontal axis of the chart as being
about 8.5 db. Since the network is specified to be symmetrical, the stop-

band image phase will be zero or some multiple of 7 radians (see Sec. 3.07).
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CHAPTER 4

LOW-PASS PROTOTYPE FILTERS OBTAINED BY
NETWORK SYNTHESIS METHODS

SEC. 4.01, INTRODUCTION

Many of the filter design methods to be discussed in later chapters
of this book will make use of the lumped-element, low-pass prototype
filters discussed in this chapter. Most of the low-pass, high-pass, band-
pass, or hand-stop microwave filters to le discussed will derive their
important transmission characteristics from those of a low-pass prototype
filter used in their design. Flement values for such low-pass prototype
filters were orviginally obtained by network synthesis methods of Darlington

13 jlowever, more recently concise equations Vi

and others. which are con-
venient for computer programming have lLeen found for tie element values
of the types of prototvpe filters of interest in tiis book, and numerous
filter designs have been tabulated. Some of the tanles in this book were
obtained from the work of Weinberg,®® while others were r~omputed at
Stanford Research Institute for the purposes of this book. No discussion
of formal network synthesis methods will be included in this book since
these matters are discussed extensively elsewhere (see Hefs. 1 to 3, for
example), and since the availability of talulated designs makes such dis-
cussion unnecessary. ‘The main objectives of this chapter are to make clear
the properties of the tatulated prototype filters, delay networks, and
impedance-matching networks so that they may te used intelligently in the
solution of a wide variety of microwave circnit design problems of the

sosts discussed in Chapter 1.

It should be noted that the step transformers in Chapter 6 can also
be used as prototypes for the design of certain tvpes of microwave filters

as is discussed in Chapter 9.

SEC. 4.02, COMPARISON OF IMAGE AND NETWOKK SYMULSIS
METHODS FOR FILTER DESTGN

As was discussed in Chapter 3, the image impedance and attenuation
function of a filter section are defined in terms of an infinite chain

of identical filter sections connected together. Using a finite,



dissipationless [ilter network with resistor terminations will permit
the image impedances to be matched only at discrete frequencies, and the
reflection effects can cause sizeable attenuation in the pass band, as
well as distortion of the stop-hand edges.

In Sec. 3.08 principles were discussed for the design of end sections
which reduce these reflection effects. Although such methods will defi-
nitely reduce the size of reflections in filters designed by the image
method, they give no assurance as to how large the peak reflection loss
values may he in the pass hand. 'Thus, though the image method is con-
ceptually simple, it requires a pood deal of ‘‘cut and try" or “know how"
if a precision design with low pass-band reflection loss and very

accurately defined hand edgzes is required.

Network synthesis methods!?? for filter design generally start out

by specifying a transfer function [such as the transmission coefficient t,
defined by Eq. (2.10-6)] as a function of complex frequency p. From the
transfer function tie input impedance to the circuit is found as a function
of p. Then, by various continued-fraction or partial-fraction expansion
procedures, the input impedance is expanded to give the element values of
the circuit. ’lhe circuit obtained by these procedures has the same transfer
function that was specified at the outset, and all puess work and “cut and
try” is eliminated. Image concepts never enter such procedures, and the
effects of the terminations are included in the initial sperifications of

the transfer function.

In general, a low-pass filter designed by the image method and an
analogous filter designed for the same application by network synthesis
methods will be quite similar. {lowever, the filter designed by network
synthesis methods will have somewhat different element values, to give it

the specified response.

The Tchehyscheflf and maximally flat transfer functions discussed in
the next section are often specified for filter applications. The filters
whose element values are tabulated in Sec. 4.05 will produce responses
discussed in Sec. 4.03 exactly. ilowever, in designing microvave filters
from low-pass, lumped-element prototypes approximations will he involved.
Nevertheless, ‘the approximations will generally bhe very good over sizeable
frequency ranges, and the use of such prototypes in determining the
parameters of the microwave filter will eliminate the guess work inherent
in the classical image method.



SEC. 4.03, MAXTMALLY FLAT AND TCHEBYSCHEFF FILTER
ATTENUATION CHARACTERISTICS
Figure 4.03-1 shows a typical maximally flat,* low-pass filter at-
tenuation characteristic. The frequency "“'l" where the attenuation is LA’,
is defined as the pass-band edge. This characteristic is expressed

mathematically as

! n
LyGe') = 10 log o k1 + ¢ —;) db (4.03-1)
\(1)l
where
l.‘
. r
€ = [antilog, —l—(; -1 . (4.03-2)

The response in Fig. 4.03-1 can be achieved by low-pass filter circuits
such as those discussed in Sees. 4,04 and 4,05, and the parameter n in
Eq. (4.03-1) corresponds to the number
of reactive elements required in the

circuit. this attenuation charscter-
1stic acquires its name maximally flat
from the fact that the quantity within

the square brackets in kq. (4.03-1)

La—

has (2n - 1) zero derivatives at«' =0,

In most cases | [or maximally

flat filters is defined as the 3-db

band-edge point. Figure 4.03-2 shows ° o’
)

plots of the stop-hand attenuation w'=rodiom
A-3027- 92
characteristics of maximally flat fil-

ters where L, = 3 db, for n = 1 to15. FIG. 4.03-1 A MAXIMALLY FLAT LOW-

Note that for convenience in plotting PASS ATTENUATION
CHARACTERISTIC

the data I""/’U” - 1 was used for the
abscissa. ‘Ihe magnitude sign is used
on (u’/m; bhecause the low-pass to band-
pass or band-stop mappings to he discussed in later chapters can yield
negative values of »'/w; for which the attenuation is interpreted to be

the same as for positive values of »'/n|.

Another commonly used attenuation characteristic is the Tchebyscheff
or “equal-ripple’ characteristic shown in rig. 4.03-3. In this case L

.
This charscteristic is also known as a Butterworth filter charscteristic,
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FIG. 4.03.2 ATTENUATION CHARACTERISTICS OF MAXIMALLY FLAT FILTERS
The Frequency | is the 3-db Band-Edge Point

is again the maximum db attenuation in the pass hand, while «w| is the
equal:ripple band edge. Attenuation characteristics of the form in

Fig. 4.03-3 may be specified mathematically as
L ' + 2 -l_a_);
Jfw') = 10 logy g {1 *+ € cos®|n cos — (4.03-3)
!

and

1

L,(w') = 10 log;,41 + € cosh?|n cosh"l(-z))—) (4.03-4)
1 S
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where

L
e = | antilog,, <-f6> -1 . (4.03-5)

This type of characteristic can also be achieved by the filter structures
described in Secs. 1,04 and 4,05, and the parameter n in Eqs. (4.03-3)
and (4.03-4) is again the number of reactive elements in the circuit. 1If
n is even there will be n/2 frequencies where L, =~ 0 for a low-pass
Tchebyscheff response, while if n is odd there will be (n + 1),/2 such
frequencies. Figures 4.03-1 to 4.03-10 show the stop-band attenuation
characteristics of Tchebyscheff {ilters having LA' = 0.01, 0.10, 0.20,
0.50, 1.00, 2.00, and 3.00 db pass-hand ripple. Azain,

used as the abscissa.

wsell =1 s

It is interesting to compare the maximally flat attenuation character-
istics in Fig. 4.03-2 with the I'chebyscheff characteristics in Figs. 4.03-4
to 4.03-10. It will be seen that for a given pass-band attenuation toler-
ance, L, , and number of reactive elements, n, that a Tchebyscheff filter
will give a much sharper rate of cutoff. For example, the maximally flat
characteristics in Fig. $+.03-2 and the Tehebyscheff characteristics in
Fig. 4.03-10 both have L, = 1 db. For the n = 15 maximally flat case,

70 db attenuation is recached at ' =

1.7 »y; for the n = 15 Tchebyschefd

case, 70 db attenuation is reached at /

w' = 1.18 «;. HBecause of their sharp
cutoff, Tchebyscheff characteristics

are often preferred over other pos-

av

sible characteristics; however, if

the reactive elements of a filter

La

have appreciahle dissipation loss the
shape of the pass-band response of

any type of filter will be altered as Lar

compared with the lossless case, and

the effects will be particularly o wi

. . — ' — rod
large in a Ichebyscheff filter, YO0 wansoum

These matters will Le discussed in

FIG. 4.03.3 A TCHEBYSCHEFF LOW.
NSec. 4.13. Maximally flat filters PASS CHARACTERISTIC

have often been reputed to have less

delay distortion than Tchebyscheff
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filters; however, as discussed in Sec. 4.08, this may not be true,
depending on the size of L .

The maximally flat and Tchebyscheff characteristics in Figs. 4.03-1
and 4.03-3 are not the only poussible characteristics of this type. For
example, the Tchebyscheff characteristics of the impedance-matching-
network prototypes to be discussed in Secs. 4.09 and 4.10 will be similar
in shape, but L, will not touch zero at the bottom of the ripples. Some-
times Tchebyscheff filters are designed to have both an equal-ripple
characteristic in the pass hand, and an “equal-ripple’ approximation of
a specified attenuation level in the stop band. Although such filters
are used at low frequencies, they are very difficult to design precisely
for use at microwave frequencies. One possible exception is the type
of microwave filter discussed in Sec. 7.03.

SEC. 4.04, DEFINITION OF CIRCULT PARAMETERS FOR
LOW-PASS PHOTOTYPE FILTERS

The element values Bo: By 8y <00 By Bouy of the low-pass prototype
filters discussed in this chapter are defined as shown inFig. 4.04-1.

’ ’
Lt9, Ln*0y

I ¢ l b o/ ] 0
“’o'bit Ict"o Icls'ﬁ ::""'.'l or Icn' $ Mo the

L o
;T

:
‘—o—NMTIWM—— - — Y
3 l PT U b
1 Tq'ia Ic:i"n $ k‘:" o $onuttne

A-3527-78

FIG. 4.04-1 DEFINITION OF PROTOTYPE FILTER PARAMETERS

90r 9yr 997 oo 9pr 9 4y
A prototype circuit is shown ot (o) and its dual is shown
at (b). Either form will give the same response.
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One possible form of a prototype filter is shown at (a) while its dual

is shown at (b). Either form may be used, since both give identical
responses. Since the networks are reciprocal, either the resistor on

the left or the one on the right may be defined as the generator internal
impedance. It should be noted that in Fig. 4.04-1 the following conven-
tions are observed:

the inductance of a series coil,

84|
k=l ton
or the capacitance of a shunt capacitor

the generator resistance A if g = C{ , butis

g, * (4.04-1)
defined as the generator conductance G; if g =L

the load resistance R, , if g, = C., but is

gn +]

defined as the load conductance G.,, if g, =1L,

The reason for using these conventions is that they lead to equations of
identical form whether a given circuit or its dual is used. Besides the
circuit element values, g,, an additional prototype parameter, w , will also
be used. The parameter «; is the radian frequency of the pass-band edge,
which is defined in Figs. 4.03-1 and 4.03-3 for maximally flat and
Tchebyscheff filters of the sort discussed here. Its definition in the

case of maximally flat time-delay filters is discussed in Sec. 4,07.

The element values of the prototype filters discussed in this chapter
are all normalized to make g, = 1 and »»jy = 1. These prototypes are easily
changed to other impedance levels and frequency scales by the following
transformations applied to the circuit elements. For resistances or

conductances,

RO GO
R = (—7>R' or G = {—J6' . (4.04-2)
K, G,

For inductances,

Ro\ (@i Go) [
0 1 0 1
= — ! = ——L . ' i}
: <R:))(ml> : (Go>(ml) (4.04-3)



And, for capacitances,
"6 w, G, wy ,
C = rivs C' = A c’ . (4.04-4)
o/ @y ‘ol \@

In these equations the primed quantities are for the normalized prototype
and the unprimed quantities are for the corresponding scaled circuit. As
indicated from the preceding discussion, for the prototypes in this
chapter, g, = 36 =1org, =Gy =1

As an example of how this scaling is accomplished, suppose that we
have a low-pass prototype with Ry = 1.000 ohm, C; = 0.8430 farad,
L, = 0.6220 henry, and G; = 1.3554 mho. These element values are for a
Tchebyscheff filter with 0.10-db ripple and an equal-ripple band edge
of w = 1 radian. [See the case of 0.10-db ripple and n = 2 in
Table 4.05-2(a).] Assuming that it is desired to scale this prototype
so that R, = 50 ohms and so that the equal-ripple band edge occurs at
fy = 1000 Mc, then (R /R;) = 50, and (w;/v) = 1/(2710%) = 0.159 x 107°.
~ Next, by Eqs. (4.04-2) to (4.04-4), R = 50 ohm, C, = (1/50) (0.159 X
107%) (0.8430) = 2.68 x 107'? farad, L, = 50 (0.159 x 107%) (0.6220) =
4.94 % 107'° henry, and G, = (1/50) (1.3554) = 0.0271 mho.

SEC. 4.05, DOUBLY TERMINATED, MAXIMALLY FLAT AND
TCHEBYSCHEFF PROTOTYPE FILTERS
For maximally flat filters having resistor terminations at both ends,
a response of the form of that in Fig. 4.03-1 with L, =3 db, g, = 1,

and w = 1, the element values may be computed as follows:®

€, = 1
2k = 1)m
g, = 2 sin [ﬂ——————l-] , kR = 1,2, ..., n (4.05-1)
2n
gu*l = 1

Table 4.05-1(a) gives element values for such filters having n = 1 to
10 reactive elements, while Table 4.05-1(b) presents corresponding
filters with n = 11 to 15 reactive elements.
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Table 4,05-1(s)

ELEMENT VALUES FOR FILTERS WITH MAXIMALLY FLAT ATTENUATION HAVING
6p "1, @y =1, andn =1 to 10
The responses are of the form in Fig. 4.03-1 with L,, =34db

‘ﬁ}qf U s; ) & 85 & 5 o 8y 810 )
1 [2.000 {1.000
2 | 1.414 [1.414 {1,000
3 |1.000 {2,000 |[1.000]1.000
4 ]0.7654]1.848 | 1.848 |0.7654 | 1.000
5 10.6180|1.618 |2.000|1.618 |0.6180 |1.000
6 [0.5176]1.414 |1.932 11.932 [1.414 |0.5176 | 1.000
7 10.4450(1.247 |1.802 |2.000 |1.802 |1.247 | 0.4450 {1.000
8 |0.3902]1.111 {1.66311.962 [1.962 |1.063 |1.111 {0.3902{1.000
9 10.3473{1.000 |1.532]1.879 |2.000 |1.879 {1.532 (1.000 |0,3473(1.000
10 |0.3129{0.9080 1.414 {1.782 1,975 |1.975 [1.782 |1.414 ]0.9080|0.3129 |[1.000

Table 4.05-1(b)

ELEMENT VALUES FOR FILTERS WITH MAXIMALLY FLAT ATTENUATION HAVING
g * I, w{ =], and n = ]l to 15
The responses are of the form in Fig. 4.03-1 with Ly =3 db

VALUE

OF n 8 1] L] 8, [ 13 LT3 &, LT}
11 |0.28460.8306 { 1.3097 |{1.6825(1.9189 2.0000 | 1.9189 |1.6825
12 [0.2610 |0.7653 [1.2175 {1.5867 {1.8477[1.9828 | 1.9828 | 1.8477
13 | 0.2410(0.7092 { 1.1361 | 1.4970 (1.7709 [ 1.9418 | 2.0000 | 1.94i8
14 |0.2239!0.6605{1.0640 |1.4142{1.6934(1.8877 | 1.9674 |1.9874
15 ]0.2090|0.6180 {1.0000 | 1.3382 | 1.6180 | 1.8270 | 1.9563 | 2.0000

L] 810 8 Y 613 8, s 816

11 1.3097 | 0.8308 | 0.2846 |1.0000

12 1 1.58671.2175)0.7653 | 0.2610 | 1.0000

13 | 1.7709) 1.4970 | 1.1361 | 0.7092 | 0.2410 | 1. 0000

14 | 1.8877]1.693411.4142 | 1.0640 | 0.6605 | 0.2239 | 1.0000

15 | 1.9563)1.8270{1.6180 | 1.3382 | 1.0000] 0.6180 | 0.2090 | 1,0000

9"




For Tchebyscheff filters having resistor terminatiuns at both ends,
with responses of the form shown in Fig. 4.03-3 having L, db pass-band
ripple, g, = 1, and w; = 1, the element values may be computed as follows:4$
first compute

LAr
B = In|coth

17.37
y = sinh(;’:)
2k - 1
ab = sin [( )"] ] k = 11 2, , R
2n
2 . 9 k7
b, = ¥* + sin - . k= 1,2, ..., n (4.05-2)
then compute
2a,
&) Yy
4a,_,9,
8, * b — ’ k= 2,3 ..., n
=180

o1 " 1 for n odd

4
~

=z cothz‘(j;) for n even

Teble 4,05-2(a) gives element values for such filters for various LA’ and
n =1 to 10 reactive elements. Table 4.05-2(b) gives corresponding data

for filters having n = 11 to 15 reactive elements.

It will be noted that all of the filteerrototypes discussed in this
section are symmetrical if n is odd. If n is even, they have the property
of antimetry mentioned in Secs. 2.11 and 3.07. Under this condition one
half of the network is the reciprocal of the other half of the network
with respect to a positive real constant R,, where R, may be defined as

R, - vRIRL. (4.05-3)

9



Table 4.05-2(e)

ELEMENT VALUES FOR TCHEBYSCHEFF FILTERS HAVING 8 " 1, w{ = 1, AND RESPONSES
OF THE FORM IN FIG. 4.03-3 WITH VARIOUS db RIPPLE
Cases of n =1 to 10

VALUE |
OF n U] 7] L} 7 & L & s ) 8o LY
0.01 db ripple
1 | 0.1960 | 1.0000
2 |c.4288 |0.4077 | 1.1007
3 10.6231]0.9702 {0.6291 | 1.0000
4 10..128 |1.2003 [1.3212 |0.6476 [1.1007
5 10.75631.3049 |1.5773 [1.3049 | 0.7563 {1.0000
6 [0.781311.3600 [1.6896 {1.5350 { 1.4970 {0.7098 | 1.1007
7 |0.7969 |1.3924 |1.7481 |1.6331 | 1.7481 |1.3924 | 0.7969 | 1.0000
8 |0.8072)1.4130 [1.7824 (1.6833|1.8529 [1.6193 |1.5554 |0.7333 | 1.1007
9 |o0.8144 |1.4270|1.8043 |1.712511.9057 11.7125|1.8043 |1.4270 | 0.8144 |1.0000
10 0.8196 | 1.4369 |1.8192 [1.7311 {1.9362 |1.7590 | 1.9055 |1.6527 | 1.5817 [0.7446 | 1.1007
0.1 db ripple
1 | 0.3052 | 1.0000
2 10.8430 ] 0.6220 |1.3554
3 |1.0315|1.1474 | 1.0315 | 1.0000
4 J1.1088 |1.3061 | 1.7703 | 0.8180 | 1.3554
5 11.1468 | 1.3712|1.9750 {1.3712 | 1.1468 | 1.0000
6 |1.1681 |1.4039 |2.0562 |1.5170 [ 1.9029 |0.8618 | 1.3554
7 |1.1811 ] 1.4228 | 20966 | 1.5733 | 2.0966 {1.4288 | 1.1811 |1.0000
8 |1.1897 | 1.4346 |2.1199 | 1.6010 | 2.1699 |1.5640 | 1.9444 | 0.8778 | 1.3554
9 | 1.1956 | 1.4425[2.1345 | 1.6167 ] 2.2053 ' 1.6167 | 2.1345 | 1.4425 | 1.1956 | 1.0000
10 | 1.1999 | 1.4481 |2.1444 | 1.6265 | 2.2253 | 1.6418 | 2.2046 | 1.5821 [1.9628 |0.8853 | 1.3554
0.2 db ripple
1 |0.4342 | 1.0000
2 [1.0378|0.0745|1.5386
3 |1.227511.152511.2275 | 1.0000
4 11.3028|1.2844 |1.9761 | 0.8468 | 1.5386
5 11.3394]1.3370 [2.1660 [1.3370 | 1.3394 {1.0000
6 |1.3598 |1.3632 |2.2394 [1.4555]2.0974 |0.8838 | 1.5386
7 11.3722 | 1.3781 | 2.2756 | 1.5001 | 2.2756 | 1.3781 | 1.3722 |1.0000
8 11.3804 |1.3875]2.2963 1.5217 |2.3413 |1.49252.1349 |0.8972 | 1.5386
9 |1.3860|1.3938 |2.3093 |1.5340]2.3728 |1.5340 | 2.3093 {1.3938 | 1.3860 | 1.0000
10 [1.3901 | 1.3983 [2.3181 |1.5417 {2.3904 |1.5536 | 2.3720 |1.5066 | 2.1514 | 0.9034 | 1.5386
0.5 db ripple
1 | o0.6986 | 1.0000
2 | 1.40290.7071 |1.9841
3 |1.593 | 1.097 [1.5963 | 1.0000
4 |1.670311.1926 |2.3661 | 0.8419 | 1.9841
5 |1.7058 | 1.2296 | 2.5408 [ 1.2296 [ 1.7058 | 1.0000
6 |1.7254[1.2479 [ 2.6064 |1.3137 |2.4758 }0.8696 | 1.9841
7 11.737211.2583 [ 2.6381 | 1.3444 | 2.6381 |1.2583 (1.7372 | 1.0000
8 |1.7451|1.2647 | 2.6564 |1.3590 | 2.6964 |1.3389 |2.5093 |0.879 | 1.9841
9 |1.7504]1.2690 |[2.6678 |1.3673 12.7239 |1.3673 | 2.6678 | 1.2690 | 1.7504 {1.0000
10 ] 1.7543|1.2721 |2.675411.3725 [2.7392 |1.3806 | 2.7231 |1.3485 | 2.5239 | 0.8842 | 1.9841
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Table 4.05-2(a) Concluded

VALUE
oFa| & 5 8 L] L] L] L ] & 610 LY

1.0 db ripple

1 1.7 ] 1.

2 1.82:°10.6850|2.6599

3 2.0236 | 0.9941 | 2.0236 | 1.0000

4 2.0991 | 1.0644 | 2.8311 | 0.7892 | 2.6599

S 2.1349 | 1.0911 | 3.0009 {1.0911 | 2.1349 { 1.0000

6 2.1546 1 1.1041 | 3.0634 | 1.1518 | 2.9367 | 0.8101 | 2.6599

7 2.1664 | 1.1116 | 3.0934 11.1736 { 3.0934 | 1.1116 | 2.1664 | 1.0000

8 2.1744 | 1.1161 13.1107 [1.1839 1 3.1488 | 1.1696 | 2.9685 | 0.8175 | 2.6599

9 2.1797 11,1192 | 3.1215 11,1897 | 3.1747 |1.1897 13.12151.1192 [2.1797 | 1.0000

10 2.1836 | 1.1213{3.1286 |1.1933 [3.1890 |1.1990 {3.1738 | 1.1763 |2.9824 | 0.8210| 2.6599
2.0 db ripple

1 1.5296 | 1.0000

2 2.4881 | 0.6075] 4.0957

3 2.7107 | 0.8327 { 2.7107 { 1. 0000

4 2.7925 1 0.8806 | 3.6063 | 0.6819 | 4.0957

S 2.8310{ 0.8985 ] 3.7827 | 0.8985 | 2.8310 | 1.0000

6 2.8521 | 0.9071 | 3.8467 {0.9393 | 3.7151 | 0.6964 | 4.0957

7 2.865510.911913.8780 1 0.9535 | 3.8780 | 0.9119 | 2.8655 | 1.0000

8 2.8733 { 0.9151 | 3.8948 [ 0.9605 { 3.9335 | 0.9510 | 3.7477 | 0.7016 | 4.0957

9 2.8790 1 0.9171 1 3.9056 | 0.9643 | 3.9598 | 0.9643 | 3.9056 | 0.9171 |2.8790 | 1.0000

10 2.8831 | 0.9186 ) 3.9128 | 0.9667 | 3.9743 | 0.9704 | 3.9589 | 0.9554 | 3.7619 | 0.7040 | 4.0957
3.0 db ripple

1 1.9953 | 1.0000

2 3.1013 ] 0.5339 | 5.8095

3 3.3487 1 0.7117 | 3.3487 | 1.0000

4 3.4389 [ 0.7483 | 4.3471 [v.5920 | 5.8095

5 3.4817 | 0.7618 | 4.5381 [ 0.7618 | 3.4817 | 1.0000

6 3.5045 ] 0.7685{ 4.6061 | 0.7929 | 4.4641 | 0.6033 | 5.8095

7 3.5182 ] 0.7723 | 4.6386 | 0.8039 | 4.6386 | 0.7723 | 3.5182 | 1.0000

8 3.5277 | 0.7745] 4.6575 1 0.8089 | 4.6990 [ 0.8018 | 4.4990 | 0.6073 | 5.8095

9 3.5340{ 0.7760 | 4.6692 [ 0.8118 | 4.7272 [ 0.8118 |4.6692 [ 0.7760 { 3.5340 | 1.0000

10 3.5384 | 0.7771 | 4.6768 ] 0.8130 | 4.7425 ] 0.8164 | 4.7260 | 0.805] | 4.5142 | 0.6091 | 5.8095
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Table 4,05-2(b)

ELEMENT VALUES FOR TCHEBYSCHEFF FILTERS HAVING 8 = 1, wi s 1, AND RESPONSES
OF THE FORM IN FIG. 4.03-3 WITH VARIOUS dbL RIPPLE.
Cases of n = 11 to 15§

s & & & & & U} 5 I 8o | &1 | 812 | Bis | Y1e | 815 | 6

0.0] db ripple

1 1.7437]1.9554|1.7856|1.9554 11.7437 |1,8298]1 1
. 1. 1.752711.98411.8022|1.9837 [1.7883(1.9293|1. 0.
.828711.4540(1.843711.75941.9777 |1.8134|2.0014{1.8134]1.9777(1.759411.8437|1.
. } } 7644 1.984.:: 1,8214{2,0132 {1.829012. 0048 { }

: 92|1.6041 {0.7545{1.1007
-7684{1.9897 |1.8272]2.0216 |1.8394|2. 0216

679211,
.7684]1.8520]1.4600]0.8320}1.0000

0.10 db ripple

1,203111.452312.1515[1.633212.2378§1.6559(2.2378 {1.6332(2.1515]1.45231.2031|1.0000
1.2055]1.4554]2.1566(1.6379]2,246211.6646]2.2562 |1.657212.2200]1.5912|1.9726]0.8894 (1. 3554
1.2074{1.4578(2.1605(1.6414{2.2521 [1.6704(2.2675{1.6704{2.2521|1.641412.1605[1.4578|1.2074 |1.0000
1.2089]1.4596[2,1636]1,6441]2.2564]1.6745]2.2751 11.6786 ]2.2696|1.664812,228311.596311.9784]0.8919(1.3554
1.2101]1.4612]2.1660{1.0461 12,2598 {1.6776[2.2804 [1.68392.2804]1.6776|2.2598|1.6461[2.166011,461211.2101]1.0000
0.20 db ripple
1.393111.401512,3243[1.5469]2.4014|1.5046]2.4014]1.546v12.3243]1.4015[1.39311.0000
1.3954|1.404012.3289{1.5505]2.408811.5713]2.4176 11.5656 12.3856|1.5136]2.1601{0.9069|1.5386
1.3972]1.4059}2.3323]1.553212.4140|1.5758|2.4276 |1.5758 |2.4140(1.5532{2.3323]1.405911. 3972 |1.0000
1.3986 11.4073(2.3350(1.555312.4178{1.579012.4342 {1.5821 [2.4294|1.5714(2.3929{1.51762.1653 |0.9089 {1. 5386
1.399711.4085|2.3371]1.5569}2.4207 {1.5813]2.4388 {1.5862 |2.43881.5813]2.4207 {i.55692.3371 |1.4085|1.3997 |1.0000
0.50 db ripple
1.75721.2743(2.680911.3759|2.7488 | 1.3879]2.7488 ]1.3759(2.6809|1.2743]1.7572] 1. 0000
1.759411.2760]2.6848|1.3784}2.755111.3925/2.7628 {1. 3886 |2.7349|1.3532|2.5317]0.8867 {1.9841
1.7610]1.277212.6878(1.3802]2.75%{1.3955/2.7714}1.3955|2.759% 11.3802|2.6878|1.2772]1.761011.0000
1.762411.2783(2.690211.3816[2.7629{1.397612.7771 |1.3997 [2.7730{1.392512.7412|1.3558 | 2. 5362 {0.8882 |1.9841
1.7635]1.27912.6920{1.3826[2.7654{1.3991{2.7811 |1.4024|2.7811]1.399. 12.7654]1.3826 |2.6920|1.2791 [1.7635]1. 0000
1.00 db ripple
.1865]1.122913.1338§1.195713.1980(1.2041{3.1980|1,1957 [3.1338]1.1229{2.1865{1.0000
.1887]1.12413.1375§1.1974}3.2039|1.207313.2112[1.2045(3.1849]1.1796|2.9898]0.8228 |2.6599
2.1904|1.125013.1403]1.19873.2081]1.2094!3.219211.2094 |3.2081[1.1987|3.140311.1250]2.1904]1.0000
2.191711.1257(3,1425]1.1996 {3.21121.2108|3.2245]1.2123 3. 220711.207313.1908|1.18152.9944 {0.8239(2.6599
2.192811.1263]3.1442]1.2004]3.2135]1.2119{3.2282|1.2142|3.2282{1.2119}3.2135|1.2004|3.144211.1263|2.1928}1.0000

2,00 db ripple

.886310.919513.91810.968213.9834
.8886 |0.920313.9219/0.9693 3. 9894

0.973713.9834 {0.9682 {3.9181/0.9195|2.8863 | 1. 0000
. . 0.9758(3.9967 ]0.974013.970110.9575]3.7695| 0. 7052 (4. 0957
90410.9209(3.924710.9701(3.99360.9771/4.0048 10. 9771 |3.9936 (0. 9701 | 3. 9247 0.9209|2.8904 11. 0000
19]0.9214|3.92690.97073.9967 |0 4.0101 10.9791 [4.0062|0.97583.9761{0.9587 |3.773910.7060 (4. 0957
.8930/0.921813.928710.9712(3.9990}0.978814.0139 |0. 9803 |4.01390. 9788 3.9990| 0.9712|3. 9287 {0.9218 |2.89301 1. 0000

3.00 db ripple

.682510.8147 [4.7523 |0.8189]4.7523 [0.8147 [4.68250. 7778 (3. 5420 1. 0000

4.6865(0.8155|4. 7587 |0, 8204| 4. 7664 [0, 8191 |4.7381 |0, 8067 |4. 5224 0.6101 |5.8095

15465 4.68960.8162|4.7631 [0; 8214| 4.7751 [0;8214 |4. 7631 0. 8162 |4.689 | 0. 7789|3. 5465 1. 0000

-5480/0.77924.6919]0:8166 | 4. 7664 |0.8222| 4. 7808 [0.8229 |4. 7766|0. 8204 4. 7444] 0.8076 | 4. 5272 [0.6107 [5.8095
3 4.69380.8170|4.7689| 08227 4. 7847 |0,8238 |4.7847| 0. 8227 | 4.7689) 0.8170/4.6938 |0. 7795 3. 5493/ 1. 0000
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and where A and R,,, are the resistances of thec terminations at the ends
of the filter. If Z, is the impedance of one branch of the filter ladder
network, then
2
! nh
Zevioa ¢ 75’ (4.05-4)

where Z!,, ., is the dual branch at the other end of the filter. iy
Eq. (4.05-4) it will be seen that the inductive reactances at one end of

the filter are related to the capacitive susceptances at the other end by

, “i
WCrproy = —R? . (4.05-5)
Also,
ad i ® R:nC; (4.05-6)

so that it is possible to ohtain the element values of the second half
of the filter from those of the first half if the filter is antimetrical,

(as well as when the filter is symmetrical).

It will be found that the symmetry and antimetry properties discussed
above will occur in maximally flat and Tchebyscheff filters of the form in
Fig. 4.04-1 having terminations at both ends, provided that the filter is
designed so that L, = 0 at one or more frequencies in the pass band as
shown in Figs. 4.03-]1 and 4.03-3. The maximally flat and Tchebyscheff
filters discussed in Secs. 4.06, 4.09, and 4.10 do not have this property.
The maximally flat time-delay filters in Sec. 4.07 are not symmetrical or
antimetrical, even though L, = 0 at «’' = 0.

In some rare cases designs with n greter than 15 may be desired.
In such cases good approximate designs can be ohtained by augmenting an
n = 14 0orn =15 design by repeating the two middle elements of the filter.
Thus, suppose that an n = 18 design is desired. An n = 14 design can be
sugmented to n = 18 by breaking the circuit immediately following the g,
element, repeating elements €, and g, twice, and then continuing on with
element 8y and the rest of the elements. Thus, letting primed g's indicate
element values for the n = 18 filter, and unprimed g's indicate element
values from the n = 14 design, the n = 18 design would have the element
values
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80 - ‘0 ’ '] = gl 4 ‘; = ‘,' sy g; - 3‘ ’

8; * & + By * B + By * By . By " 8 . &y * &
! [ 1 [

1 * & + By " Bgrrry By = By 8y = By

This is, of course, an approximate procedure, but it is based on the
fact that for a given Tchebyscheff ripple the element values in a design
change very little as n is varied, once n is around 10 or more. This is
readily seen by comparing the element values for different values of n,
down the columns at the left in Table 4.05-2(b).

SEC. 4.06, SINGLY TERMINATED MAXIMALLY FLAT
AND TCHEBYSCHEFF FILTERS
All of the prototype filters discussed in Sec., 4.05 have resistor
terminations at both ends. However, in some cases it is desirable to
use filters with a resistor
termination at one end only.

Figure 4.06-1 shows an example

of such a filter with a re-

-— € sistor termination on the left

N 37..,‘.., and a zero internal impedance

voltage generator on the right

Yo to drive the circuit. [In this
A-3327-79

case the attenuation LA defined

FIG. 4.06-1 AN n = 5 REACTIVE ELEMENT SINGLY by Eq. (2.11-4) does not apply,
TERMINATED FILTER DRIVEN BY A

ZERO-IMPEDANCE VOLTAGE ‘ NPT
GENERATOR voltage generator has infinite

since a zero internal impedance
available power. The power
absorbed by the circuit is

“ 2 "
P o= £ |? Re ¥~ (4.06-1)

where ¥ and E. are defined in the Fig. 4.06-1. Since all of the power
must he absorbed in G,

E1% ne ¥i, = |E 176G, (4.06-2)
and
ull o (4.06-3)
E, Re ¥, '
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Thus in this case it is convenient to use the voltage attenuation function

£ ¢,
L, = 20 log,y|=]| = 10 log,, ™ db . (4.06-4)
4 10 EL 10 Re yi.

Figure 4.06-2 shows the dual case to that in Fig. 4.06-1. In this
latter case the circuit is driven by an infinite-impedance current
generator and it is convenient to use the current attenuation function

defined as

I R,
, 0
L = 20 108 | — = 10 108 ——— db (4.06_5)
1 10 ‘IL 10 Re zi.

where I, I,, Ri, and Z{ are as defined in Fig. 4.06-2. If L, and Ll
in Sec. 4.03 are replaced by analogous quantities L, and L, , or L, and
L, . all of the equations and charts in Sec. 4.03 apply to the singly
terminated maximally flat or Tchebyscheff filters of this section as
well as to the doubly terminated filters in Sec. 4.05.

Equation (4.06-1) shows that for a given generato~ voltage, E‘, the

power transmission through the filter is controlled entirely by Re Y .

Thus, if the filter in Fig. 4.06-1 is to have a maximally flat or

Tchebyscheff transmission characteristic, Re Y;_ must also have such a

characteristic. Figure 4.06-3 shows the approximate shape of Re Y, and
Im V!

in
transmission characteristic. The curves in Fig. 4.06-3 also apply to
the circuit in Fig. 4.06-2 if Y/ is replaced by Z; As will be dis-

for the circuit in Fig. 4.06-1 if designed to give a Tchebyscheff

cussed in Chapter 16, this property of Re Y/ or Re Z! for singly loaded
filters mekes them quite useful in the design of diplexers and multi-
plexers. Prototypes of this sort will also be useful for the design of
filters to be driven by energy sources that look approximately like a
zero-impedance voltage generator or an infinite-impedance current gener-
ator. A typical example is s pentode tube which, from its plate circuit
may resemble a current generator with a capacitor in parallel. In such
cases a broadband response can be obtained if the shunt capacitance is
used as the first element of a singly terminated filter.

Orchard® gives formulas for singly terminated maximally flat filters
normalized so that & * 1, and w; » 1 at the band-edge point where
Ly sly or Ly =L, is 3 db. They may be written as follows:
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r L S 5
LR, ‘l'c"" %c'." c‘.."]@? Rjsgqe

zm
4-3027-00

FIG. 4.06-2 THE DUAL CIRCUIT TO THAT IN
FIG. 4.06-1
In this case the generator is an
infinite-impedance current generator.

POSITIVE

WMoY, ¢ jimy,,
°

NEGATIVE
)
’1

i a-%e7-0

FIG. 4.06-3 THE APPROXIMATE FORM OF
THE INPUT ADMITTANCE Y/
IN FIG. 4.06-1 FORANn = 5
REACTIVE-ELEMENT, SINGLY
TERMINATED TCHEBYSCHEFF
FILTER
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.7 (2k - 1)

a, = sin = , k = 1,2 ..., n

with the element values

81 - “l (4.06'6)
%1
g. = — h = 21 31 , B
Cp-184-1
gn’l F [¢ 7]

{check: g, = ng,]

where the g, defined above are to be interpreted as in Fig. 4.04-1(a)
and (b). Table 4.06-1 gives element values for such filters for the
cases of n =1 ton = ]0.

Table 4.006-1

ELEVENT VALUES FOR SINGLY TERMINATED MANIMALLY FLAT FILTERS HAVING
8p =1, 8,4 = O AND wy =1

VALUE !
OF n 8 LH] LIN B 71 s LT3 7 & L1 5o |11
1 1.0000 @
2 |0.7071 | 1.4142 ®
3 1 0.5000 |1.3333|1.5000 ®
4 {0.382711.0824(1.5772 | 1.5307 o
5 10.3090]0.8944 | 1.3820 | 1.6944 | 1.5451 ®
6 [0.2588 |0.7579 {1.2016 |1.5529 11.7593 | 1.5529 ®
7 0.2225 10.6560 11,0550 | 1.3972 | 1.6588 {1.7988 | 1.5576 @
8 0.1951 {10.5776 1 0.9370 | 1.2588 | 1.5283 | 1.7287 | 1.8246 | 1.5607 LJ
9 0.1736 1 0.5155]0.8414 | 1.1408 | 1.4037 {1.6202 | 1.7772 | 1.8424 | 1.5628 ®
10 0.1564 | 0.4654 10.7626 | 1.0406 | 1.2921 |1.5100 | 1.6869 | 1.812]1 | 1.8552 | 1.5643 ] =

Note: Dsta by courtesy of L. Weiaberg and the Journal of the Franklin huit-u’

For singly loaded Tchebyscheff filters having g, * 1, w{ = 1, and

L,, or L, db pass-band ripple, Orchard's equations® give

. r X L, orL,,)
& - n ettt
|_°°t 17.37
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2 .9 Tk 2 k _
d, -(7 +snn-5-;cos P kR = 1, 2, ., n-=1
(4.06-7)
with element values
4
g = -
! y
a,8,- R L 9
4 T ———— ’ = y 2y ., N
' LY S

gn‘] = X

Table 4.06-2 presents element values for singlv terminated fiiters for

various amounts of Tchebyscheff ripple.

SEC. 4.07, MAXIMALLY FLAT TIME-DELAY PROTOTYPE FILTERS

The voltage attenuation ratio (£,), .., F, (see Sec. 2.10) for a

normalized, maximally flat, time-delay filter may be defined as¥®

(52)|vnil

£,

= cp'y (1/p") (4.07-1)

where p' = 0’ + jw' is the normalized complex-frequency variable, ¢ is

a real, positive constant, and

" + k)
v (1/p') =Y (n * %) (4.07-2)
peo (0 = k)R (2p")*
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Tab

le 4.06-.2

ELEMENT VALUES FOR SINGLY TERMINATED TCHEBYSCHEFF FILTERS HAVING
S0 "L g4 "% AND O =L

VALUE
OF » | £ L] ) &y 8 ”n s & §10 | f12
0,10 db ripple
1 0.1524 L
2 0.4215]0.7159 ®
3 0.5158 | 1.0864 | 1.0895 ©
4 0.5544 | 1.1994 | 1.4574 | 1,2453 ®
5 0.573411.2490 [ 1.5562 11,5924 | 1.3759 ®
6 0.5841 [ 1.2752|1.5999 {1.6749| 1.7236 | 1.4035 @
7 0.5906 | 1,2908 { 1.6236+]11.7107 | 1.798711.7395|1.4745 ®
8 0.5949 11.3008 [ 1.6380 [1.7302 | 1.8302]1.8070{1.8163 |1.4660 o
9 0.5978 | 1.3076 ] 1.6476 | 1.7423 | 1.8473 | 1.8343|1.8814 |1.7991 |1.5182 ©
10 0.6000 11,3124 [1.6542 [1.7503 [ 1.8579 | 1.84891.9068 [|1.8600 |1.8585}1.4964 | @
0.20 db ripple
1 0.2176 ®
2 0.5189 | 0.8176 ©
3 0.6137]1.1888 1.1900 @®
4 0.6514(1.2935|1.5615 | 1.2898 4
5 0.6697 | 1.3382 ] 1.654]1 | 1.6320 | 1.4356 ®
6 0.6799 1 1,3615{1.6937 (1.7083{1,7870} 1.4182 @
7 0.6861 11,3752 |1.7149 | 1.7401 | 1.8590 1.7505 | 1.51nl ®
8 0.6902 | 1.3840 | 1.7276 1 1.7571 | 1.8880 ] 1.8144 | 1.8623 [1.4676 ks
9 0.693011.3899 [ 1.7360 | 1.7675 ] 1.9034| ).8393 | 1.9257 |1.7974 | 1.5512 @
10 0.6950 | 1.%941 | 1.7418 [ 1.7744 ] 1.9127| 1.8523 | 1.9500 |1.8560 |1.8962 |1.4914 | @
0.50 db ripple
1 0.3493 ®
2 0.7014 { 0.9403 w
3 0.7981 | 1.3001 | 1.34K5 ©
4 0.8352 ] 1.3914]1.7279 [ 1.3138 ®
5 0.8529 | 1.429, | 1.8142 | 1.4426 | 1.5388 ®
) 0.P727 | 1.4483 11.8494 [ 1.7101 | 1.9018 | 1.4042 ®
7 0.8 2n}1.459611.8675 {1.7371 ] 1.971211.725411,5982 e
8 0.8725|1.4666 | 1.8750 [1.7508 | 1.9980 | 1.7838 ] 1.9571 | 1.4379 o
9 0.8752 | 1.4714(1.8856 |1.7591 | 2.0116 | 1.8055|2.0203 {1.7571 | 1.6238 ®
10 0.8771 [ 1.4748 | 1.8905 | 1.7645{2.0197 | 1.8165[2.0432 [1.81191.9816]1.4539 | «
1.00 db ripple
1 0.5088 o
2 0.9110 [ 0.9957 L
3 1.0118 ] 1.3332 { 1. 5088 o
4 1.0495 | 1.4126|1.9093 | 1.2817 ©
5 1.0674 | 1.4441 11,9938 | 1.5908 | 1.6652 ®
6 1.0773 | 1.4601 | 2.0270 | 1.6507 | 2.049] | 1. 3457 ®
7 1.0832 | 1.4694 | 2.0437 | 1.6736 12,1192 | 1.6489 | 1.7118 ™
8 1.0872 | 1.4751]12.0537 | 1.6850 | 2.1453| 1.7021 | 2.0922 11.3691 ®
9 1.0899 | 1.4790(2.0601 [1.6918 | 2.1583 ] 1.7213 [ 2.1574 {1.6707 | 1.7317 ®
10 1.0918 ] 1.4817 |2.0645 |1.6961 | 2,1658 | 1.7306 | 2.1803 ]1.72152.1111 |1.3801 | «
2.00 db ripple
1 0.7648 ®
2 1.2441 ] 0.9766 L
3 1.3553{ 1.2740]11.7717 [
4 1.3962 ] 1.3389|2.2169 1 1.1727 o®
5 1.4155] 1.3640{2.3049 | 1.4468 | 1.9004 ®
6 1.4261 | 1.3765(2.3383 | 1.4974 | 2.3304 | 1.2137 o
7 1.43281] 1.3836 | 2.3551 | 1.5159 | 2.4063 | 1.4836 | 1.9379 ®
8 1.4366 | 1.3881 12,3645 | 1.5251 1 2.4332 | 1.5298 |2.3646 [1.2284 @
9 1.4395] 1.3911 [ 2.3707 | 1.5304 | 2.4463 | 1.5495 ] 2.4386 | 1,4959 | 1.9553 ®
10 1.4416] 1,3932 [ 2.3748 [ 1.5337 | 2.4538 | 1.5536 [2.4607 |1,5419 [ 2.3794|1.2353 | @
3,00 db ripple
1 0 9976 L
2 1.5506 { 0.9109 @
3 1.6744 ) 1.1739 | 2.0302 ®
4 1.7195( 1.2292 | 2.5272 | 1.0578 ®
L] 1.7409 ] 1.2501 | 2.6227 | 1.3015 2.1491 ®
6 1.7522( 1.2606 {2.6578 | 1.3455] 2.6309 | 1.0876 ®
7 1.7591] 1.2666 | 2.6750 { 1.3614| 2.7141 | ), 3282 | 2.1827 ®
8 1.76381 1.2701 | 2.6852 11.36901 2.7436 | 1.3487 | 2.6618 | 1.0982 ®
9 1.7670] 1.2726 { 2.6916 {1.3733]2.7577| 1.3827 | 2.7414 |1.3380 | 2.1970 ©
10 1.7692] 1.27 8 11,3761 ] 2.76551}1.3893 (12,7683 |1.3774 |2.675311.1032 | ®
NOTE: Most of the data i nthis table werg obtained by courtesy of L. Weinberg and the
Journal of the Franklin Institute.
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is a Bessel polynomial function of 1/p'. Equations (4.07-1) and (4.07-2)
reduce to a simple polynomial of the form

<

(E,)

il [ fyn= !
E.z'.‘ - P.(P') - (P )ﬂcn + (p )'l l‘n'l + ... ¢ 4 Cl + ao
(4.07-3)
Let
(Ez).v.il 1 Im P”(Jw) di
., a t - — raad:ans
¢ L e N ' Re P_(jw)
[ B L

14.07-4)

Then, as was discussed in Sec., 1.05, the time delay (i.e., group delay) is

@'

t!, =
dow'

M secs (4.07-5)
where «' is in radians per second. The transfer function, defined by

Eqs. (4.07-1) and (4.07-2) has the property that its group delay, t),
has the maximum possible number of zero derivatives with respect to o'
at @' = 0, which is why it is said to have maximally flat time delay.

The time delay, t,, may be expressed as?

ll_ 1
w; 2w’ J'"'“ w; * J“’“ w;

where J_n_“(w'/w;) and Jn,”(w'/w;) are Bessel functions of w'/w;, and

(4.07-6)

tdo E — (4.07-7)

is the group delay as o' = 0. The magnitude of (E,) . ., ,/E, is
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) %
479 I . c(_z_‘_:_’)"“ 1“11_ 2 (i‘i)+ﬁ (ﬂ'_)
E, | w, 20’ “ack w} nt w)
(4,07-8)

and for increasing n the attenuation approaches the Gaussian form!»¥?

10 (ﬁL ‘
I w;) db (4.07-9
a (2n = 1) Iln 10 ' - 07-9)

For n 2 3 the 3 db bandwidth is nearly

(fir) ~ (-1 In2 . (4.07-10)
“y

Weinberg® has prepared tables of element values for normalized maxi-
mally flat time-delay filters, and the element values in Table 4,07-] are
from his work., These element values are normalized so that ';o = l/w] =
1 second, and g, = 1. In order to obtain a different time delay, ¢t ,,

the frequency scale must be changed by the factor

1 d0
- & = (4.07-11)
@) t 4o

using the scaling procedure discussed in Sec, 4.04. Weinberg also pre-

sents some computed data showing time delay and attenuation in the

Table 4,07-1

ELEMENT VALUES FOR' MAXIMALLY FLAT TIME DELAY FILTERS
HAVING go = 1 and w; = 1.t} = 1

‘:,‘,L",,z U L] LH] & 8 .73 & by 4] S10 | 811 | K12

1 12.0000{1.0000

2 11.5774]0.4226|1. 0000

3 {1.255010.5528 10.1922[1.0000

4 {1.05898]0.5116)0.318110.1104 {1. 0000

5 [0.9303{0.4577(0.3312|0.2090[0.0718¢1. 0000

6 ]0.8377]0.4116]0.3158]0.236410.1480]0,0505|1.0000

7 10.767710.3744 [0.294410.237810.1778]0.1104:0,0375{1. 0000

8 ]0.7125]0.3446]0.2735]0.22970.1867|0.1387]0.0855{0.0289{1. 0000

9 10.667810.320310,2547§0.2184 |0.185910.1506(0.1111]0.0682}0.0230(1.0000

10 ]0.6305]0.3002]0.2384]0.206610.1806{0.1539{0.1240{0,091110.05570.0187{1.0000

11 [0.5989]0.2834]0,22430,1954]0.1739|0.1528|0.1296|0.1039}0.07610.0465]0.0154 (1. 0000
Nete: Data by courtesy of L. Weinberg end the Jourasl of the Fraaklia lnacit-to.’
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vicinity of the paas band for filters with n = 1 to 11. His data have
been plotted in Figs. 4,07-1 and 4.07-2, and curves have been draswn in
to aid in interpolating between data points. Although the time-delay
characteristics are very constant in the pass-band region, these filters
will be seen to have low-pass filter attenuation characteristics which
are generally inferior to those of ordinary maximally flat attenuation
or Tchebyscheff filters having the same number of reactive elements,

SEC. 4,08, COMPARISON OF THE TIME-DELAY CHARACTERISTICS
OF VARIOUS PROTOTYPE FILTERS

If the terminations of a prototype filter are equal or are not too
greatly different, the group time delay as @' ~ 0 can be computed from
the relation’

d 1 °

t, = -1} == 5 s, seconds (4.08-1)
¢ dw' |, o 2 s
=

where g,, 85, ..., &, are the prototype element values as defined in
Fig. 4.04:1. Also in Table 4.13-1 and Fig. 4.13-2 a coefficient C,_ is
tabulated for maximally flat and Tchebyscheff prototype filters where

‘;o = C seconds (4.08-2)

which is exact.

If the frequency scale of a low-pass prototype is altered so that
w; becomes w,, then the time scale is altered so that as w = 0 the
delay is

’
g

o seconds . (4.08-3)
1

tgo = ¢

If a band-pass filter is designed from a low-pass prototype, then the
midband time delay is (at Jeast for narrow-band cases)!

* This equation is due to S. B. Cohn and can be derived by use of Eqs. (4.13-9) end (4.13-11) to follew,

This is the approximste delay for o l--rd-olmn bend-pase filter consisting of & ledder of series
and shuat reseastors. If trensmission line circuite ere wsed there may be additional time delay due te
the physical length of the filter.
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0 " Tty (4.08-4)

where @, and w, are the pass-band edges of the band-pass response corre-
sponding to w, for the low-pass response,

In order to determine the time delay at other frequencies it is
necessary to work from the transfer functions., For all of the prototype
filters discussed in this chapter the voltage attenuation ratio (£,),,,;,/E,
defined in Sec. 2.10 can be represented by a polynomial P _(p') so that

(Ez).nn

= P '
E, )
where p' =o' + jow' is the complex frequency variable., In the case of

prototype filters with maximally flat attenuation, n reactive elements,

’

w =1, and L,, = 3 db (see Fig. 4.03-1), P (p’') is for n even

n/2

-1
P(p') = T {(p')2 + [2 cos "—(2—.27—1] p' o+ 1} (4.08-5)
ax=]
and for n odd
(n=1)/2 -
P(p') = clp+l) TT [(p')2 + (2 cos T)p' + 1]
a®]

(4.08-6)

where ¢ is a real constant.

For Tchebyscheff prototype filters having n reactive elements, w; =1,
and L,, db ripple (see Fig. 4,03-3), P (p') is for n even

n/2
P.(p'\,x) = ¢ TT {(P')z + [2: cos

a®]

m(2m - 1) ] p’

n

+ x2 + sin? 12%——1—)} (4.08-7)
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and for n odd with n 23

{(n-1)/2
P(p',x) = cp' +2) TT {(p')z + (2:‘ cos ?) p + 2%+ sin? 1:—]
a=!
(4.08-8)
where
. | O 1
x = sinh - sinh (4.08-9)

s LAr
antilog,, W -1

and ¢ is again a real constant, The constants ¢ in Eqs. (4.08-5) to
(4.08-9) are to be evaluated so as to fix the minimum attenuation of the
response, For example, for the Tchebyscheff response in Fig. 4.03-3, ¢
would be evajuated so as to make, L, = 20 log,, (E,),, ,,,/E; = 0 at the
bottom of the pass-band ripples. However, for the Tchebyscheff response
in the impedance-matching filter response to be presented in Fig. 4.09-2
a different value of c would be required since L, never goes to zero in
this latter case. Both cases would, however, have identical phase shift

and time delay characteristics.

The phase shift and group time delay for filJters with maximaily flat
or Tchebyscheff attenuation characteristics can be computed by use of
Eqs. (4.08-5) to (4.08-9) above and Eqs. (4.07-4) and (4.07-5). Cohn
has computed the phase and time delay characteristics for various proto-
type filters with n = 5 reactive elements in order to compare their
relative merit in situations where time-delay characteriscics are im-
portant, His results are shown in Fig. 4.08-1 to 4.08-3.

Figure 4.08-1 shows the phase characteristics of Tchebyscheff filters
having 0.01-db and 0.5-db ripple with @] = 1, and a maximally flat at-
tenuation filter with its 3-db point at @) = 1. The 3-db points of the
Tchebyscheff filters are also indicated. Note that the 0.5-db ripple
filter Las considerably more curvature in its phase characteristic than
either the 0.01-db ripple or maximally flat sttenvation filters., It will
be found that in general the larger the ripple of a Tchebyscheff filter
the larger the curvature of the phase characteristic will be in the
vicinity of w;. As a result, the larger the ripple, the more the delay
distortion will be near cutoff.
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Figure 4.08-2 shows the time delay characteristics of 0.1- and
0.5-db ripple Tchebyscheff filters, of a maximally flat attenuation
filter, along with that of a maximally flat time delay filter. The
scale of t, is normalized to the time delay t,,, obtained as o' —= 0,
and the frequency scale is normalized to the frequency w, ip Yhere
L, = 3 db for each case. Note that the time-delay characteristic of
the 0.5-db ripple filter is quite erratic, but that delay characteris-
tics for the 0.1-db ripple filter are superior to those of the maximally
flat attenuation filter, The 0.l-db-ripple curve is constant within
tl percent for w'/wy ,, S 0.31 while the maximally flat filter is within
this tolerance only for w'/wy ,, $0.16. The maximally flat time-delay
filter is seen to have by far the most constant time delay of all. How-
ever, the equal-rippie band for the 0.1-db:ripple filter extends to
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0.88 w'/wy ,, while the maximally flat time delay filter has about 2.2 db
attenuation at thet frequency. (See Fig. 4.07-2.) Thus, it is seen that
maximally flat time-delay filters achieve a more constant time delay at

the cost of a less constant attenuation characteristic.

In some cases a band of low loss and low distortion is desired up
to a certain frequency and then a specified high attenuation is desired
at an adjacent higher frequency. Figure 4,08-3 shows the time-delay
characteristics of various prototype filters with the frequency scale
normalized to the 60-db attenuation frequency w.,,, for each filter. For
a tl percent tolerance on t,, a 0.1-db-ripple filter is found to be usable
to 0.106 w;o‘b while a maximally flat attenuation filter is within this
tolerance only to 0.040 wéodb' For a #10 percent tolerance on t, a 0.5-db-
ripple filter is usable to 0.184 w;, ,, while the maximally flat attenuation
filter is usable only to 0.116 w., ,,. The maximally flat time-delay filter
again has by far the broadest usable hand for a given time-delay tolerance;
however, its reflection loss will again be an important consideration. For

example, for «'

= 0.1 “%o 4p its attenuation is 1.25 db and its attenuation
is 3 db for @' = 0.15 wgy ,,- In contrast the 0.1-db-ripple prototype filter

has 0.1 db attenuation or less out to w' = 0.294 méodb'

The choice between these various types of filters will depend on the
spplication under consideration. In most cases where time delay is of
interest in microwave filters, the filters used will probably be band-pass
filters of narrow or moderate bandwidth. Such filters can be designed
from prototype filters or step transformers by methods discussed in
Chapters 8, 9, and 10.* For cases where the spectrum of a signal being
transmitted is appreciable as compared with the bandwidth of the filter,
variations in either time delay or pass-band attenuation within the signal
spectrum will cause signal distortion.® However, for example, a maximally
flat time-delay filter which has very little delay di~tortion and & mono-
tonically increasing attenustion will tend to reund & pulse out without
overshoot or ringing, while a filter with a sharp cuioff (such as a
Tchebyscheff filter) will tend to cause ringing.® The transient response
requirements for the given applicction will be dominant considerations
vhen choosing a filter type for such cases where the signal spectrum and
filter pasa band are of similar bandwidth.

.
As is discussed ia Sec. 1.05, most microwave filters will have extrs tiwe delay over that of
thair prototypes because of the olectrical length of their physical structures.
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In other situations the signal spectrum may be narrow compared with
the bandwidth of the filter so that the spectral components of a given
signal see essentially constant attenuation and delay for any common
filter response, and distortion of the signal shape may thus be negligible.
In such cases a choice of filter response types may depend on considera-
tions of allowable time delay tolerance over the range of possible fre-
quencies, allowable variation of attenuation in the carrier operating
band, and required rate of cutoff. For example, if time-delay constancy
was of major importance and it didn't matter whether signals with dif-
ferent carrier frequencies suffered different amounts of attenuation, a

maximally flat time-delay filter would be the hest choice.

SEC. 4.09, PROTOTYPE, TCHEBYSCHEFF ITMPEDANCE-MATCHING
NETWORRS GIVING MINIMUM REFLECTION
In this section the low-pass impedance matching of loads repre-
sentable as a resistance and inductance in series, and of loads repre-
sentahle as a resistor and

capacitance in parallel will be

Lirg, Uys0, LR

discussed. A load of the former

tvpe with a matching network of

the sort to he treated is shown

LAY ‘[ "0, —[ €49
— — — in Fig. 4.09-1. In general, the
LOAD MATCHING NETWORK

a-8527-0¢ elements g,, and g, in the cir-
cuits in Fig. 4.04-1(a), (b) may

FIG. 4.09-1 A LOAD WITH A LOW-PASS be regarded as loads, and the

IMPEDANCE-MATCHING ) )
NETWORK (Case of n = 4) remainder of the reactive ele-
ments regarded as impedance-

matching networks. For convenience

it will be assumed that the imped-
ance level of the load to he matched has been normalized so that the re-
sistor or conductance is equal to one, and that the frequency scale has
been normalized so that the edge of the desired hand of good impedance

match is w; =],

As was discussed in Sec. 1.03, if an impedance having a reactive part
is to be matched over a band of frequencies, an optimum impedance-matching
network must necessarily have a filter-like characteristic. Any degree of
impedance match in frequency regions other than that for which a good match
is required will detract from the performance possible in the band where
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good match is required. Thus, the sharper the cutoff of a properly
designed matching network, the better its performance can be.

Another important property of impedance-matching networks is that
if the load has a reactive part, perfect power transmission to the load
is possible only at discrete frequencies, and not over a band of fre-
quencies. Furthermore, it will usually be found that the over-all
transmission can be improved if at least a small amount of power is re-
flected at all frequencies. This is illustrated in Fig. 4.09-2, where
it will be assumed that the designer’s objective is to keep (L ), as
small as possible from o' = 0 to w' = w|, where the db attenuation L,
refers to the attenuation of the power received by the load with respect
to the available power of the generator (see Sec. 2.11). If (L,),;, is
made very small so as to give very efficient transmission at the bottoms
of the pass-band ripples, the excessively good transmission at these
points must be compensated for by excessively poor transmission at the

crests of the ripples, and as a result, (LA)_.. will increase. On the

La—ed

SSeEmSAT

1 (Ladmin  (La)mex

|
. Y

-] -
v a-1308-32i0
FIG. 4.09.2 DEFINITION OF (L,),., AND (L,).,.

FOR TCHEBYSCHEFF IMPEDANCE
MATCHING NETWORKS DISCUSSED
HEREIN
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other hand if (LA)-i- is specified to be nearly equal to (L‘).". the
small pass-band ripple will result in a reduced rate of cutoff for the
filter; as indicated above, this reduced rate of cutoff will Jegrnde the
performance and also cause (L,), ., to increase. Thus, it is seen that
for a given load, a given number of impedance-mstching elements, and a
given impedance-matching bandwidth, there is some definite value of

nax - (LA)nin
The prototype impedance-matching networks discussed in

Tchebyscheff pass-band ripple (L,)
value of (L‘)

this section are optimum in this sense, i.e., they do minimize (L))

that goes with a minimum
max’

asx
for s load and impedance-matching network of the form in Fig. 4.09-1 or

its generalization in terms of Figs. 4.04-1(a), (b).

It is convenient to characterize the loads under consideration by
their decrement, which is defined as

1
> = - (4.09-1)
808,
1 1
= g, or ¥l PN '
('oLl“’l Roclwl

where the various quantities in this equation are as indicated in

Figs. 4.09-1, 4.09-2, and 4.04-1(a), (b). Note that o is the reciprocal
of the ¥ of the load evaluated at the edge of the impedance-matching

band and that o evaluated for the un-normalized load is the same as that
for the normalized load. Figure 4.09-3 shows the minimum value of (LA)...
vs o for circuits having n = | to n = 4 reactive elements (also for case
of n = ®), Since one of the reactive elements in each case is part of

the load, the n = 1 case involves no L or C impedance-matching elements,
the optimum result being determined only by optimum choice of driving-
generator internal impedance. Note that for a given value of ?, (L‘)._'
is decreased by using more complex matching networks (i.e., larger values
of n). However, a point of diminishing returns is rapidly reached so
that it is usually not worthwhile to go beyond n = 3 or 4. Note that

n s ® jg not greatly better than n = 4.

Figure 4.09-4 shows the db Tchebyscheff ripple vs & for minimum
(L,)ges+ Once again, going to larger values of n will give better results,
since when n is increased, the size of the ripple is reduced for a given 3,
For n = ® the ripple goes to zero.
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Figures 4.09-5 to 4.09-8 show charts of element values vs d for
optimum Tchebyscheff matching networks. Their use is probably best
illustrated by an example. Suppose that an impedance match is desired
to a load which can be represented approximately by a 50-ohm resistor
(Go = 0.020 mho) in series with an inductance L, = 3.98 x 10°% henry,
and that good impedance match is to extend up to f, =1 Gc so that
wy = 2nf, = 6,28 X 10°. Then the decrement is o = 1/(Ggw|L,) =
1/(0.020 x 6.28 x 10° x 3,98 x 107%) = 0.20. After consulting
Figs. 4.09-3 and 4.09-4 for & = 0.20 let us suppose that n = 4 is chosen
which calls for (L,),,, = 1.9 db and & ripple of about 0.25 db. Then by
Fig. 4.09-8 (which is for n = 4) we obtain for g, = 1, w; = ], and
¢ = 0.20: g,/10 = 0.50, g, = 0.445, ¢,/10 = 0.54, g, = 0.205, end
€510 = 0.39. This corresponds to the circuit in Fig. 4.09-1 with
g, =Gg =1, g, =5.00=1Ly, g, =0.445 =C,, gy = 5.40 =L, g,=0.205+=
C,, and g, = 3.90 = R,. Un-normalizing this by use of Lqs. (4.04-2) to
(4.04-4) with (G, G)) = 0.020/1 and =/ = 1/(6.28 x 10%) = 1.59 = 107!°
gives: G = 0.020 mho, L, = 3.98 x 107% henry, C, = 1.415 x 107!? farad,
L, = 4.29 < 10"® henry, C, = 6.52 x 107'? farad, and R, = 195 ohms. Note

that G, and L, are the original elements given for the load. The physical

realization of microwave structures for such an application can be accom-

plished using techniques discussed in Chapter 7.

It is interesting to note how much the impedance-matching network
design discussed above actually improves the power transfer to the load.
If the A-L load treated above were driven directly by a generator with
a 50-ohm internal impedance, the loss would approach 0 db as f = 0, but
it would be 8.6 db at f; =1 Gec. By Figs. 4.09-3 to 4.09-5, the optimum
n =1 design for this case would call for the generator internal imped-
ance to be about 256 ohms, which would give about 2.6 db loss as f - 0
and 5.9 db loss at 1 Ge (a reduction of 2.7 db from the preceding case).
Thus, the n = 4 design with only 1.9 db maximum loss and about 0.25 db
variation across the operating band is seen to represent a major improve-
ment in performance. Going to larger values of n would give still greater

improvement, but even with n = x, (L ) = would still be about 1.46 db.

In most microwave cases band-pass rather than low-pass impedance
matching networks are desired. The design of such networks is discussed
in Chapter 11 working from the prototypes in this section. One special
feature of band-pass impedance-matching networks is that they are easily

designed to permit any desired value of generator internal resistance,
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whereas low-pass matching networks must have a specified generator
internal resistance for optimum design.

The attenuation characteristics of the impedance-matching networks
discussed in this section and in Sec. 4.10 may be computed by
L, = L, + (L‘).i. db (4.09-2)
where L, is the attenuation of the impedance-matching network and L, is
obtained by Eqs. (4.03-3) to (4.03-5), or by Figs. 4.03-4 to 4.03-10 for
the appropriate db Tchebyscheff ripple L,, = (L,) - (L‘)

sax min’

In the next section the calculation of prototype impedance-matching
networks so as to give a specified Tchebyscheff ripple [at the cost of a
larger (L‘) ] will be discussed. The method by which Figs. 4.09-3 to

mex
4.09-8 were prepared will also he outlined.

SEC. 4,10, COMPUTATION OF PROTOTYPE IMPEDANCE-MATCHING
NETWORKS FOR SPECIFIED RIPPLE OR MINIMUM
REFLECTION
The networks discussed in the preceding section were specified so
that (L,)

was necessary to accept whatever pass-hand ‘Ichebyscheff ripple the charts

wex ¥as to be as small as possible. Under that condition, it
might call for in the case of any given design. Alternatively, we may
specify the pass-band Tchehyscheff ripple and accept whatever value of
(L,
tion constant may be the major consideration, computation of prototype

wex M2y result. Since in some cases keeping the pass-band attenua-

matching-network element values for a specified Tchebyscheff ripple will
be briefly outlined.

Prototype circuits for specified decrement > = l/(goglw{) and db
ripple may be obtained as follows. First computelt

(db Tchebyscheff ripple)

H = til .10-
antilog, , T (4.10-1)
and
sinh~! g——
. H -1
d = ginh p (4.10-2)
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where n is the number of reactive elements in the prototype. Next
compute

e = d=- 25 sin (1> (4.10-3)
2n

and the maximum, pass-band reflection coefficient value

cosh (n sinh”! e)

r . 10-
M. cosh (n sinh™! d) (4.10-4)
Then the (L,),,, vealue which must be accepted is
1
(L)ees = 10 log,, —— . (4.10-5)
l- |r|3ll

Figure 4.10-1 shows a plot of (L,)_,, vs o for various values of n
®:ex - (LA)nil
Suppose that > = 0.10 and 0 10-db ripple is desired with n = 2. This

chart shows that (L,) will then be 5.9 db. By Figs. 4.09-3 and 4.09-4

].

and various amounts of Tchebyscheff ripple amplitude [(L‘)

it is seen that for the same o, when (LA)_.I is minimized, (LA)..'

4.8 db while the ripple is 0.98 db. Thus, the price for reducing the
ripple from 0.98 db to 0.10 db is an increase in (L) of about 1.1 db.

Green’s work®' appears to provide the easiest means for determining
the element values. Using his equations altered to the notation of this

chapter, we obtain

d 8,8,
D = '———77 -1 = E— (4.10'6)
¢ sin (——) Ene18n
2n

where the 8,'s are as defined in Fig. 4.04-1. The element values are

then computed by use of the equations

1
bw;go

g = (4.10-7)
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1

&, . (4.10-8)
j®2 ton ‘j-l (k,--x,,-)z(‘"i)z
1
80\01 Ds‘.w; (4.10‘9)

where the k.

j-1,, are coupling coefficients to be evaluated as shown below.

Green's equations for the k _, . are®’

n = 2

k,, = / > (4.10-10)
ns= 3
3 b ,
b, - 5[1 . (1 R T>b] (4.10-11)
k“ = 5[1 + 3 + D)b] (4.10-12)
n s 4
1 8n?
ky, = 1/ _[1 + (1 + —:)a’] (4.10-13)
2 a
by, = /i [1 NP nz)az] (4.10-14)
a2 (12
1
K, - ,’/—_[1 +(-§- + n’) 5’] (4.10-15)
2v2 at :
where

a? = 2(24+v2) =~ 6.83
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Also, for n arbitrary,

N v[sin’ ré cos® ré + (cos? ro + D? sin? ro) (sin? 6)8?
ror+l sin (2r = 1)& sin (2r + 1)6
(4.10-16)

where

¢ = 2n/n

It is usually convenient to normalize the prototype design so that
g, = 1 and w} = 1, as has been done with the tabulated designs in this
chapter.

The element values for the prototype matching networks discussed in
Sec. 4.09 and plotted in Figs. 4.09-5 to 4.09-8 could have been obtained

using Green's charts’

of coupling coefficients and D values along with
Eqs. (4.10-7) to (4.10-9).* However, in order to ensure high accuracy,
to add the n = ] case, and to cover a somewhat wider range of decrements
than was treated by Green, the computations for the charts in Sec. 4.09
were carried out from the beginning. The procedure used was that de-

scribed below.

Fano!* has shown that, for low-pass networks of the type undzr con-

sideration, (L) will be as small as possible if

tanh na tanh nb (4.10-17)
cosh a cosh b )
where
a = sinh’!' d (4.10-18)
a = sinh™! e (4.10-19)
and d and e are as indicated in Eqs. (4.10-2) and (4.10-3). By
Eqs. (4.10-18), (4.10-19), and (4.10-3),
n
b = sinh! [.inh a - 25 sin 5;] . (4.10-20)

.
Barton (see Mef. 15) has independently also computed charts equivaleat to the coupling-
coafficient charta of Green. Barton, however, includes the maximaslly flat case ia nd:itiol.
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A computer program was set up to find values of a and b that satisfy
Eq. (4.10-17) under the constraint given by Eq. (4.10-20). From these a
and b values for various 8, values for d and e were obtained by 4 = ginha
and ¢ = sinh b. When values of d and ¢ had beeu obtained for various 8,
the element values for the networks were computed using Egs. (4.10-6) to
(4.10-15).

The data for the charts in Fig. 4.09-3 were obtained by using the
values of a and b vs 5 obtained above, and then computing (LA)_.‘ by use
of Eqs. (4.10-18), (4.10-19), (4.10-4), and (4.10-5). The data in
Fig. 4.09-4 were obtained by solving Eqs. (4.10-18), (4.10-19), (4.10-1)

and (4.10-2) for the db ripple as a function of @ and b.

Lossless impedance matching networks for some more general forms of
loads are discussed in Refs. 14, 16, 17, and 18. However, much work re-
mains to be done on the practical, microwave realization of the more com-
plicated forms of matching networks called for in such cases. At the
present time the prototype networks in Sec. 4.09 and this section appear
to have the widest range of usefulness in the Jesign of low-pass, high-
pass, and band-pass microwave impedance matching networks in the forms
discussed in Chapters 7, and 11.

SEC. 4.11, PHROTOTYPES FOR NEGATIVE-RESISTANCE
AMPLIFIERS

As was discussed in Sec. 1.04, if a dissipationless filter with re-
sistor terminations has one termination replaced by a negative resistance
of the same magnitude, the circuit can become a negative-resistance ampli-
fier. It was noted that, if rl(p) is the reflection coefficient between
a positive resistance R, and the filter, when R is replaced by R, = -R,

0
the reflection coefficient at that end of the filter hecomes

" l
Fitp) = Fx(_P) (4.11-1)

where p = o + jw is the complex frequency variable. Then, referring to
Figs. 1,04-1 and 1.04-2, the gein of the amplifier as measured at a
circulator will bhe

p
P U2 HY PR L LT (4.11-2)
svail
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where P, is the power reflected into the circulator by the negative-
resistance amplifier. If LA is the attenuation (i.e., transducer loss)
in db (as defined in Sec. 2.11) for the dissipationless filter with
positive terminations, then the transducer gain when R, is replaced by
Ry = =R, will be

p

: = (4.11-3)
’:uil 1 - It" .
where
1
[t]? & ——— . (4.11-4)

L,
antilog,, 'iF

and t is the transmission coefficient (for positive terminations) dis-
cussed in Secs. 2.10 and 2.11. Figure 4.11-1 shows a graph of L, in db
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AMPLIFIER USING A CIRCULATOR
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for a filter with positive resistance terminations vs the db transducer
gain of the corresponding negative-resistance amplifier with a circulator,
as determined using the above relationa.

The prototype impedance-matching filters discussed in Secs. 4.09
and 4.10 can also be used as prototypes for negative-resistance amplifiers.
With regard to their use, some consideration must be given to the matter
of stability. Let us define rl(p) as the reflection coefficient between
any of the filters in Fig. 4.04-1 and the termination g, = R, or G, at
the left and I' (p) as the reflection coefficient at the other end. (t
can be shown that the poles of a reflection coefficient function are the
frequencies of natural vibration of the circuit (see Secs. 2.02 to 2.04),
hence, they must lie in the left half of the complex-frequency plane if
the circuit is passive. However, the zeros of r‘(p), or of Fn(p), can
lie in either the left or right half of the p-plane. Since [(p) =
1/Iy(p), the zeros of I'y(p) for the passive filter become the poles of
r:(p) for the negative-resistance amplifier. Thus, in choosing a filter
as a prototype for a negative-resistance amplifier, it is important that
I, (p) have its zeros in the left half plane since if they are not, when
these zeros become poles of ["(p) for the negative-resistance amplifier
they will cause exponentially increasing oscillations (i.e., until some

non-linearity in the circuit limits the amplitude).

The mathematical data given in Secs. 4.09 and 4.10 for filter proto-
types of the various forms in Fig. 4.04-1 are such that the reflection
coefficient Fl(p) involving the termination g, on the left will have all
of its zeros in the left half of the p-plane, while the reflection coef-
ficient I" (p) involving the termination g, ,, on the right will have all
of its zeros in the right half plane.* For this reason it is seen that
the termination g, at the left must be the one which is replaced by its

negative, never the termination g, ,, at the right.

Let us suppose that a prototype is desired to give 15 db peak gain
with 2 db Tchebyscheff ripple. Then by Fig. 4.11-1, (L,),;, = 0.138 db,
(L,)gey = 0.22 db, and the ripple of the passive filter is 0.220-0.138 =
0.082 db. The parameter d in Sec. 4.10 is then computed by use of
Eqs. (4.10-1) and (4.10-2).

»
An exception to this occurs when e = 0 in Eq. (4.10-3) which leads to “’A)nin s 0 in Fig. 4.09-2.

Then the seros of I“, (p) and rn(p) ore all on the p = jw axis of the p-plans.
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Next the parameter & is obtained as follows: compute

[t]? = : ™ (4.11-5)
A/ max

10

antilog, ,

Il Vi~ [¢]? (4.11-6)
cosh™! [Irl.._ cosh (n sinh~!d)]
e = sinh (4.11-7)
n
and then
. d-e
8 2 —— (4.11-8)
n
2 sin —
2n

[Equations (4.11-5) to (4.11-8) were obtained using Eqs. (4.10-3) to
(4.10-5).] Having values for d and & (and having chosen a value for n)
the element values may be computed as indicated by Eqs. (4.10-6) to
(4.10-16). In some cases the designs whose element values sre plotted
in Figs. 4.09-5 to 4.09-8 will be satisfactory and computations will be
unnecessary.

In some ceases (such as for the low-pass prototype for the band-pass
negative-resistance amplifier example discussed in Sec. 11.10) the decre-
ment & of the prototype may be fixed, and the choice of low-pass prototype
may hinge around the question: What maximum gain value can be achieved
for the given & with acceptable value of pass-band gain ripple? This
question can readily be answered by use of Eqs. (4.10-1) to (4.10-5).
First, an estimate is made of the db pass-band ripple for the filter with
positive terminations which will result in an scceptable amount of pass-
band ripple in IF;’(Jw")Iz vs ' when the positive termination g, is re-
placed by a negative termination -g,. Then, having specified 3 and the
db ripple of the passive filter response by Eqs. (4.10-1) to (4.10-5) the
parameters H, d, e, (L), . ., and (L), ;, = (L,),,, — (db ripple) for the
filter with 8, pPositive can be determined. Knowing (L‘)... and (L‘).‘.
for the passive filter (i.e., for & positive), the pass-band maximum
and minimum gain with 8, replaced by -8, and with a circulator attached
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at the other end, can be obtained from Fig. 4.11-1. If the response is
not as desired, more desirable charscteristics may be achieved by starting
with a different value of pass-band ripple for the filter with positive
terminations. Having arrived at a trade-off between peak gain and size
of pass-band gain ripple, which is acceptable for the application at hand,
the element values for the prototype are computed using the equations in
Sec. 4.10 from n, &, d, and whatever convenient w; value is specified.
Note that the larger the number of elements n, the flatter the response
can be for a given gain. But as n g:ts large the improvement in perform-
ance per unit increase in n is small. Thus, if > for the load, and the
peak gain are both specified, it may not be possible to make the gain
ripples as small as may be desired even if the number n of reactive ele-
ments is infinite.

SEC. 4.12, CONVERSION OF FILTER PROTOTYPES TO USE
IMPEDANCE- OR ADMITTANCE-INVERTERS AND
ONLY ONE KIND OF REACTIVE ELEMENT

In deriving design equations for certain types of band-pass and band-
stop filters it is desirable to convert the prototypes in Fig. 4.04-1
which use both inductances and capacitances to equivalent forms which use
only inductances or only capacitances. This can be done with the aid of

the idealized inverters which are symbolized in Fig. 4.12-1.

An idealized impedance inverter operates like a quarter-wavelength
line of characteristic impedance K at all frequencies. Therefore, if it
is terminated in an impedance Z, on one end, the impedance Z_ seen looking
in at the other end is

z, = — . (4.12-1)

An idealized admittance tnverter as defined herein is the admittance
representation of the same thing, i.e., it operates like a quarter-
wavelength line of characteristic admittance J at all frequencies. Thus,
if an admittance Y. is attached at one end, the admittance Y. seen

looking in the other end is

Y, = =— . (4.12-2)
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290° IMAGE As indicated in Fig. 4.12-1, an
I PHASE SHIFT l inverter may have an image phase

. o— shifct of either $+90 degrees or an
z,miiﬁﬂ — Ki, kot 2p odd multipie thereof.
Y
° Because of the inverting
1MPEDANCE 3 + 1 > -
NVERTER action indicated by Eqs. (4.12-1)
o) and (4.12-2) a series inductance
with an inverter on each side looks
£90° IMAGE like a shunt capacitance from its
l PHASE SHIFT l exterior terminals. Likewise, a
. o— 0 shunt capacitance with an inverter
v",-"—l;m S ke n on both sides looks like a series
3
o | inductance from its external ter-
. . . ;
":;;ﬁ;;;;;“‘ minals., Making use of this prop
INVERTER erty, the prototype circuits in
(b) na-2528- 170 Fig. 4.04-1 can be converted to
SOURCE: Fisal Report, Contract DA 36-039 either of the equivalent forms in
reptisted in IRE Trans.. BGUTT (ove’ Fig. 4.12-2 which have identical
Ref. 1 of Chapter 10, by G. L. Matthaei). transmission characteristics to
FIG. 4.12.1 DEFINITION OF IMPEDANCE those prototypes in Fig. 4.04-1.

INVERTERS AND

ADMITTANCE INVERTERS As can be seen from Eqs. (4.12-1)

and (4.12-2), inverters have the
ability to shift impedance or admittance levels depending on the choice
of the K or J parameters. For this reason in Fig. 4.12-2(a) the sizes
of R,, Ry, and the inductances L,, may be chosen arbitrarily and the
response will be identical to that of the original prototype as in
Fig. 4.04-1 provided that the inverter parameters I(,"“l are specified
as indicated by the equations in Fig. 4.12-2(a). The same holds for the
circuit in Fig. 4.12-2(b) only on the dual basis. Note that the g, values
referred to in the equations in Fig. 4.12-2 are the prototype element values
as defined in Fig. 4.04-1.

A way that the equations for the K, ,,, and J, ,,, can be derived
will now be briefly considered. A fundamental way of looking at the
relation between the prototype circuits in Figs. 4.04-1(a), (b) and the
corresponding circuit in, say, Fig. 4.12-2(a) makes use of the concept
of duality. A given circuit as seen through an impedance inverter looks
like the dual of that given circuit. Thus, the impedances seen from
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inductor L, in Fig. 4.12-2(a) are the ssme as those seen from inductance
L{ in Fig. 4.04-1(b), except for an impedance scale factor. The imped-
ances seen from inductor L, in Fig. 4.12-2(a) are identical to those

seen from inductance Ly in Fig. 4.04-1(a), except for a possible impedance
scale change. In this manner the impedances in any point of the circuit
in Fig. 4.12-2(a) may be quantitatively related to the corresponding
impedances in the circuits in Fig. 4.04-1(a), (b).

Figure 4.12-3(a) shows a portion of a low-pass prototype circuit
that has been open-circuited just beyond the capacitor C,,,. The dual
circuit is shown at (b), where it should be noted that the open circuit

Ra Lo L2 Lan
‘ ,.-__Jm."_
@ Kol 2 Ky Knneil - §Me
o we o an
RL Lok L LonR
Kota/ =2 | Kypol| *A/ _:_2_0(*;" v Kot *A font
%9 w10 ner 8 et |
(o) MODIFIED PROTOTYPE USING IMPEDANCE INVERTERS
G,
N Jor ‘.}:C,. Jiz +c" Jas ;li.‘cm dn,ne :EO.

an/ CoxCatxnn / ConGo

L 'Y LAY
kst to n=1

C
Yoi *A/ &'—:. )
CAd}

(b) MODIFIED PROTOTYPE USING ADMITTANCE INVERTERS

RR-2328-77-1720

SOURCE: Final Report, Contract DA 36-039 SC-74862, Stanford Resaarch Institute,
reprinted in /RE Trans., PGMTT (see Ref. 1 of Chapter 10, by G. L. Matthaei).

FIG. 4.12-2 LOW-PASS PROTOTYPES MODIFIED TO INCLUDE
IMPEDANCE INVERTERS OR ADMITTANCE INVERTERS
The gg, 91/ +++s 9441 Ore obtained from the originel
prototype as in Fig. 4.04-1, while the R, L ., ..., L,
ond Rg or the G,, C,, ..., C,, and Gg maygln chosen
as desired.
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FIG. 4.12-3 SOME CIRCUITS DISCUSSED IN SEC. 4.12
A ladder circuit is shown at (a), and its dual is shown ot (b). The
onalogous K-inverter form of these two circuits is shown at ().

shown at (a) becomes a short circuit in the dual case. The corresponding
circuit using all series inductors and K inverters is shown at (c). The
circuits in Fig. 4.12-3 will be convenient for deriving the formula for
Ky y4y in terms of L ,. L ., , and the prototype element values g, and
8,4+, The open- and short-circuits are introduced merely to simplify

the equations.

Referring to Fig. 4.12-3, in the circuit at (a),

1
Z, = jua, t ——— (4.12-3)
) Y oojuCyy
Meanwhile in the circuit at (c)
K’
b, hel
Z! = ju , t ———— (4.12-4)
’ o ‘""'QIOI
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Now Z; must be identical to £, except for an impedance scale change of
L“/L,. Therefore

ok L & 1
L Tz, e g, "-Z.T;Z: , (4.12-5)

Equating the second terms in Eqs. (4.12-4) and (4.12-5) gives, after

some renrrlngement.
/L L
k“ahe]
K o 4 — (4.12-6)
. 1
hobe Llciol

Since L, = g, and C,,, = 8,,,, Eq. (4.12-6) is equivalent to the equation
for Kh.nl given in Fig. 4,12-2(a). It is easily seen that by moving the
positions of the open- and short-
circuit points correspondingly, the La0n

-— e eV \—
same procedure would apply for calcu-

lation of the K's for all the in- $00° O

verters except those at the ends.

Hence, Eq. (4.12-6) applies for k = 1,
2, ..., n - 1. iy Zna

Next consider Fig. 4.12-4. At

(a) is shown the last two elements of Lon
- e em amm—tY Y
a prototype circuit and at (b) is {
shown a corresponding form with a K e ] Knne t L
inverter., In the circuit at (a) ————
1 z‘" l:i'l
Z, = jul ¥ P (4.12-7) )
n+l A-3827-07
. FIG. 4.12-4 ADDITIONAL CIRCUITS
while at (b) DISCUSSED IN SEC. 4.12
The end portion of a
2 prototype circuit is shown
7" . g BLTLAL ‘ . at (a) while at (b) is shown
ot Jad,, * R, - (4.12-8) the corresponding end
portion of a circuit with
K-inverters.

Since Z, must equai Z, within a scale
factor L _ /L,
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L

an sn 1
Z' = Z - =« Jal + — — . .12-
: T Rt (4.12-9)

Equating the second terms of Eqs. (4.12-8) and (4.12-9) leads to the

result

l'anRB

n,n+] ® LG

A n+l

(4.12-10)

Substituting g, and g,,, for L and G, , , respectively, gives the equation

for K, shown in Fig. 4.12-2.

The derivation of the equations for the J"“l parameters in
Fig. 4.12-2(b) may be carried out in like manner on the admittance (i.e.,

dual) basis.

SEC. 4.13, EFFECTs ub¥ DISSIPATIVE ELEMENTS IN PROTOTYPES

FOR LOW-PASS, BAND-PASS, OR HIGH-PASS FILTERS

Any practical microwave filter will have elements with finite Q's,

and in many practical situations it is important to be able to estimate
the effect of these finite element Q's on pass-band attenuation. When a
filter has been designed from a low-pass prototype filter it is convenient
to relate the microwave filter element ('s to dissipative elements in the
prototype filter and then determine the effects of the dissipative elements
on the prototype filter response. Then the increase in pass-band attenu-
ation of the prototype filter due to the dissipative elements will be the
same as the increase in pass-band attenuation (at the corresponding fre-

quency) of the microwave filter due to the finite element Q's.
The element Q's referred to below are those of the elements of a
low-pass filter at its cutoff frequency «;, and are defined as

» @, C,

Qb = or (4.13'1)

where R. is the parasitic resistance of the inductance L., and G. is the
parasitic conductance of the capacitance C,.* In the case of a band-pass

.
Here, the waprimed Ly B, G, Gy and w; velues are meant to apply to any low-pass filter,

whether it is o mnormslized prototype or mot. Later in this section primes vwill be intreduced
to aid in distinguishing between the low-pass protetyps parameters and those of the cerrer
sponding bend-pass or high-pass filter.
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filter which is designed from a low-pass prototype, if (Q.,)‘ is the mid-
band unlosded Q of the kth resonator of the band-pass filter, then the
corresponding Q of the kth reactive element of the prototype is

Q = v(Q), . (4.13-2)

In this equation w is the fractional bandwidth of the band-pass filter
as measured to its pass-band edges which correspond to the w; pass-band
edge of the low-pass prototype (see Chapter 8). The unloaded Q of the
resonators can be estimated by use of the data in Chapter 5, or it can
be determined hy measurements as

in Sec. 11.02.

In the case of a high-pass s T T

filter designed from a low-pass

1 '. l. : '.
prototype, the element Q's of Fq al % 024
the prototype should be made to © -==
be the same as the Q's of the 4-3607-0

corresponding elements of the

) ) . FIG. 4.13-1 LOW-PASS PROTOTYPE FILTER
high-pass filter at its cutoff WITH DISSIPATIVE ELEMENTS
frequency. ADDED

Figure 4.13-) shows a por-
tion of a low-pass prototype
filter with parasitic loss elements introduced. Note that the parasitic
loss element to go with reactive element 8, is designated as d‘g.. where
d, will be referred to herein as a dissipation factor. Using this nota-
tion Eq. (4.13-1) becomes Q, = w;gh/(d.g*) = w{/d. where w| is the cutoff
frequency of the low-pass prototype. Thus,

d, = — . (4.13-3)

Then for a series branch of a prototype filter

Z, = Jjw'L, +R, = (' + di)g. (4.13-4)
and for a shunt branch

Y‘ L4 jw'C.’ + G.' = (]“" + d.)‘. (4.13-5)

145



A special case of considerable practical interest is that where the
('s of all the elements are the same so that d, = d for k = 1 to n. Then,
as can be seen from Eqs. (4.13-4) and (4.13-5), the effects of dissipation
can be accounted for by simply replacing the frequency variable jo' for
the lossless circuit by (jw' + d) to include the losses. For example,
this substitution can be made directly in the transfer functions in
Eqs. (4.07-1), (4.08-5) to (4.08-8) in order to compute the transfer
characteristics with parasitic dissipation included. At DC the function
(jw' + d) becomes simply d, so that if

(E,)

2/avail

E,

. Pn(p')lP:SIw: s @ (Jw' )"+ ... +a jw +a; (4.13-6)

for a dissipationless prototype, the DC loss for a prototype with uniform
dissipation d is for w' = 0

(E,)

avail

E,

= P (d) = ad" + ... ¢ ad+ a (4.13-7)

w'=0

where (E,),. . /E, is as defined in Sec. 2.10. Usually d is small so that
only the last two terms of Eq. (4.13-7) are significant. Then it is
easily shown that

(AL,), = 20 log;, [C,d + 1] db (4.13-8)
~ 8.686 C,d

where (AL, ), is the db increase in attenuation at ' = O when d is finite,
over the attenuation when d = 0 (i.e., when there is no dissipation loss).*
The coefficient C, = a,/a, where a, and a, are from polynomial P (jw')

in Eq. (4.13-6).

In the case of low-pass prototypes for band-pass filters, (AL,), is
also the increase in the midband loss of the corresponding band-pass
filter as a result of finite resonator Q's. For high-pass filters designed

.
For example, o dissipstionless, 0.5-db ripple Tchebyscheff filter with a = 4 vould have L‘ =
0.5 db for o = 0. If uwnifors dissipation is introduced the stteawatioa for @ % 0 vill become
LA = 0.5 ¢ (ALA)o db.

146



from low-pass prototypes, (AL, ), relates to the attenuation as w ~ @,
Equation (4.13-8) applies both for prototypes such as those in Sec. 4.05
which for the case of no dissipation loss have points where L‘ is zero,
and also for the impedance-matching network prototypes in Secs. 4.09 and
4.10 wvhich even for the case of no dissipation have non-zero L, at all

frequencies.

Table 4.13-1 is u tabulation of the coefficients C, for prototype
filters having maximally flat attenuation with their 3-db point at
wy = 1. Figure 4.13-2 shows the C, coeffi-

. T . Table 4.13-1
cients for Tchebyscheff filters plotted vs db
. . MAXIMALLY FLAT ATTENUATION
p.s!'bﬂnd I‘lpple. In thls case t.he equﬂl' FILTER COEFFICIENTS C. FOR
n
ripple band edge is w; = 1. Note that above USE INFQ. (4.13-8)

These coefficients are for

about 0.3 db-ripple, the curves fall for n filters with their 3-db point

even and rise for n odd. This phenomenon is ““i‘! and are equal to the
group time delay in seconds as
related to the fact that a Tchebyscheff pro- @ approaches zer

. . . . see Eq. (4.08-2)
totype filter with n even has a ripple maxi- see

mum at ' = 0, while a corresponding filter " <, a c,
with n odd has a ripple minimum at that fre- 1 1.00 9 5.76
quency. There is apparently a tendency for 2 1.41 10 6.39
be eff f dissivaci b 3| 200 | 11 | 7.03
the effects of dissipation to be most pro- s 2. 61 12 1.66
nounced at ripple minima. 5 3.24 13 8.30
6 3.86 14 8.93
Bode! gives an equation for AL, the ? 4.49 15 9.57
increase in attenuation due to uniform dis- 8 5.13

sipation, as a function of the attenuation phase slope and the dissipa-

tion factor, d. idode’'s equation may be expressed in the form

dg
AL‘ = 8.686 d - db (4.13-9)
dew
where
(E2)nvail
¢ = arg — ! (4.13-10)
bz

and in this case M., is the increase in attenuation at, ®’, the frequency,

at which dp/dw’ is evaluated.®* 'Thus, this equation provides a convenient

.
It can be seen from Eqs. (4,13-8) and (4.13-9) that the C, coefficients in Table 4.13-]1 and
Pig. 4.13-2 are squal to the group time deley in seconds ss «' approsches sero.
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FIG. 4.13-2 PROTOTYPE TCHEBYSCHEFF FILTER
COEFFICIENTS C_ vs. db TCHEBYSCHEFF
RIPPLE, FOR PROTUTYPES WITH n
REACTIVE ELEMENTS AND w; = 1
Thesse coefficients are for use in Eq. (4.13-8).
They are also the group time delay in seconds
as w' approaches zero (see Eq. 4.08-2),
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means for estimating the effects of uniform dissipation at any frequency.
Bode's discussion!® indicates that for cases where all the inductances
have a given Q, ¢;, and all of the capacitances have unother Q, ¢ , good

2/(Q, + Q).

results can he obtained by computing d as

Cohn? has presented another formula which is convenient for esti-
mating the effects of dissipation loss of low-pass prototypes for w’' = 0.
His formula may be expressed in the form

n
(AL,), = 4.343 Z, digy db (4.13-11)

where the d, are given by Eq. (4.13-3), and the prototype element values
g, are specifically assumed to have heen normalized so that g, = 1 (as
has been done for all of the prototypes discussed in this chapter). Note
that this formula does not require that the dissipation he uniform.
Equation (4.13-11) was derived by assuming that the load and source re-
sistances are both one ohm, and that the effect of each H; or G; in

Fig. 4,13-1 at @' = ( is to act as voltage or current divider with
respect to one ohm.® As a result, Eq. (4.13-11) can lead to appreciable
error if the load and source resistances are sizeably different, though
it generally gives very good results if the terminations are equal or at

least not very greatly different.*

Table 4.13-2 compares the accuracy of kEqs. (4.13-8), (4.13-9), and
(4.13-11) for various Tchebyscheff filters having uniform dissipation.

Cases 1 to 3, which are for filters with n = 4 reactive elements, have

Tabje 4,13-2

COMPARISON OF ACCURACY OF FQS. (4.13-8), (4.13-9), AND (4.13-11) FOR
COMPUTING (AL‘)O FOR VARTOUS TCHEBYSCHLEFF FILTERS '
HAVING UNTFORM DISSIPATION

(ak )y L) (ak,), (al ),
CASE | a db ¢ | actuaL BY BY BY
RIPPLE VALUE | EQ. (4.13-8) | FQ. (4.13-9) | EQ. (4.13-11)

1 L4 o5 100 | 0.236 0. 232 -- 0.264
2 | 4] 20 100 | 0.223 0.2 . 0.346
3 14| 20 10 2.3 1.95 .- 3.46
4 15| os 100 | 0.364 0.357 0.35 0.365
5 |5 o5 10 | 3.55 3.05 3.5 3.65

Equation (4.13-11) can be made to be more sccurate for the case of unequal terminotions by
seltiplying its right-hand side by Moknﬂl(ko + l"l )2 whore lo and n"l are the resistances
of the terminations. This can be sgen frem the sliternate point of view ia Sec. 6.14.
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unequal terminations; hence, Eq. (4.13-11) has relatively low accuracy
if the pass-band ripples are large. Equation (4.13-8) gives reduced
accuracy if the value of ) is very low. This happens as a result of
using only the last two terms in Eq. (4.13-7). The actual value of
(.’SLA)0 was computed by using as many terms in Eq. (4.13-7) as was re-
quired in order to ohtain high accuracy. The values computed using

Eq. (4.13-9) were obtained by computing phase slope from Fig. 4.08-1.
Note that the results are quite good. ‘The ¢ = 10 values included in
Table 4.13-2 are of practical interest since in the case of low-pass
prototypes of band-pass filters the element ('s for the low-pass proto-
type can become quite low if the fractional bandwidth v of the hand-pass
filter is small [see Eq. (4.13-2)].

The above discussion treats the effects of parasitic dissipation at
w' = 0, and the important question arises as to what the loss will be
elsewhere in the pass band. Lquation (4.13-9) provides convenient means
for obtaining an approximate answer to this question. Since it says that
‘KLA at any frequency is proportional to the attenuation phase slope (i.e.,
the group time delay) at that frequency, we can estimate AL, across the
pass band by examining the phase slope across that band. As seen from
the examples in Fig. 4.08-1, the phase slope in typical cases is greatest
near the cutoff frequency. In Fig. 4.08-1 the slope near cutoff is 2.66,
1.73, and 1.49 times the slope at «' = 0 for the cases of 0.5-db ripple,
0.01-db ripple, and maximally flat responses, respectively. Thus AL,
near cutoff will be greater than (.’SL‘)o at @' = 0 by about these factors.
These results are typical and are useful in obtaining an estimate of

what to expect in practical situations.

SEC. 4.14, APPROXIMATE CALCULATION OF PHOTOTYPE
STOP- BAND ATTENUATION

Cohn?® has derived a convenient formula for computing the attenuation
of low-pass filters at frequencies well into their stop bands. This
formula is derived using the assumption that the reactances of the series
inductances are very large compared to the reactances of the shunt capaci-
tors. When this condition holds, the voltage at one node of the filter
may be computed with good accuracy from that at the preceding node using
a simple voltage divider computation.® Cohn further simplifies his
formula by use of the assumption that (a.:’LkC“1 = 1)~ w’L.C.,l.
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Cobn's formula, when put in the notation of the low-pass prototype
filters in this chapter, is

LA = 20 loglo [(wl)n(glgzga e 8.)]

4
- 10 log,, ( ) db (4.14-1)
sognﬂ
where g,, 8 . ..., g,,, are the prototype element values defined in

Fig. 4.04-1(a), (b) and »' is the prototype radian frequency variable.
For this formula to have high accvracy, »' should be a number of times

as large as «|, the filter cutoff frequency.

As an example, consider a Tchebyscheff filter with n = 4 reactive
elements and 0.2 db ripple. By Table 4.05-2(a), g, = 1, g, = 1.3028,
&, = 1.2844, g, = 1.9761, g, = 0.8468, g, = 1.5386, and the cutoff fre-

‘

quency is w; = 1. By Eq. (4.14-1), to slide-rule accuracy
L, = 20 log , [(»')*(4.29)] ~ 10 log, 6.15 . (4.14-2)

Evaluating Eq. (4.14-2) for »' = 3 gives L, = 43.1 dh. By Fig. 4.03-6
we find that the actual attenuation is 42 db. Repeating the calculation
for w' = 2 gives L, = 28.8 db as compared to 26.5 db by Fig. 4.03-6.

Thus it appears that even for values of w'/» as small as 2, Eq. (4.14-1)
gives fairly good results. The error was +2.3 db for @' = 2 and +1.1 db
for ' = 3.

Equation (4.14-1) neglects the effects of dissipation in the circuit.
This is valid as long as the dissipative elements in the prototype can
be assumed to be arranged as are those in Fig. 4.13-1. This arrangement
of dissipative elements is usually appropriate for prototypes for low-
pass, band-pass, and high-pass filters. However, in the case of proto-
types for hand-stop filters, the different arrangement of dissipative ele-
ments discussed in Sec. 4.15 should bte assumed. For that case Eq. (4.14-1)

will be quite inaccurate in some parts of the stop band.

SEC. 4.15, PROTOTYPE REPRESENTATION OF DISSIPATION LOSS
IN BAND-STOP FILTENWS

In the case of band-stop filters, the effects of parasitic dissipa-
tion in the filter elements are usually more serious in the stop band
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than in the pass band. The stop band usually has one or more fre-
quencies where, if the filter had no dissipation loss, the attenuation
would be infinite., However, dissipation loss in the resonators will
prevent the attenuation from going to infinity and in some cases may- re-
duce the maximum stop-band attenuation to an unacceptably low value. If
a band-stop filter is designed from a low-pass prototype, it is quite
easy to compute the effects of finite resonator ¢’'s on the maximum stop-

band attenuation.

The solid lines in Fig. 4.15-1 shows a Tchebyscheff low-pass proto-

type response along with the response of a band-stop filter designed from

ATTENUATION — db

ATTENUATION — @b

o W Wy Wy
W =

(v

#-3827-90

FIG. 4.15.1 A LOW-PASS PROTOTYPE RESPONSE
IS SHOWN AT (a), AND THE CORRE-
SPONDING BAND-STOP FILTER
RESPONSE IS SHOWN AT (b)
The dashed lines show the effects of
dissipation loss.
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this prototype, both for the Lorep

case of no incidental dissipa- Kty v

tion. For a typical band-stop '-.'."'_'_T:,g_:——
filter the resonators are reso- R3Oty q’,-o;'
nant at the center of the stop 0 e e e e
band (instead of at the center PR

of the pass band as is the case
for a typical band-pass filter),

and as a result the loss effects

FIG. 4.15-2 LOW-PASS PROTCTYPE FILTER
WITH DISSIPATIVE ELEMENTS

ADDED AS REQUIRED FOR
COMPUTING PEAK STOP-BAND
ATTENUATION OF CORRE-
SPONDING BAND-STOP FILTERS

are most severe at the center of
the stop band. The dashed line
in Fig. 4.15-1(b) shows how dis-
sipation loss in the resonators
will round off the attenuation
characteristic of a band-stop
filter. The dashed line in Fig. 4.15-1(a) shows the corresponding effect

in a low-pass prototype filter.

It is easily seen that in order for resistor elements to affect the
attenuation of a prototype filter as shown by the dashed line in
Fig. 4.15-1, they should be introduced into the prototype circuit as
shown in Fig. 4.15-2.
elements have negligible influence and the circuit operates in the same

In Fig. 4.15-2 the @ of the kth

Note that in this case as w' — @, the reactive

way as a ladder network of resistors.

reactive element is given by®

Ry G,
Q, = —— or — (4.15-1)
CA)IL. a)lC.
b,
= = (4.15-2)
@)

The unloaded 0,
(Qggp)y, of the kth resonator of the band-stop filter is related to Q,

where w; is the cutoff frequency in Fig. 4.15-1(a).
of the prototype (at frequency w;) by

Q = v(Qps,), (4.15-3)

N
Note that these wnususl definitions of Q result from the manner in which the dissipative
elements are iatreduced in each branch of the filter.
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where

v o= ———— (4.15-4)

and w_, @,, and w, are as defined in Fig. 4.15-1(b). By Eq. (4.15-2),

D, - wQ, (4.15-5)

and as shown in Fig. 4.15-2,

R, or G, = D‘S‘It-l . . (4.15-6)

where the g, are the prototype filter elements as defined in Fig. 4.04-1.

As previously mentioned, when o' — ® the reactive elements in
Fig. 4.15-2 may be neglected, and the attenuation can be computed from
the remaining nelwork of resistors. 1In typical cases, resistances of
the series branches will be very large compared to the resistances of
the shunt branches, and Cohn's method for computing the stop-band attenu-

20

ation of low-pass filters® can be adapted to cover this case also. The

resulting equation is

(L) = 20 log, [(DD, ... D,) (g8, - &,)]

4
- 10 log,, (g - ) db (4.15-7)
08n+l

which is analogous to Eq. (4.14-1) for the reactive attenuation of a
low-pass filter.

As an example, let us suppose that a band-stop filter is desired
with a fractional stop-band width of w = 0,02 (referred to the 3 db
points), and that maximally flat pass bands are desired. Let us assume
further that the resonator Q’s at the mid-stop-band frequency are 700
and that the maximum stop-band attenuation is to be computed. By
Eq. (4.15-3) Q; = Q, = 0.02 (700) = 14. By Table 4,05-1(a) the elements
values of the desired n = 2 low-pass prototype are g, = 1, g, = 1.414,
8; * 1.414, and gy = 1. Also, @ which in this case is the 3-db band-edge
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frequency, is equal to unity. By Eq. (4.15-5), D, = D, = 14, and, to
slide-rule accuracy, Eq. (4.15-7) gives (L ), = 45.8 db. In comparison,
using the method of Sec. 2.13 to compute the attenuation from the ladder
of resistors gives (L ), = 46.7 db.

As is suggested by the dashed lines in Fig. 4.15-1, the effects of
dissipation in the pass band are for this case most severe at the pass-

band edge, and they decrease to zero as the frequency moves away from

the pass-band edge (within the pass band). The increase in loss due to
dissipation at the band-edge frequency can be estimated by use of the
formula *

(L) | n 18,

. ] = . b3 . -

AL L) o) 8.686 o, (4.15-8)

This formula represents only an estimate, but should he reasonably accurate
for cases such as when an n = 5, 0.1-db ripple prototype is used. lor
cases where very large Ichebyscheff ripples are used this equation will
underestimate the loss; when very small ripples are used it will over-
estimate the loss. For 0.1-db ripple, if n were reduced to 2 or 1,

Eq. (4.15-8) would tend to overestimate the hLand-edge loss. For typical
practical cases, Eq. (4.15-8) should never have an error as great as a
factor of 2.

Equation (4.15-8) was obtained from LEq. (4.13-11) by the use of two
approximations. The first is that for the arrangement of dissipative
elements shown in Fig. 4.13-1, the added loss M, due to dissipation at
the band edge w; is roughly twice the value (.ﬁ\LA)o of the loss due to
dissipation when »' = 0. 'This was shown by examples in Sec. 4.13 to be
a reasonahly good approximation for typical low-pass prototype filters,
though it could be markedly larger if very large pass-band ripples are
used. The second approximation assumes that a filter with dissipative
elements as shown in Fig. 4.15-2 can be approximated at the frequency w;
by the corresponding circuit in Fig. 4.13-1. The reactive element values
g, are assumed to have heen unchanged, and also the Q's of the individual
reactive element are assumed to be unchanged; however, the manner in which
the dissipation is introduced has been changed. This approximation is

valid to the extent that

.
This formuls is based on Eq. (4.13-11) which assumea that the prototype clement values have
been normalised so that 61
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2N Qe 8, . w8,

—_—t jgw = + (4.15-9)
Q‘ e Qz +1 1 2
‘ L (3)
[}

represents a good approximation. It is readily seen that this is a good
approximation even for {'s as low as 10. Thus to summarize the basis

for Eq. (4.15-8)-—the equation as it stands gives a rough estimate of

the attenuation due to dissipation at band edge for the situation where
the dissipative elements are introduced as shown in Fig. 4.13-1. We
justify the use of this same equation for the case of dissipative elements
arranged as in Fig. 4.15-2 on the basis of the approximation in

Eq. (4.15-9). It shows that as long as the reactive elements are the
same, and the element ('s are the same, and around 10 or higher, it
doesn't make much difference which way the dissipative e¢lements are con-

nected as far as their effect on transmission loss is concerned.
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CHAPTER 5

PROPERTIES OF SOME COMMON MICROWAVE FILTER ELEMENTS

SEC. 5.01, INTRODUCTION

Previous chapters have summarized a number of important concepts
necessary for the design of microwave filters and have outlined various
procedures for later use in designing filters from the image viewpoint
and from the insertion-loss viewpoint. In order to construct filters
that will have measured characteristics as predicted by these theories,
it is necessary to relate the design parameters to the dimensions and
properties of the structures used in such filters. Much information of
this type is available in the literature. The present chapter will attempt
to summarize information for coaxial lines, strip lines, and waveguides
that is most often needed in filter design. No pretense of completeness
is made, since a complete compilation of such data would fill several
volumes. It is hoped that the references included will direct the inter-

ested reader to sources of more detaiied information on particular subjects.

SEC. 5.02, GENERAL PROPERTIES OF TRANSMISSION LINES

Transmission lines composed of two conductors operating in the trans-
verse electromsgnetic (TEM) mode are very useful as elements of microwave
filters. Lossless lines of this type have a characteristic or image im-
pedance Z;, which is independent of frequency f, and waves on these lines
are propagated at a velocity, v, equal to the velocity of light in the
dielectric filling the line. Defining R, L, G, and C as the resistance,
inductance, conductance and capacitance per unit length for such a line,
it is found that Z, and the propagation constant ¥, are given by

.l .'/“ tid -l/—z ohms (5.02-1)
0 Y, G + joC Y )

Y, = a, +jB, = R+ jak)(G+ juC) « 2r (5.02-2)
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where w = 2wf. When the line is lossless, &, is zero and

B, w yLC radians/unit length (5.02-3)

w 1
vV 8 — ,a == distance/second (5.02-4)
B, " {tc /

/L 1
20 = —é- - ;E = vl ohms . (5.02-5)

In practice a line will have some finite amount of attenuation
¢ ¢ d (5-02'6)

where @, is the attenuation due to conductor loss and a, the attenuation
due to loss in the dielectric. For small attenuations *

R B

a, = 27; - ?Q'T nepers (5.02-7)
G ﬂt ’60

4, = — & — & —— nepers (5.02-8)

0 20, 2 tan &

where @, = wl/R, Q, = «C/G, and tan & is the loss tangent of the
dielectric material filling the line. The total Q of the transmission
line used as a resonator is given by

+

1 1 1
- —_t - (5.02-9)
Q Q. ©Q,

These definitions are in agreemenc with those given in terms of the
resonator resctance and susceptance slope parameters in Sec. 5.08. For
a slightly lossy line the characteristic impedance and propagation

constant become

* To acavert aepers to decibels, maitiply by 8.68.
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-./1.'0'1—1+1+1 5.02-1
B, w [ .0 00 8 (5.02-10),

c Q, ©

5 - /E [ (L-.l.)] . (5.02-11)

The TEM modes can also propagate on structures containing more than two
conductors. Examples of such structures with two conductors contained with-
in an outer shield are described in Sec. 5,05. Two principal modes can
exist on such two-conductor structures: an even mode in which the currents
in the two conductors flow in the same direction, and an odd mode in which
the currents on the conductors flow in opposite directions. The velocity of
propagation of each of these modes in the lossless case is equal to the
velocity of light in the dielectric medium surrounding the conductors. How-
ever, the characteristic impedance of the even mode is different from that
of the odd mode.

SEC. 5.03, SPECIAL PROPERTIES OF COAXIAL LINES

The characteristic impedance Zo of a coaxial line of outer diameter
b and inner diameter d, filled with a dielectric material of relative

dielectric constant € _, is

. - Z_o_zn; ohms . (5.03-1)

r

This expression is plotted in Fig. 5.03-1. The attenuation &, of a copper
coaxial line due to ohmic losses in the copper is

%, = 1a9ax10“¢“v7_Q " b/d

b/d
db/unit length (5.03-2)

where f, is measured in gigacycles. (Here the copper is assumed to be
very smooth and corrosion-free.) The attenuation is a minimum for b/d
of 3.6 corresponding to /?:'Zo of 77 ohms.

The attenuation a, of the coaxial line (or any other TEM line) due
to losses in the dielectric is

27.3 Ve, tan 8

. " = db/unit length (5.03-3)
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FIG. 5.03-1 COAXIAL-LINE CHARACTERISTIC IMPEDANCE

where tan > is the loss tangent of the dielectric, and A is the free-space
wavelength. The total attenuation @, is the sum of a_ and @,. The at-

tenuation of a coaxial line due to ohmic losses in the copper is shown in
Fig. 5.03-2.

The Q of a dielectric-filled coaxial line may be expressed as

+

1 1 1
- -_—t — (5.03-4)

¢ o, ¢,

where Q, = m/-e':/)»ac depends only on the conductor loss and Q, depends only
on the dielectric loss. The @, of a dielectric-filled coaxial line is

independent of €, and is given by the expression
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b In b/d

m (5.03-5)

Q, = 1.215 x 10* V¥,

where b and d are measured in inches. The value of Q, for the coaxial
line or any TEM line is

1
tan &

Q‘ - (5-03'6)

The values of Q, for a copper coaxial line are plotted in Fig. §.03-2.

Breakdown will occcur in en air-filled coaxial line at atmospheric
pressure when the maximum electric field £, reaches a value of approxi-
mately 2.9 x 10* volts per cm. The average power P that can be trans-
mitted on a matched coaxial line under these conditions is

In b/d
- = 2 4 watts . (5.03-7)
When the outer diameter b is fixed, the maximum power can be transmitted

when b/d is 1.65, corresponding to Zo of 30 ohms.

The first higher-order TE mode in a coaxial line will propagate when
the average circumference of the line is approximately equal to the wave-
length in the medium filling the line. The approximate cutoff frequency,
f. (in gigacycles), of this mode is

.51
(f)ge = -:—?S.— (b + d) (5.03-8)

r
where b and d are measured in inches.

SEC. 5.04, SPECIAL PROPERTIES OF STRIP LINES

The characteristic impedance of strip line can be calculated by
conformal mapping techniques; however, the resulting formulas are rather
complex. Figure 5.04-1 shows the cheracteristic impedance, Z,, of a
common type of strip line with a rectangular center conductor,!? for
various values of t/b < 0.25, and 0.1 < w/b < 4,0. The values shown are
exact for t/b = (0 and are sccurate to within about 1 percent for other
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FIG. 5.04-1 GRAPH OF Z; vs. w/b FOR VARIOUS VALUES OF 1/b

values of t/b. Figure 5.04-2 shows exact values of Z, for all values of
t/b, and w/b < 1.6.3

The theoretical attenuation @, due to ohmic losses in a copper strip
line filled with a dielectric of relative dielectric constant ¢, is
shown in Fig. 5.04-3. The attenuation @, due to the dielectric loss is
given by Eq. (5.03-3). As in the case of the coaxial line, the total
attenuation &, is the sum of a_ and a,.

The Q of a dielectric-filled strip line is given by Eq. (5.03-4).
The Q. of a dielectric-filled line is shown plotted in Fig. 5.04-4.12
As in the case of the coaxial line, Q, is the reciprocal of tan 3.
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FIG. 5.04-3 THEORETICAL ATTENUATION OF COPPER-SHIELDED STRIP
LINE IN A DIELECTRIC MEDIUM ¢,
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FIG. 5.04.4 THEORETICAL Q OF COPPER-SHIELDED STRIP LINE
IN A DIELECTRIC MEDIUM €,

The average power, P (measured in kw), that can he transmitted along
a matched strip line having an inner conductor with rounded corners is
plotted in Fig. 5.04-5. In this figure the ground plane spacing b is
measured in inches, and the breakdown strength of air is taken as
2.9 x 10* volts/cm. An approximate value of Z, can be obtained from
Figs. 5.04-1 and 5.04-2.

The first higher-order mode that can exist in a strip line, in which
the two ground planes have the same potential, has zero electric-field
strength on the longitudinal plane containing the center line of the strip,
and the electric field is oriented perpendicular to the strip and ground
plane. The free-space cutoff wavelength, A, of this mode is

2w 4d
Ae ‘/‘_'[T*T]"
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where d is a function of the cross section Table 5.04-1

of the atrip line. If t/b « 0 and THE QUANTITY 4d/b ve. b/A,
w/b > 0.35, then 4d/b is a function of FOR w/b 2 0.35 AND /b ~ 0
b/A, alone and is given in Table 5.04-1. bA, 4d/b
0.00 0.882
. . e 0.20 0.917
SEC. 5.05, PARALLEL-COUPLED LINES AND 0.30 0.968
ARRAYS OF LINES BETWEEN 9.3 1.016
GROUND PLANES 0.45 1.180
0.50 1.586

A number of strip-line components
utilize the natural coupling existing between parallel conductors.
Examples of such components are directional couplers, filters, baluns,
and delay lines such as interdigital lines. A number of examples of
parallel-coupled lines are shown in Fig. 5.05-1. The {a), (b), and (c)
configurations shown are primarily useful in applications where weak
coupling between the lines is desired. The (d), (e), (f), and (g) con-
figurations are useful where strong coupling between the lines is
desired.

‘The characteristics of these coupled lines can he specified in
terms of £ , and £, , their even and odd impedances, respectively. Z
is defined as the characteristic impedance of one line to ground when
equal currents are flowing in the t.o lines. £, is defined as the
characteristic impedance of one line to ground when equal and opposite
currents are flowing in the two lines. Figure 5.05-2 illustrates the
electric field configuration over the cross section of the lines shown

in Fig. 5.05-1(a) when they are excited in the even and odd modes.

Thin Strip Lines--The exact even-mode characteristic impedance of
the infinitesimally thin strip configuration of Fig. 5.05-1(a) ist

K(k')
30m )
L, = VE:- K(k,) ohms {5.05-1)
where
Z.¥ h(Z. 222 (5.05-2
k. tanh 2 b tan 2 2 .05-2)

k; = V1=K (5.05-3)
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FIG. 5.05-2 FIELD DISTRIBUTIONS OF
THE EVEN AND ODD MODES
IN COUPLED STRIP LINE

and €_ is the relative dielectric constant of the medium of propagation.

The exact odd-mode impedance in the same case is!

K(k')
: on KR, ]
Z,, /e—’ K(ko) ohms (5.05-4)
where
” v n v + s
k, = tanh (; . b_) * coth ; '( . ) (5.05-5)
k! = V1 - k2 (5.05-6)
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FERS

and K is the complete elliptic integral of the first kind. Convenient
tables of K(k')/K(k) have been compiled by Oberhettinger and Magnus.’
Nomographs giving the even- and odd-mode characteristic impedances are
presented in Figs. 5.05-3(a) and (b).

Thin Lines Coupled Through a Slot—The thin-strip configuration
shown in Fig. 5.05-1(b) with a thin wall separsting the two lines has a
value of Z, =~ Z,, which is the characteristic impedance of an uncoupled
line as given in Sec. 5.04. The even-mode characteristic impedance Z,,
is given approximately by

1 1 1 1
— - | — +-.—- .05‘
= [Z“ ;] (5.05-7)
where
30m K(k')
Z & o ——t .05-
o X (k (5.05-8)
e
cosh T-l
k = (5.05-9)
h = osh Zi
cos b c b
and

L T L (5.05-10)

Round Wires—The even- and odd-mode characteristic impedances of
round lines placed midway between ground planes as shown in Fig. 5.05-1(c)
are given approximately by

120 ]

z,,6 -2,, * 75? ln coth ;z (5.05-11)
120 4b
Z.‘ + Z.. = 7.€= In 7"7" . (5.05.12)

r

These should give good results, at least when d/b < 0.25 and
s/b > 3 d/b.
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FIG. 5.05-c) NOMOGRAM GIVING s/b AS A FUNCTION OF Z,, AND Z,,
IN COUPLED STRIP LINE
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FIG. 5.05-3(b) NOMOGRAM GIVING w/b AS A FUNCTIONOF Z, AND Z_
IN COUPLED STRIP LINE
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Thin Lines Vertical to the Ground Planes-—The even- and odd-mode
characteristic impedances of the thin coupled lines showninFig. 5.05-1(d)
are given approximately by the formulas®

188.3 K (k)
Z,, = -7?T= ETI77 (5.05-13)
296.1 1
2 . — - . (5.05-14)
° €r 2 cos~! k + In l
s b

In these formulas *' is a parameter equal to V] - k!. and K is the com-
plete elliptic integral of the first kind. The ratio w/b is given by

(5.05-15)

The inverse cosine and tangent functions are evaluated in radians between
0 and /2. To find the dimensions of the lines for particular values of
Z,, and Z, , one first determines the value of the k from Eq. (5.05-13)
and the tables of K(k)/K(k') vs. k in Hef. 5. Then b/s is determined
from Eq. (5.05-14) and finally w/b is determined from Eq. (5.05-15).
Equations (5.05-13) through (5.05-15) are accurate for all values of w/b

and s/b, as long as v/s is greater than about 1.0.

Thin Lines Superimposed—The formulas for the even- and odd-mode
characteristic impedances of the coupled lines shown in Fig. 5.05-1(e)
reduce to fairly simple expressions when (vw/b)/(1 = s/b) > 0.35.% It is
found that

188.3/Ve,

z,, - ﬂ (5.05-16)
1 - s/b €
188.3/V¢,

Z,, = . (5.05-17)

v‘b » C;o
- —

1 -s/b s €
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The capacitance C;. is the capacitance per unit length that must be added
at each edge of each strip to the parallel plate capacitance, so that the
total capacitance to ground for the even mode will be correct. C}. is
the corresponding quantity for the odd mode and ¢, is the relative
dielectric constant. The even- and odd-mode fringing capacitances are
plotted in Fig. 5.05-4.
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SOURCE: Final Report, Contract DA-36-039 SC-74862, SRI; reprinted
in IRE Trans., PGMTT (see Ref. 5, by S. B. Cohn).

FIG. 5.05.-4 EVEN- AND ODD-MODE FRINGING CAPACITANCES FOR BROADSIDE-COUPLED
VERY THIN STRIPS PARALLEL TO THE GROUND PLANES

The even- and odd-mode characteristic impedances of the coupled lines
shown in Figs. 5.05-1(a), (d), and (e) are modified slightly when the
strips have a finite thickness. Correction terms that account for the
effects of finite thickness have been derived by Cohn.?
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Interleaved Thin Lines-~The configuration of coupled strip lines
illustrated in Fig. 5.05-1(f), in which the two lines of width ¢ are
always operasted at the same potential, is particularly useful when it is
desired to obtain tight coupliag with thin strips that are supported by
a homogeneous dielectric, of relative dielectric constant €, that com-
pletely fills the region between the ground planes.® The dimensions of
the strips for particular values of Z,, and Z,, can be determined with
the aid of Figs. 5.05-5 through 5.05-8. For this purpose one needs the
definitions that

376.6¢

Ve, z,, = ; (5.05-18)
o

— 376. 6¢

Ve, Z,, = (5.05-19)
o0

where C  and C,  are the total capacities to ground per unit length of
the strips of width ¢ or the strip of width @, when the lines are excited
in the even and odd modes, respectively. The absolute dielectric constant
€ is equal to 0.225 € pf per inch. Using the values of Z , and Z , which
are assumed to be known, one then computes AC/e¢ from

ac 1831 1] 1% G (5.05-20)
P ve, |2 Z 2 | € € .

Values of b and g are then selected and d/g is determined from Fig. 5.05-5.
Next, values of C:w/e and C;./e are read from Figs. 5.05-6 and 5,05-7.
These quantities, together with the value of C, /¢ from Eq. (5.05-18),

are then substituted in Eq. (5.05-21) to give c/b:

/b 1 - g/b [1 .

5 E.C"/e - Cio/€ ~ C;./e] . (5.05-21)

Finally, C] /e is found from Fig. 5.05-8 and 'substituted in Eq. (5.05-22)

to give a/b: a 1 1
b— = ?[; C.‘/e - C:‘/e = 0.441 . (5.05-22a)

Thus all the physical dimensions are determined.
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SOURCE: Final Report, Contract DA 36-039 SC-74862, SRI; reprinted
in IRE Trans., PGMTT (sce Ref. 32, by W. J. Getsinger).

FIG. 5.05.6 FRINGING CAPACITANCE OF OFFSET THIN
STRIP IN FIG. 5.05-1(f)
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These formulas are exact inthe limit of a and ¢ >> b so that fringing
fields at opposite edges of the strips do not interact. They are accurate to
within 1.24 percent whena/b > 0.35 and [(c/b)/(1 - g/b)] > 0.35. If these
conditions are not satisfied, it is possible to make approximate corrections
based on increasing the parallel plate capacitance to compensate for the loss
of fringing capacitance due to interactionof the fringing fields. If an
initial value a‘/b is found to be less than 0.35, anewvalue, a,/b, can be used
where

a, 0.07 + a,/b
T - ———1—2-0— (5.05-22b)

provided 0.1 < a,/b < 0.35. A similar formula for correcting an initial
value ¢, /b gives a new value c,/b, as

¢y (0.07(1 - g/b) + ¢, /b]

2. , 5.05-2
b 1.20 ( 2¢)

provided g/b is fairly small and 0.1 < (c,/b)/(1 = g/b).

When the stripof width ais inserted so far between the strips of width ¢
that d/g>1.0the even-mode valuesC, /e and C, /€, do not change from their
values at d/g»1.0. However the value of AC/€ does change and it can be found
simply by adding 4(d/g=1) to the valueof AC/e at d/g=1.0. For spacing be-
tween the strips of width ¢ greater thang/b=0.5, or for a separation d/g <
=2.0, some of the configurations shown in Fig. 5.05-1(a), (b), or (c) are
probably more suitable.

Thick Rectangular Bars—The thick rectangular bar configuration of
coupled transmission lines, illustrated in Fig. 5.05-1(g) can also be
conveniently used where tight coupling between lines is desired.® The
dimensions of the strips for particular values of Z,, and Z,, can be de-
termined with the aid of Figs. 5.05-9 and 5.05-10(a), (b). A convenient
procedure for using the curves is as follows. First one determines AC/e
from Eq. (5.05-20), using the specified values of Z,, and Z,,. Next a
convenient value of t/b is selected and the value of s/b is determined
from Fig. 5.05-9. The value of w/b is then determined from the equation

1 c c C
LA N (R | L e’ A B (5.05-23)
b 2 b/| 2¢ € €
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FIG. 5.05-10(a) NORMALIZED ODD-MODE FRINGING CAPACITANCE FOR RECTANGULAR BARS
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SOURCE: Quarterly Report 2, Conteact DA 36-039 SC-87398, SRI; reprinted
in IRE Trans., PGMTT (see Ref. 33, by W. J. Gewsinger).

FIG. 5.05-10(b) NORMALIZED FRINGING CAPACITANCE FOR AN ISOLATED RECTANGULAR BAR

The value of C , to use is determined from the specified value of Z..
using Eq. (5.05-18). The fringing capacitance C'. for the even mode can
le read from Fig. 5.05-9, and C} can be determined from Fig. 5,05-10(b).
The curves in Fig. 5.05-10(a) allow one to determine C}. directly,

The various fringing and parallel-plate capacitances used in the
above discussion are illustrated in Fig. 5.05-11. Note that the odd-mode
fringing capacitances C;. correspond to the fringing capacitances hetween
the inner edges of the bars and a metallic wall halfway between the bars.
It is seen that the total odd mode capacitance of a bar is
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c c ¢ c
LA -2[—” + Loy —'] (5.05-24)
€ € € €

and the total even mode capacitance of a bar is

c c c¢.  c
°c . 2[—’- s L2y -L] . (5.65-25)
€ € €

The normalized per-unit-length parallel plate capacitance
C’/e = 2w/(b - t), and € = 0.225¢, pf per inch.

|
l o Cte /j |

R N

clax.'-.“__'_’l
!

€

i

A=-3927-n9
SOURCE: Quarterly Report 2, Contract DA 36-039 SC-87398, SRI;

reprinted in /RE Trans., PGNTT (see Ref. 33, by
W. J. Getsinger).

FIG. 5.05-11 COUPLED RECTANGULAR BARS CENTERED BETWEEN
PARALLEL PLATES ILLUSTRATING THE VARIOUS
FRINGING AND PARALLEL PLATE CAPACITIES

The even- and odd-mode fringing capacitances C;‘/e and C;./e were
derived by conforma: mapping techniques and are exact in limits of
[vw/b/(1 = /b)] =@, It is believed that when [w/b/(1 = ¢/b)] > 0.35
the interaction between the fringing fields is small enough no that the
values of C /€ and C, , /¢ determined from Eqs. (5.05-24) and (5.05-25)

are reduced by a maximum of 1.24 percent of their true values.

In situations where an initial value, w/b is found from Eq. (5.05-23)

to be less than 0.35 [1 - (t/b)] so that the fringing fields interact, s
new value of w'/b can be used where
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- 5]
' DL RS (5.05-26)
b 1.20 '

provided 0.1 < (w'/b)/[1 = (t/b)]) < 0.35.

Unsymmetrical Parallel-Coupled Lines-—Figure 5.05-12 shows an un-
symmetrical pair of parallel-coupled lines and various line capacitances.
Note that C, is the capacitance per unit length between Line a and ground,
C,, is the capacitance per unit length between Line a and Line b, whileC,
is the capacitance per unit length between Line b and ground. When C, is
not equal to C,, the two lines will have different odd- and even-mode ad-
mittances as is indicated by Eqs. (1) in Table 5,05-1. In terms of odd- and

even-mode capacitances, for Line a

oo = C,*2,, ., c:, = C (5.05-27)

while for Line b

ct, = ¢, +2c (5.05-28)

A-3827-273

FIG. 5.05-12 AN UNSYMMETRICAL PAIR OF
PARALLEL-COUPLED LINES
C,: C,y ond C, are line capaci-
tances per unit length.

For symmetrical parallel-coupled lines the odd-mode impedances are
simply the reciprocals of the odd-mode admittances, and analogously for
the even-mode impedances and admittances. However, as can be demonatrated
from Eqs. (2) in Table 5,05-1, this is not the case for unsymmetrical
psrallel-coupled lines. For unsymmetrical lines, the odd- and even-mode
impedances are not simply the reciprocals of the odd- and even-mode
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Table 5,05-1

RELATIONS BETWEEN LINE ADMITTANCES, IMPEDANCES, AND
CAPACITANCES PER UNIT LENGTH OF UNSYMMETRICAL
PARALLFL.-COUPLED LINES

v » velocity of light in media of propagation
= 1.18 X 10'%Ve_ inches/sec.
intrinsic impedance of free space = 376.7 ohms

€ = dielectric constant = 0,225 € [yuf/inch

N
Y5, = <, . v, = vic, +2c,)
> (1)
‘ '3
Y:‘ - vC. ’ Y” * V(C. M 20“)
72° . Cb + mlb 2° ‘C. 7
9e vF ' oo * VF
SEENTY
C +2 €
] [}
Zoc . —‘_T-'l ’ Zoo - # J
where F = C.C° + C.C.. + C‘C..
C. "oy:c clb i) Y:. B Y:' W
— ’ — gy
« Vi « A\ 2
> (3)
]
cb 1;07" clb o Y“ Y“
€ Ve, ' « e 2
J
' . ' )
C. ’702200 c-b "o zoc 'Z“
— — g em—
¢ Ve ] Ve~ H
Y
C. "o”:O cli
— Iy — R
] s, o ¢
J
'}
vhere § = Z:‘ Z:. + Z“ z:o *
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admittances. The reason for this lies in the fact that when the odd- and
even-mode admittances are computed the basic definition of these ad-
mittances assumes that the lines are being driven with voltages of
identical magnitude with equal or opposite phase, while the currents in
the lines may be of different magnitudes. When the odd- and even-mode
impedances are computed, the basic definition of these impedances assumes
that the lines are being driven by currents of identical magnitude with
equal or opposite phases, while magnitudes of the voltages on the two
lines may be different. These two different sets of boundary conditions
can be seen to lead to different voltage-current ratios if the linea are
unsymmetrical.

Some unsymmetrical parallel-coupled lines which are quite easy to
design are shown in Fig. 5.05-13. Both bars have the same height, and
both are' assumed to be wide enough s0 that the interactions between the

ELECTRIC WALL FOR ODD MODE
MAGNETIC WALL FOR EVEN MODE

o Ve

A

10 Cre e

7.
=L 'u—————J

FIG. 5.05-13 CROSS-SECTION OF UNSYMMETRICAL,
RECTANGULAR-BAR PARALLEL.-
COUPLED LINES

fringing fields at the right and left sides of each bar are negligible,
or at least small enough to be corrected for by use of Eq. (5.05-26). On
this basis the fringing fields are the same for both bars, and their
different capacitances C, and C, to ground are due entirely to different
parallel-plate capacitances C; and C:. For the structure shown

c, = 2(ce+cy+cy)

¢, = (¢, -c;,) (5.05-39)
C, = 2(ch+cC)+cCp) .
190
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To design a pair of lines such as those in Fig., 5.05-13 so as to
have specified odd- and even-mode admittances or impedances, first use
Eqs. (3) or (4) in Table 5.05-1 to compute C /¢, C , /e, and C /€. Select
a convenient value for t/b, and noting that

AC (2
— - . (5.05-30)
€ €

use Fig. 5.05-9 to determine s/b, and also C; /e. Using t/b and
Fig. 5.05-10(b) determine C}/e, and then compute

w, i ¢ l(Cﬂ) ci, c',
5 "3 (l z) N T e T (5.05-31)

v, 1 t l<;6> C;l C;

Knowing the ground-plane spacing &, the required bar widths v  and v,

are then determined. This procedure also works for the thin-strip case
where t/b = 0. If either w /b or v, /b is Jess than 0.35[1 - t/b],
Eq. (5.05-26) should he applied to obtain corrected values.

Arrays of Parallel-Coupled Lines-~Figure 5.05-14 shows an array of
parallel-coupled lines such as is used in the interdigital-line filters
discussed in Chapt. 10. In the structure shown, all of the bars have the
same t/b ratio and the other dimensions of the bars are easily obtained

? 2
¢ ¢ Ca i
2 ‘\\\\{\:‘. 23 :’_&' !
iy <5 ¥
2

A
e T g Ry st NE

A-3827-278
SOURCE: Quarterly Progress Report 4, Contract DA 36-039 SC-87398, SRI;

reprinted in the JRE Trans. PGMTT (see Ref. 3 of Chepter 10,
by G. L. Matthaei)

FIG. 5.05-14 CROSS SECTION OF AN ARRAY OF PARALLEL-COUPLED
LINES BETWEEN GROUND PLANES
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by generalizing the procedure described for designing the unsymmetrical
parallel-coupled lines in Fig. 5.05-13. In the structure in Fig. 5.05-14
the electrical properties of the structure are characterized in terms of
the self-capacitances C, per unit length of each bar with respect to
ground, and the mutual capacitances C, ,,, per unit length between ad-
jacent bars # and k¥ + 1. This representation is not necessarily always
highly accurate hecause there can conceivably be a significant amount of
fringing capacitance in some cuses betwecen a given line element, and, for
example, the line element beyond the nearest neighbor., {lowever, at least
for geometries such as that shown, experience has shown this represen-
tation to have satisfactory accuracy for applications suchas interdigital

filter design.

For design of the parallel-coupled array structures discussed in
this lLook, ejuations will be given for the normalized self and mutual
capacitances (, /e and C.“‘l/e per unit length for all the lines in the
structure. Then the cross-sectional dimensions of the bars and spacings
between them are determined as follows. First, choose values for t and

6. Then, since

(AC), 44y C

b, k4]
) - (5.05-33)
€ €

Fig. 5.05-9 can bLe used to determire s, , | b. In this manner, the

spacings s, ,,, letween all the bars are obtained. Also, using

Fig. 5.05-9, the normalized fringing capacitances (C}‘)k'.,l/e associated
with the gaps s, ,,, between bars are obtained. Then the normalized
width of the kth har is

(¢! . C!
vy 1 t\ |1 (Cs ' ")h-l.b ( ,')h,h#1
- s — - Z _ |—] - - . {(5.05-34)

2 2 \e¢ € €

In the case of the bar at the end of the array (the bar at the far left
in Fig 5.05-14), C;‘/e for the edge of the bar which has no neighbor
must be replaced by C}/e which is determined from Fig. 5.05-10(b). Thus,
for example, for Bar 0 in Fig. 5.05-14,

v 1 a1 (e ¢ Crdy,
T - 3— -T -2— -;' - —E-- ——;_— . (5.05'35)
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If w,b < 0.35[1 = t’b] for any of the bhars, the width correction given
in Kq. (5.05-26) should be applied to those bars where this condition

exists,

SEC. 5.06, SPECIAL PROPERTIES OF WAVEGUIDES

A wavegulde consisting of a single hollow conductor that can propa-

gate electromagnetic energy above a certain cutoff frequency, f is also

e
a very useful element in microwave filters. \ waveguide can propagate an
infinite number of modes, which can be characterized as being either TE
(transverse electric) or TV (transverse magnetic). The TL modes have a
magnetic field but no electric field in the direction of propagation,

while T\ modes have an electric field but no magnetic field in the di-
rection of propagation. lsually a waveguide is operated so that it propa-
gates energy in a single mode, and under this condition it can be described
as a transmission line with a propagation constant ¥, and a characteristic
impedance Z,. The propagation constant for a wavegpuide is nniquely de-
fined. The characteristic impedance of a waveguide can be considered to

be the wave impedance of the guide, Z_ (i.e., the ratio of the transverse
electric to the transverse magnetic field in the guide), multiplied by a
constant. The value of the constant depends on what definition of charac-
teristic impedance is employed (i.e., voltuge-current, voltage-power, or
current-power). thus it is seen that the characteristic impedance of a
waveguide is not a unique quantity, as it is in the case of a TEM trans-
mission line. However, this lack of uniqueness turns out to be unimportant
in waveguide filter calculations because one can always normalize all
waveguide equivalent circuit elements to the characteristic impedance of

the guide.

In a lossless waveguide [illed with dielectric of relative dielectric
constant €, the guide wavelength Ags free-space wavelength A, wavelength

in the dielectric Ay and cutoff wavelength A, are related as

1 r 1 1

—_— — 8 — = (5.06-1)
A2 A AT A2
f 4 <

The characteristic impedance that we shall assume for convenience to equal

the wave impedance is
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377
76:':)\‘/)\1 TE modes

1
Z, v - (5.06-2)
0 ﬂ)\ /AT d
7= M/ M modes

r

The propagation phase constant 3, is

3, = %z radians/unit length . (5.06-3)
]

The most common form of waveguide for use in microwave filters is a
rectangular waveguide of width a and height b operating in a TE, , mode.

TE,, modes have cutoff wavelenyths

A, = o— (5.06-4)

The index m equals the number of half-waves of variation of the electric
field across the width, a, of the guide. The cutoff frequency f,

(measured in gigacycles) is related to the cutoff wavelength in inches as

Ve, . (5.06-5)

The dominant mode, that is, the one with the lowest cutoff frequency, is
the TE, o mode.,

The dominant mode in circular waveguide of diameter ) is the TE

mode. The cutoff wavelength of the TE,, mode is 1.7060.

The attenuation of these modes due to losses in the copper conductors

are for T , modes in rectangular guide

becz
1.90 x 1074 Ve, /T 1+—a-7

%o lre,y) " b ]/ (ﬂ)’
T\
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and for the TE,, mode in circular guide

FAL
3.80 x 107 /e_,VTK-}-) + o.4zo]
e(re,,) ° D (fc)
v

where f is measured in gigacycles. These values of attenuation are
plotted in Fig. 5.06-1.

a

db/unit length (5.06-7)

The attenuation caused by losses in the dielectric in any waveguide
mode 1is

d A A

.3 tan b A,
o L 3 ten <_:> db/unit length (5.06-8)
1

where tan ¢ is the loss tangent of the dielectric. The unloaded ¢, of
a waveguide® 1is

1 1 1
— = =~ t= (5.06-9)
Q Q @

where Q, depends only on losses in the dielectric and is given by

1
Q‘= .

tan ® (5.06-10)

and Q_ depends only on the ohmic losses in the waveguide walls and is
given by

Q. = — . (5.06-11)

* Addﬁt;onul discussion relevant to the wae of wavegnides as resenators will be found ia
Sec. §,08.
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196

A-3807-107



For rectangular copper waveguides operating in the TE,, mode, we have

212 x 104 b
Q,(,,_o) . L 2-1 7 (5.06-12)

2b ‘fez
I+T(T)

where a and b are measured in inches, and f in gigacycles. For a cir-

cular waveguide operating in the TE;, mode, we have

0.606 x 104 D VT-
Q‘("u) = (5.06-13)

f, 2
0.420 + (‘,‘)

where D is measured in inches and f in gigacycles. These expressions
for Y, are plotted in Fig. 5.06-2.

The power-handling capacity P  _ of air-filled guides, at atmospheric
pressure, assuming a breakdown strength of 29 kv/cm, for the TE ; mode in

rectangular guide is

A
P"'(Tsno) = 3.6 ab ~ megawatts , (5.06-14)
]

and for the TE,, mode in circular guide

A
P"'(T!ll) = 2.7 D? ~ megawatts (5.06-15)
]

where P is average power in megawatts and the dimensions are in inches.

In a rectangular waveguide operating in the TE, , mode, with an aspect
ratio b/a of 0.5 or 0.45, the next higher-order mode is the TE,, with cut-
off wavelength A_ = a. Next come the TE,, or T™,, modes each of which has
the same cutoff wavelength, A, = 2ab/V:rf:_;r. In the circular waveguide,
the next higher-order mode is the TM°l mode, which has A_ = 1.305 D.
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SEC. 5.07, COMMON TRANSMISSION LINE DISCONTINUITIES

This section presents formulas and curves for some of the common
discontinuities in transmission lines. Other more complete results are

to be found in the literature.%-9.10.1,12.13

Changes in Dianeter of Coaxial Lines—When a change is made in the
diameter of either the inner or outer conductor of a coaxial line, or in both
conductors simultaneously, the equivalent circuits can he represented as shown in
Fig. 5.07-1.1%% The equivalent shunt capacity, C,, for each of these
cases is given in Fig. 5.07-2. These equivalent circuits apply when the
operating frequency is appreciably below the cutoff frequency of the next

higher-order propagating mode.

Changes in width of Center Conductor of a Strip Line—The change in
width of the center conductor of a strip line introduces an inductive
reactance in series with the line.? In most situations this reactance
is small and can be neglected. The approximate equivalent circuit for

this situation is shown in Fig. 5.07-3.

Compensated Hight-Angle Corner in Strip Line—A low-VSWR-right-angle
corner can be made in strip line if the outside edge of the strip is
beveled. Figure 5.07-4 shows the dimensions of some matched right-angle
corners for a plate-spacing-to-wavelength ratio, b'A, of 0.0845. These
data were obtained for a center strip conductor having negligible thick-
ness; however, the data should apply with acceptable accuracy for strips

of moderate thickness.

Fringing Capacitance for Semi-Infinite Plate Centered Between
Parallel Ground Planes—The exact fringing cup itance, C;, from cne
corner of a semi-infinite plate centered between parullel ground planes
is

C' E--%—-ln 1 1 -
4

/ lt lt ! t \?
b b L7y €-7>

where € = 0.225 €_ micromicrofarads per inch and €_is the relative

-1 wuuf finch

dielectric constant of the material between the semi-infinite plate and

the ground planes. Fringing capacitance, C;, is plotted in Fig. 5.07-5.
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FIG. 5.07-2 COAXIAL-LINE-STEP FRINGING CAPACITIES
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Strip-Line T-Junctions ~A symmetrical strip-line T-junction of the
type illustreated in Fig. 5.07-6(a) can be represented by the equivalent
circuit shown in Fig. 5.07-6(b). A short-circuit placed in turn in each
of the three arms, at distances equal to multiples of one-half wavelength
from the corresponding reference planes labeled Pl and P’, will block

transmission between the other two arms of the junction.

Measured values obtained for the equivalent circuit parameters of
sixteen different strip-line T-junctions are shown in Figs. 5.07-7,
5.07-8, .and 5.07-9. The thickness, t, of the strips used in these meas-
urements was 0.020 inch, while the ground-plane spacing was 0.500 inch.
The widths of the strips having 35, 50, 75, and 100 ohms characteristic
impedance were 1.050, 0.663, 0.405, and 0.210 inches, respectively.
Measurements carried out in the frequency band extending from 2 to 5 Ge,
corresponding to values of b/A varying from 0.085 to 0.212. It was found
that the reference plane positions were almost independent of frequency
for all sixteen T-junctions, and therefore only the values corresponding
to b/A of 0.127 are shown in Fig. 5.07-7. It is seen from an inspection
of Fig. 5.07-8 that A, the equivalent transformer turns ratio squared, is
sensitive to frequency and has a value approximately equal to unity for
b/A very small, and decreases considerably for larger values of b/A. The
values of the discontinuity susceptance, B,, vary considerably from one
junction to another, and in some instances are quite frequency-sensitive.
It is believed that B, is essentially capacitive in nature. Thus positive
values of B, correspond to an excess of capacitance at the junction, while

negative values correspond to a deficiency.

Although the data presented in Figs. 5.07-7, 5.07-8, and 5.07-9 are
for T-junctions with air-filled cross section and with the ratio
t/b = 0.040, these data may be applied to other cross sections. For in-
stance, it is expected that these data should hold for any strip-thickness
ratio, t/b, up to at least 0.125 if the same characteristic impedances are

maintained.

In the case of a dielectric-filled section, € > 1, the data are ex-
pected to apply with good accuracy if one divides the characteristic
impedances Z,, and £,, by /?: and multiples b/A and B /Y, by /?:.

Change in Height of a Rectangular Waveguide® —The equivalent circuit
of the junction of two waveguides of different height but the same width,
which are both operating in the TE, ) mode can be represented as shown in
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Fig. 5.07-10. The normalized susceptance BA./Y.b is plotted in
Fig. 5.07-11 for various values of b/k.. and is sccurate to about
1 percent for b/A‘ <1.

SEC. 5.08, TRANSMISSION LINES AS RESONATORS

In many microwave filter designa, a length of transmission line
terminated in either an open-circuit or a short-circuit is often used
as a resonator. Figure 5.08-]1 illustrates four resonators of this type,
together with their lumped-constant equivalent circuits. It is to be
noted that the resonators in Fig. 5.08-1(a) and 5.08-1(b) each have
lengths which are multiples of one-half guide wavelength, and that the
lumped-constant equivalent circuic of the transmission line which is
short-circuited at one end is the dual of the equivalent circuit of the
transmission line with an open-circuit termination. Similarly, the
resonators in Fig. 5.08-1(c) and 5.08-1(d) have lengths which are odd
multiples of one-quarter guide wavelength, and their lumped constant
equivalent circuits are also duals of one another. The quantities ¢,
K;o and A, are the attenuation of the transmission line in nepers per
unit length, the guide wavelength at the resonant frequency, and the
plane-wave wavelength at tne resonant frequency, respectively, in the
dielectric medium filling the resonator.

The equivalence between the lumped constent circuits and the micro-
wave circuits shown was established in the following fashion. The values
of the resistance, R, and conductance, G, in the lumped-constant equiva-
lent circuits were determined as the values of these quantities for the
various lines at the resonance angular frequency, w,. The reactive
elements in the lumped-constant equivalent circuits were determined by
equating the slope parameters (defined below) of the lumped-element
circuits to those of the transmission-line circuits which exhibited the
same type of resonance. The general definition of the reactance slope
parameter &, which applies to circuits that exhibit a series type of
resonance, is

Yo dX
2 dul,, ohms (5.08-1)

where X is the reactance portion of the input impedance to the circuit.
The susceptance slope parameter &, which applies to circuits that exhibit
a parallel type of resonance, is
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h @ — — mhos (5.08-2)

where B is the susceptance component of the input admittance of the
circuit.

The above general definitions for slope parameters provide a con-
venient means for relating the resonance properties of any circuit to a
simple lumped equivalent circuit such as those in Fig. 5.08-1. The
reactance slope parameter x given by Eq. (5.08-1) is seen to be equel to
wol = l,(woC) for the equivalent, series, lumped-element circuit, while
the susceptance slope parameter 4 is equal to w,C = l/(woL) for the
equivalent, parallel, lumped-element circuit. Considerable use will be
made of these parameters in later chapters dealing with band-pass and

band-stop microwave filters.

It should be noted in Fig. 5.08-1 that the use of reactance or sus-
ceptance slope parameters also leads to conveaient expressions for Q,
and for the input impedance or admittance of the circuit in the vicinity

of resonance. For narrow-band microwave applications, the approximate

w w = w
(f—-—3>= 2( °> (5.08-3)
wo (1) (L)o

is often convenient for use in the expressions for input impedance or

equivalence

admittance.

SEC. 5.09, COUPLED-STRIP-TRANSMISSION-LINE FILTER SECTIONS

The natural electromagnetic coupling that exists between parallel
transmission lines can be used to advantage in the design of filters and
directional couplers. !4 15161718192 1, ¢hig section, formulas are given
for filter sections constructed of parallel-ccupled lines of the types
illustrated in Fig. 5.05-1. Several cases involving unsymmetrical
parallel-coupled lines as in Figs. 5.05-12 and 5.05-13 are also considered.

The ten coupling arrangements that can be obtained from a pair of
symmetrical, coupled transmission lines by placing open- or short-circuits
on various terminal pairs, or by connecting ends of the lines together,
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are illustrated in Fig. 5.09-1. In this figure, schematic diagrams of
single sections of each type are shown, together with their image pa-
rameters and either their open-circuit impedances or their short-circuit
admittances. [In addition, equivalent open-wire transmission-line
circuits for eight of the coupled transmission line sections are shown

beneath the corresponding schematic diagram.

In the schematic diagrams of the coupled-transmission-line sections
in Fig. 5.09-1, the input and output ports are designated by small open
circles. The image impedance seen lookinyg into each of these ports is
also indicated near each pert. Open-circuited ports of the coupled lines
are shown with no connection, while short-circuited ports are desiygnated
with the standard grounding symhol. In the equivalent transmission-line
circuits shown beside the schematic diagrams, a two-wire line represen-
tation is used. In each case, the characteristic impedance or admittance
of the lengths of transmission line is shown, together with the electrical
length, €. 'The equivalence between the parallel-coupled line sections and

the non-parallel-coupled line sections shown is exact,

Figure 5.09-2 shows the same parallel-coupled sections as appear in
Figs. 5.09-1(b), (c), (d), but for cases where the strip tronsmission
lines have unsymmetrical cross sections.* The line capacitances C_, C_,.
and C, per unit length are as defined in Fig. 5.05-12. It is interesting
to note that in the case of Fig. 5.09-2(a) the line capacitances per unit
length for the left and right shunt studh in the equivalent open-wire
representation are the same as the corresponding capacitances per unit
length between Line @ and ground, and Line b and ground, respectively.
Meanwhile, the capacitance per unit length for the connecting line in the
open-wire circuit is the same as the capacitance per unit length between
Lines @ and b of the parallel-coupled representation. In Fig. 5.09-2(b)
the dual situation holds, where L. and L° are the self-inductances per
unit length of Lines a and b in the parallel-coupled representation, while
L., is the mutual inductance per unit length between the parallel-coupled
lines. Since the line capacitances are more convenient to deal with, the
line impedances of the equivalent open-wire circuit are also given in
terms of C,, C ., and C,, for all three cases in Fig. 5.09-2. The
quantity v indicated in Fig. 5.09-2 is the velocity of light in the

medium of propagation.

‘ The results in Fig. 5.09-2 end alsc those ia Figs. 5.09-3 aad 5.09-4 were obtained by
extension of the results in Refs. 19 and 20.
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In the cases of the circuits in Figs. 5.09-2(a), and (b), if the
parallel-coupled sections are properly terminated, their equivalent
open-wire line circuit simplifiea in a very interesting and useful way.
This is illustrated in Fig. 5.09-3(a) and (b). Note that when the indi-
cated constraints are applied, the equivalent open-wire circuit reduces
to simply an ideal transformer and a single stub. In spite of the con-
straint equations which are enforced in these circuits, there are still
sufficient degrees of freedom so that for specified ¥, and G, or Z, and
R,, a wide range of ¥ or Z,, respectively, can be accommodated. For
this reason these two structures will prove quite useful for use with
certain types of band-pass filters for the purpose of effectively real-
izing a series- or shunt-stub resonator, along with obtaining an impedance
transformation which will accommodate. some desired terninating impedance.
In a somewhat more complex way, the circuit in Fig. 5.09-2(c) will also

prove useful for similar purposes.

Figure 5.09-4 shows the parallel-coupled section in Fig. 5.09-1(1)
generalized to cover the case where the two strip lines may be of dif-
ferent widths. At (a) is shown the structure under consideration, while
at (b) and (c) are shown two open-wire line structures which are identi-
cally equivalent electrically to the strip-line structure at (a). As
previously indicated, parallel-coupled structures of this sort are all-
stop structures as they stand, but when properly used with lumped
capacitances, they become the besis for the comb-line form of filter

discussed in Sec. 8.13.

SEC. 5.10, IRIS-COUPLED WAVEGUIDE JUNCTIONS

Bethe?: 2. 8. % 1,45 Jeveloped a general perturbation technique for
calculating the scattering of power by small irises connecting one trans-
mission line with another. The theory is applicable even though the two
transmission lines have different cross sections and operate in different
modes; however, it applies rigorously only to infinitesimally thin irises
whose dimensions are small in terms of the operating wavelength. These
irises should be located far from any corners, in a transmission-line
wall whose radius of curvature is large in terms of wavelength. In
practice it is found that the theory holds reasonably well even when the
irises are located relatively close to sharp corners in transmission-line
walls of fairly small radii of curvature. For irises of finite thickness,
it is found that Bethe's theory is still applicable except that the
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transmission through the iris is reduced.® JIn many instances it is
possi..e to use Cohn's frequency correction® where the iris dimensions
are not negligibly amell with respect to a wavelength.

Bethe's original derivations®:2 3 gppeared in a series of MIT
Radiation Laboratory Reports, copies of which are quite difficult to
obtain. Recently Collin® has derived some of Iethe's results using a
different approach, and these results are readily available. Marcuvitz?
recast much of Bethe's work and derived many equivalent circuits for
iris-coupled transmission lines, many of which are presented in the
Waveguide Handbook.% A paper by Oliner®™ contains some additions! circuits

for iris-coupled lines.

Bethe's calculation of the scattering of power by small irises
sctually consists of two distinct steps. The first step is the compu-
tation of the eiectric dipcle moment, p, and the magnetic dipole moment,
®, induced in the iris by the exciting fields. The next step is the
calculation of the fields radiated by the electric and magnetic dipole
moments.

Figure 5.10-1 illustrates two parallel-plane transmission lines con-
nected by a small iris. The electric field, £ ,, in the bottom line will
couple through the iris in the manner shown in Fig. 5.10-1(a). To a
first-order approximation, the distorted field within the iris can be
considered to arise from two electric dipole moments, each of strength 'y
induced in the iris by the exciting electric field E__ as shown in
Fig. 5.10-1(b). The electric dipole moment in the upper line is parallel
to E ., while the electric dipole moment in the lower line is oppositely
directed.

g - —

1]

Wil

(o) ®) -3027-11

FIG. 5.10-1 ELECTRIC DIPOLE MOMENTS INDUCED IN AN IRIS BY AN ELECTRIC
FIELD NORMAL TO THE PLANE OF THE IRIS



Figure 5,10-2 illustrates the magnetic field coupling through an
iris connecting two parallel-plane transmission lines. Again the dis-
torted magnetic field within the iris can be considered to arise from
two magnetic dipole moments each of strength m, induced in the iris by
the exciting tangential magnetic field, # ,. The magnetic dipole moment
in the upper line is directed anti-parallel to # ,
lower line is oppositely directed and parallel to /f,

while that in the

¢

)
Cea)
3

H

)

/\ '

e i |

Mot J AJ
(o) (d) a-3ser-np

FIG. 5.10-2 MAGNETIC DIPOLE MOMENTS INDUCED IN AN IRIS BY A MAGNETIC
FIELD TANGENTIAL TO THE PLANE OF THE IRIS

The strength of the electric dipole moment p, is proportional to
the product of the electric polarizability P ol the iris and the exciting
field. & . Its value in mks units is

po= ook (5.10-1)

where € = 8.85%t 7 10712 farads meter. and n is a unit vector directed

away from the iris on the side opposite from the exciting field.

The strength of the magnetic dipole moment is proportional to the
product of the mapnetic polarizability, &, of the iris and exciting
tangential magnetic field ir . For the usual type ot iris that has axes

of symmetry, the masnetic dipole moment is, in mks units,
A= M H, ut Y (5.10-2)

In this expression the unit vectors # and v lie in the plane of the iris

along theesxes of symmetry, ¥, and ¥, are the maynetic polarizabilities,
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and H,, and H, the exciting magnetic fields along the u and Vv axes,
respectively.

The electric dipole moment, p, set up in an iris by an exciting
electric field, will radiate power into a given mode in the secondary
waveguide only when the electric field of the mode to be excited has a
component parallel to the dipole moment, p. Similarly the magnetic
dipole moment ® set up in the aperture by an exciting magnetic field
will radiate power into a given mode in the secondary waveguide only
when the magnetic field of the mode to be excited has a component

parallel to the magnetic dipole moment m.

In order to be able to apply Bethe's theory, it is necessary to
know the electric polarizability P and the magnetic polarizabilities
M, and M, of the iris. Theoretical values of the polarizabilities can
only be obtained for irises of simple shupes. For example, a circular
irts of diameter d has a value of ¥, = ¥, = d3/6 and P = d°/12. long,
narrow iris of length ! and width v has P = ¥, = (n/16) lwz, if the ex-
citing magnetic field is parallel to the narrow dimension of the slit
(the v direction in this case), and the exciting electric field is per-
pendicular to the plane of the slit, The polarizabilities of elliptical
irises have also been computed, In addition, the polarizabilities of
irises of other shapes that are too difficult to calculate have becn

measured by Cohn® ¥

in an electrolytic tank. The measured values of the
polarizapility of a number of irises are shown ir Figs, 5,10-3 and
5.10-4(a),(b), together with the theoretical values for elliptical irises.
Circular irises are the easiest to machine, but sometimes elongated irises
are required in order to obtain adequate coupling between rectangular

waveguides,

For many applications the equivalentecircuit representation of iris-
coupled transmission lines is more convenient than the scattering repre-
sentation. Figures 5,10-5 to 5,10-12 contuin the equivalent-circuit
representations of several two- and three-port waveguide junctions coupled
by infinitesimally thin irises, Most of the information in the figures is
sel f-explanatory., It is to be noted that in each case the reference
planes for the equivalent circuits are at the center of gravity of the
iris. The symbol K used in some circuits stands for an impedance inverter
as defined in Sec. 4,12. Also included in each figure is the power trans-
mission coefficient through the iris, expressed as the squuare of the
magnitude of the scattering coefficient. (Sec. 2,12).
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FIG. 5.10-3 MEASURED ELECTRIC POLARIZABILITIES OF
RECTANGULAR, ROUNDED, CROSS- AND
DUMBBELL-SHAPED SLOTS
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FiG. 5.10-6 IRIS CONNECTING RECTANGULAR WAVEGUIDES
OF DIFFERENT CROSS SECTIONS
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238



.
]
_{ TE,o MOOE '

b
W -
23 ni Az ARy N
Ju L’ ! |E i ¥ T
/I F l Jb 3 ; 1E
T
GENERAL VIEW SIDE VIEW

EQUIVALENT CIRCUIT

Y! ] 16242 5in? Iz
51312 = ISpl? = 70 =5 4 e
13 23 Y, '86|2 aa‘bb')\‘?\;
B, Agab B, I\ P g 7 L N QT
-— oy = _— -~ sin® — + cos® —
o anM sin? T 0 abA? ¢ 2a% o
Yo abA
_2 ’  — _' e )\. = —'—'—"“—')\ A; - —_"——A =
2
Yo a'b'A! sin? = A1 - LY 1 - 2
s [ 2a 2a’
v = N cos? ¢ + N, sin? ¢ NN sin? ¢ + L cos? ¢
A-3087-169
Adapted from the Waveguide Handbook (see Ref. 8 edited by N. Marcuvitz)

FiG. 5.10-11 IRIS-COUPLED SERIES T-JUNCTION IN RECTANGULAR GUIDE,
E-PLANE

236



R
b
TE,o MODE 4
/- [} %9 /, :’
] : y—?l ,’ b
(-] ] | \s
. \--—----_-’___ - i
‘ i
e
13 /7
/
GENERAL VIEW
]
Z, ~
x;,. Ay
T T
EQUIVALENT CIRCUIT
2
2 2 K2 ZO ZO
\ = N g e e ¢ ——— .
1 2 b2 BT O
3¢
R Mo« M cos .z v My sin?
Zy wA‘M
2 A 20
A = a— a —-
s Z, A‘

Adapted from the Baveguide Handbook (see Ref. 8 edited by N Marcuvitz)

FIG. 5.10-12
H-PLANE

237

ol >

0 —»

—-r-

Py SO

SIDE VIEW

A-3827-130

IRIS-COUPLED SHUNT T-JUNCTION IN RECTANGULAR GUIDE,



When the irises are not smell with respect to free-space wavelength,
it is found that the equivalent circuits of Figs. 5.10-5 to 5.10-12 apply
with good accuracy if the static magnetic polarizability N, given in
Fig. 5.10-4 is replaced by the magnetic polarizability N;. The expression
for M) is

”l
M = —— (5.10-3)

)

where A  is the free-space wavelength a. the cutoff frequency for the
lowest-order mode in a waveguide having the same cross section as the
iris, and A is the free-space wavelength at the frequency of operation.
For long, thin irises of length !, A is spproximately equal to 2.

The finite thickness, t, of an iris reduces the transmission through
it. It is found that the total attenuation @ of a thick iris is pre-
dicted with reasonable approximation as the sum of the attenuation a, of
a thin iris and the attenuation &, of a length of transmission line having
a length equal to the iris thickness. Thus,

1
@, = 10 log,, —— db (5.16-4)
s,.I?
and
2
54.6¢4 (".)
. -l— db .10-
% X 1=\x (5.10-5)

where A is an empirically determined constant approximately equal to one
for a round hole.® For an elongated slot of length I in a wall ¢ thick,
A is sbout 3 if ¢ < 0,02 I, but A decreases in size as t becomes larger.®

The information in Eqs. (5.10-3), (5.10-4), and (5.10-5) can be com-
bined to yicld an equivalent polariszability M;, for a thick iris whose
cross-sectional dimensions are not small in terms of a wavelength., The
expression is



M;‘ = TR . (5.10-6)
-

SEC. 5.11, RESONANT FREQUENCIES AND UNLOADED Q
OF WAVEGUIDE RESONATORS

Two important characteristics of a waveguide resonator that are
useful in the design of waveguide filters are the resonant frequency of
the resonator and its unloaded Q, Qu. This section presents curves and
formulas yielding these quantities for completely closed cavities of the
rectangular and cylindrical varieties, When a small coupling iris is cut
in a cavity its resonant frequency and Q“ will be nearly the same as

those of the unperturbed cavity,

Rectangular Waveguide Resonators—Rectangular resonators are
probably used more often in waveguide filters than any other type. An
example of such a resonator is illustrated in Fig., 5.11-1(a)., The modes
that can exist in this resovnator are conveniently divided into two sets,
the transverse electric TE-modes and the transverse-magnetic TM-modes.
The TE-modes have no electric field components, E, along the z axis and
the TM-modes have no magnetic field components, H, along the z axis.

The two types of modes are further specified in terms of the integers
l, m, and n. These are defined as

l = number of half-period variations of E and H along =«
m = number of half-period variations of E and H along ¥y

n = number of half-period variations of E and H along z.

For a given set of integers a mode is completely specified, and the modes

or T™™

are designated as either TE, | . l.a.n"

The resonant frequencies are given by the equation

fiAB = 34,82 B 12 + A n? +-A—B n? (5.11-1)
A B Lz [

where A, B, and L are measured in inches, and f is expressed in giga-

cycles. Figure 5.11(a) alsn contains a mode chart in which f242 i,
plotted as a function of A3/L? for all of the TE- and TM-modes having
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l, ., n £ 2 in a cavity in which B/A = 1/2. In this figure, all dimensions

are in inches, and frequency is measured in gigacycles,

The unloaded Q of a cavity is most conveniently tabulated in the

dimensionless form Q.S/A where & is the skin depth and A is the free space
wavelength. Table 5.11-1 presents values of 5/A for various metals having

polished, corrosion-free surfaces.

Table 5.11-1

VALUES OF 3/\ FOR VARIOUS METALS

The Values Given Are For Polished, Corrosion-Free Surfaces.
The Frequency fee I1s In Gigacycles.

Silver, N = 6.16 x 1076 Vie,
Copper, YA = 6.95 %1076 Vg,

Aluminus, | 8A = 8.70 x 1078V,

-6
Brass, A = 13.4 X120 Vg,

For TE-modes we find that Q (3/A) is given by:¥

"ABL

4

>

Q

(Pt + q?) (p2 + q2 + r) W2
x ’
AL(p?r2+ (p2 +q2)2) +BLIq%r2+ (p? +q%)2] +ABr2(p? +q?)

(5.11-2)
for (Il and ») > 0;
& L 2 4 L2y V2 ’
Q.— s —AE— . (q r ) : for 1 = 0 ; (5.11.3)
. 2 qiL(B + 24) + r3B(L + 24)
and
8 ABL (p2 + r) W2
N , f . 11-
%X 2 piL(A+ 2B) +r2A(L + 28) or ® 0 5.11-4)

where p » 1/A, q = n/B, r = n/L, Figure 5.11-1(b) shows a chart of Q_(S/X)

versus A/L for various aspect ratios k = A/B for the TElol mode,
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For the TM-modes we find that Q, is given by:’l

2 4 L2 2, 24 )N
Q.i AL (Trel) PP A)T e (5.11-5)
A 4 p?B(A + L) + q?A(B + L)
and
s 1, )V
Q= - AL . e 7)) y formne 0 , (5.11-6)
A 2 pB(A ¢+ 2L) + q'A(B '+ 2L)
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Right<Circular-Cylinder Resonators—Cylindrical resonators of the
type illustrated in Fig. 5.11-2 also have normal modes that can be
characterized as TE-modes when there are no electric field components, E,
along the z axis, and ss TM-modes when there are no magnetic field com-
ponents, H, along the z axis. The individual TE- and TM-modes are further
identified by means of the three integers l, m», and n, which are defined

as follows:

l = number of full-period variations of E, with respect to &
s = number of half-period variations of E, with respect to r

n = number of half-period variations of E_ with respect to 2
4
}

\

SOURCE: Technique of Mi Measur see Ref. 31
by C. G. Moatgomery

FIG. 5.11-2 RIGHT-CIRCULAR-CYLINDER
RESONATOR

where £, and E, are the field components in the r and 6 directions. As
in the case of the rectangular cavity modes the right circular cylinder

modes are also designated as TE or TM,'_'.. The resonant frequencies

l,a,n
of these modes are given by the expression®

oo @)
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In this expression f is measured in gigacycles, the dimensions D and L

are measured in inches, The quantities x,,, are
%, = mth root of J;(z) = (0 for the TE-modes
x, = ath root of Jl(x) = 0 for the T™-modes

Values of a few of these roots are given in Table 5.11-2,

Table §.11-2
ROOTS OF J,(x) AND J (x)

TE-mode *la TH-mode *la
1la 1.841 0ln 2.405
21n 3.054 lla 3.832
Oln 3.832 21n 5.136
3ln 4,201 02n 5.520
4ln 5,318 3in 6. 380
12n 5.332 12n 7.016
5la 6.415 4ln 7.588
22n 6.706 22n 8.417
02n 7.016 03n 8,654
61n 7.501 Sin 8.772
32n 8.0l6 32n 9,761
13n 8.536 6ln 9,936
7ln 8.578 13n 10,174
42n 9,283
8ln 9,648
23n 9.970
03n 10.174

Source: TecAnique of Nicrowave
Neesureaents, see Ref. 31,
by C. G. Moatgomery.

(5.11-8)

Figure 5.11-3 is a mode chart in which f2D? is plotted as a function

of D*/L?, for several of the lower-order TE- and TM-modes.

In this figure

all dimensions are in inches and frequency is measured in gigacycles.

Values of Q, for right-circular-cylinder copper resonators are
plotted for TE-modes in Figs. 5.11-4 and 5.11-5, and for TM-modes in

Fig. 5.11-6.
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CHAPTER 6

STEPPED- IMPEDANCE TRANSFORMERS AND FILTER PROTOTYPES

SEC. 6.01, INTRODUCTION

The objective of this chapter is to present design equations and
numerical data for the design of quarter-wave transformers, with two
applications in mind: the first application is as an impedance-matching
device or, literally, transformer; the second is as a prototype circuit,
which shall serve as the basis for the design of various band-pass and
low-pass filters.

This chapter is organi2zed into fifteen sections, with the following
purpose and content:

* Section 6.01 is introductory. It also discusses applications,
and gives a number of definitions.

+ Sections £.02 and 6 03 deal with the performance characteristics
of quarter-wave transformers and half-wave filters. In these
parts the designer will find what can be done, not how to do it.

* Sections 6.04 to 6.10 tell how to design quarter-wave transformers
and half-wave filters. If simple, general design formulas were
available, and solvable by nothing more complicated than a slide-
rule, these sections would be much shorter.

+ Section 6.04 gives exact formulas and tables of complete designs
for Tchebyscheff and maximally flat transformers of up to four -
sections.

* Section 6.05 gives tables of designs for maximally flat (but not
Tchebyscheff) transformers of up to eight sections.

* Section 6.06 gives a first-order theory for Tchebyscheff and
maximally flat transformers of up to eight sections, with
explicit formulas and numerical tables. It also gives a general
first-order formula, and refers to existing numerical tables
published elsewhere which are suitable for up to 39 sections,
and for relatively wide (but not narrow) bandwidths.

* Section 6.07 presents a modified first-order theory, accurate
for larger transformer ratios than can be designed by the
(unmodified) first-order theory of Sec. 6.06.
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*+ Section 6,08 deals with the discontinuity effects of non-ideal
junctions, and first-order corrections to compensate for them,

* Sections 6,09 and 6.10 apply primarily to prototypes for filters,
since they are concerned with large impedance steps. They
become exact only in the limit as the output-te-input impedance
ratio, R, tends to infinity. Simple formulas are given for any
number of sections, and numerical tables on lumped-constant
filters are referred to,

Note: Sections 6,09 and 6.10 complement Secs. 6.06 and 6.07, which give
exact results only in the limit as R tends to zero. It is pointed out
that the dividing line between “small R’ and ‘““large R" is in the order
of [2/(quarter-wave transformer bandwidth)]2?", where n is the number of
sections., This determines whether the first-order theory of Secs. 6.06
and 6.07, or the formulas of Secs. 6,09 and 6.10 are to be used. An
example (Example 3 of Sec. 6.09) where R is in this borderline region,
is solved by both the “small R” and the “large R" approximations, and

both methods give tolerably good results for most purposes.

*+ Sections 6.1] and 6.12 deal with “inhomogeneous’ transformers,
which are not uniformly dispersive, since the cutoff wavelength
changes at cach step.

+ Section 6,13 describes a particular transformer whose performance
and over-all length are similar to those of a single-section
quarter-wave transformer, but which requires only matching sections
whose characteristic impedances are equal to the input and
output impedances.

+ Section 6.14 considers dissipation losses. [t gives a general
formula for the midband dissipation loss.

+ Section 6.15 relates group delay to dissipation loss in the pass
band, and presents numerical data in a set of universal curves.

Quarter-wave transformers have numerous applications besides being
impedance transformers; an understanding of their behavior gives insight
into many other physical situations not obviously connected with
impedance transformations. The design equations and numerical tables
have, moreover, been developed to the point where they can be used
conveniently for the synthesis of circuits, many of which were
previously difficult to design,
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Circuits that can be designed using quarter-wave transformers as a
prototype include: impedance transformers™ (as in this chapter);
reactance-coupled filters™ (Chapt. 9); short-line low-pass filters
(Sec. 7.06); branch-guide directional couplers!® (Chapt. 13); as well
as optical multi-layer filters and transformers, '2 and acoustical
transformers, 34

The attenuation functions considered here are all for maximally
flat or Tchebyscheff response in the pass band. It is of interest to
note that occasionally other response shapes may be desirable. Thus
TEM-mode coupled-transmission-line directional couplers are analytically
equivalent to quarter-wave transformers (Chapt. 13), but require
functions with maximally flat or equal-ripple characteristics in the
stop band, Other attenuation functions may be convenient for other
applications, but will not be considered here.

As in the design of all microwave circuits, one must distinguish
between the ideal circuits analyzed, and the actual circuits that
have prompted the analysis and which are the desired end product.

To bring this out explicitly, we shall start with a list of
definitions: !5

Homogeneous transformer—a transformer in which the ratios of
internal wavelengths and characteristic impedances at different
positions along the direction of propagation are independent

of frequency.

Inhomogeneous transformer—a transformer in which the ratios of
internal wavelengths and characteristic impedances at different
positions along the direction of propagation may change with
frequency.

Quarter wave transformer—a cascade of sections of lossless,
uniform® transmission lines or media, each section being
one-quarter (internal) wavelength long at a common frequency.

A unifors transmission line, medivm, etc., is here defined as one in which the thiell and electrical
characteristics do not change with distance -m“u. direction of propagation, is is o generalizstion
of the IME definition of unifora veveguide (see Nef. 16).
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Note: Homogeneous and inhomogeneous quarter-wave transformers are now
defined by a combination of the above definitions. For instance, an
inhomogeneous quarter-wave transformer is a quarter-wave transformer in
which the ratio. of internal wavelengths and characteristic impedances

taken between different sections, may change with frequency.

Ideal junction-—~the connection between two impedances or trans-
mission lines, when the electrical effects of the connecting
wires, or the junction discontinuities, can be neglected. (The
junction effects may later be represented by equivalent reactances
and transformers, or by positive and negative line lengths, etc.)

Ideal quarter-wave transformer—a quarter-wave transformer in
which all of the junctions (of guides or media having different
characteristic impedances) may be treated as ideal junctions.

Half-wave filter—a cascade of sections of lossless uniform
transmission lines or media, each section being one-half
(internal) wavelength long at a common frequency.

Synchronous tuning condition—a filter consisting of a series of
discontinuities spaced along a transmission line is synchronously
tuned if, at some fixed frequency in the pass band, the réflections
from any pair of successtive discontinuities are phased to give

- . the maximum cancellation. (A quarter-wave transformer is a
synchronously tuned circuit if its impedances form a monotone
sequence, A half-wave filter is a synchronously tuned circuit
if its impedances alternately increase and decrease at each step
along its length.)

Synchronous frequency—the “fixed frequency' referred to in the
previous definition will be called the synchronous frequency.
(In the case of quarter-wave transformers, all sections are
one-quarter wavelength long at the synchronous frequency; in the
case of half-wave filters, all sections are one-half wavelength
long at the synchronous frequency. Short-line, low-pass filters
may also be derived from half-wave filters, with the synchronous
frequency being thought of as zero frequency.)

The realization of transmission-line discontinuities by impedance
steps is equivalent to their realization by means of ideal impedance in-
verters (Sec. 4.12). The main difference is that while impedance steps
can be physically realized over a wide band of frequencies (at least for
small steps), ideal impedance inverters can be approximated over only
limited bandwidths. As far as using either circuit as a mathematical
model, or prototype circuit, is concerned, they give equivalent results,
as can be seen from Fig. 6.01-1,
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FIG. 6.01-1 CONNECTION BETWEEN IMPEDANCE STEP
AND IMPEDANCE INVERTER

SEC. 6.02, THE PERFORMANCE OF HOMOGENEOUS
QUARTER- WAVE TRANSFORMERS

This section summarizes the relationships between the pass-band
and stop-band attenuation, the fractional bandwidth, v and the
number of sections or resonators, n. Although the expressions obtained
hold exactly only for ideal quarter-wave transformers, they hold
relatively accurately for real physical quarter-wave transformers and
for certain filters, either without modificatinon or after simple

corrections have been applied to account for junction effects, etec.

A quarter-wave transformer is depicted in Fig. 6.02-1. Define
the quarter-wave trunsformer fractional bandwidth, o by

A1 T A
v, = 2(—'—-——' (6.02-1)
x“ +>‘¢z
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FiG. 6.02-1 QUARTER-WAVE TRANSFORMER NOTATION

where A.l and Agq are the longest and shortest guide wavelengths,
respectively, in the pass band of the quarter-wave transformer. The
length, L, of each section (Fig. 6,02-1) is nominally one-quarter

wavelength at center frequency and is given by

A A
L o —S182 _ _ _8° (6.02-2)
: ()\ll t AIZ) 4

where the center frequency is defined as that frequency at which the
guide wavelength )\‘ is equal to )\.o.

When the transmission line is non-dispersive, the free-space wave-
length A may be used in Eqs. (6.02-1) and (6.02-2), which then become

2("1 - Az) 2<fz - fx)
w - ——— ], mt—— -
q At )‘z f, + fl (6.02-3)

and
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13 0 (6.02-4)

L W ———————— e
200, + A 4

where f stands for frequency.

The transducer loss ratio (Sec., 2.11) is defined as the ratio of

P,,.i,+ the available generator power, to P,, the power actually
delivered to the load. The “excess loss,’” € is herein defined by
|
LA LLL IR (6.02-5)
P

L

For the maximally flat quarter-wave transformer of n sections and
over-all impedance ratio R (Fig., 6.02-1) £is given by

- 2
£ = (_RI’T_I_)_. cosi" 6 = S‘ cosi® o (6.02-6)
where
m Mo
() = —-——-' (6002‘7)
2 A‘ '
K,o being the guide wavelength at band center, when 6 = 7/2; and where
g (R-1)2
‘ 4R (6.02-8)

is the greatest excess loss possible. (It occurs when & is an integral
multiple of 7, since the sections then are an integral number of half-
wavelengths long.)

The 3-db fractional bandwidth of the maximally flat quarter-wave

transformer is given by
4 4R 1/2n
Ve.3db "'“‘"[‘R—'—z] (6.02-9)
(R - 1)

The fractional bandwidth of the maximally flat quarter-wave
transformer between the points of z-db attenuation is given by

: - 1/2n
%y edb = i.in-l{“' [antilog (x/10) 1]} . (6.02-10)

7 (R ~-1)2
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For the Tchebyacheff transformer of fractional bandwidth W

(R-12 Ti(cos H/po)

£ = 5
4R T2 (1/k)
(6.02-11)
» erTz(cos /1)
where
. <an>
= 1 — y
o U\ (6.02-12)

T, is a Tchebyscheff polynomial (of the first kind) of order n, and
where the quantity

’ B T2 /ug) 121/ k)

g (k- 1)? ! € (6.02-13)

is the maximum excess loss in the pass band. [Compare also Eq. (6.02-18),
below,] The shape of these response curves for maximally flat and
Tchebyscheff quarter-wave transformers is shown in Fig. 6.02-2. Notice
that the peak transducer loss ratio for any quarter-wave transformer is

Pain (R+1)?
- gt e — (6.02-14)
R

AR

and 1s determined solely by the output-to-input impedance ratio, H.

For the maximally flat transformer, the 3-db fractional bandwidth,
Vo, 3db! is plotted against log R for n = 2 ton = 15 in Fig. 6,02-3.
The attenuation given by Eq. (6.02-6) can also be determined from the
corresponding lumped-constant, low-pass, prototype filter (Sec. 4,03).
If o' is the frequency variable of the maximally flat, lumprd-constant,
low-pass prototype, and w; is its band edge, then

! cos &

(6.02-15)

1
1 Ko

(7]
(73]
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FIG. 6.02.2 QUARTER-WAVE TRANSFORMER CHARACTERISTICS

where p, is defined by Eq. (6.02-12), and v, (which occurs in the
definition of Hy) is the fractional bandwidth of the maximally flat
quarter-wave transformer between points of the same attenuation as
the attenuation of the maximally flat low-pass filter at o' = w;.
This enables one to turn the graph of attenuation versus w'/w; in

Fig. 4.03-2 into a graph of attenuation versus cos € of the quarter-

wave transformer, using Eq. (6.02-15).

For the Tchebyscheff transformer,

£
— s Tn’(l/;uo) = Mn,w) (6.02-16)
g

r
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FIG. 6.02.3 3.db BANDWIDTHS OF MAXIMALLY FLAT

TRANSFORMERS

where ¥ is thus defined as a function of the number of sections, n,

and the bandwidth, v
increases when it is desired to improve the peak rejection.

function M in Eq.
bandwidths, v

smal lest fractional bandwidth in Table 6.02-1 is v, " 0.1.

bandwidths,

€

=
1

r

g

T3(1/u,)

It shows how much

the pass-band tolerance
The

(6.02-15) is given in Table 6.02-1 for all fractional

in steps of 10 percent,

1
= ,(R,U') -~ -4-
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For small
g8 \2n
(;::) , (w' small)
(6.02-17)



M(n.wq) T: [

Table 6,02-:

]
win (W"/vt)]

n'v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
210.1049 * 60,6517 ¢ 10,1274 * 4]0.3978 * 2]0. 160] © 3{0,7575 * 2]0.4001 * 2]0.2293 * 20,1400 * 2{0.9000 * 1
30,6795 * 8]0.1052 * 7]0.0004 + §[0.1584 © 510,403 ¢ 4]0.1306 © 40,4972 * 3]0.2130 * 3[0.99%6 * 2|0.5000 ¢ 2
410.4402 *11]0. 1699 * 90,6491 * 7]0,6313 * 6]0.1020 * £]0,2265 * 5|0.6246 * 4]0.2013 * 4/0.7291 * 3{0.2890 * 3
5(0.2851 *14]0.2742 *11|0. 4634 * 9[0,2517 * 8{0,2578 * 7{0.3930 * 6]0.7852 * 5]0.1906 * 5]0.5353 * 4{0.1682 * 4
610, 1847 *1710, 4427 *13]0.3308 *11]0. 1003 *10]|0. 6516 * B[0,6819 * T10.96872 * £[0.1806 ¢ 6]0.3933 * 5{0.9801 * 4
710.1196 *2010.7148 *15[0.2361 *13]0.3m0 *1110, 1646 *10(0, 1183 * 9]0.1241 * 8]0.1710 * 7]0.2890 * 6]0.5712°* S
810.7751 *2210. 1154 *18]0. 1685 *15]0. 1594 *13[0. 4162 *11]10.2052 *10{0. 1560 * 90,1620 * 8]0.2123 * 7[0.3329 * 6
9(0,5021 *2510, 1863 *20{0.1203 *17[0.6355 *14{0, 1052 *13]0,3561 *11]0. 1961 *10]0.1535 * 9[0.1560 * 8]0.1940 * 7
10{0. 3252 *28(0, 3008 *22]0.8590 *18]0.2533 *16{0.2654 *14[0.6178 *12[0. 2460 *11[0.1454 *10]0.1146 * 9(0,1131 * 8
1110.2107 *31]0, 4856 *24]0.- 132 *2010, 1010 *18[{0,6720 *15[0. 1072 *14]0.3100 *12{0.1377 *11]0.8422 * 9]0.6592 * 8
1210, 1365 *34|0, THW *26[0. 4377 *2210,4026 *10]0.1698 *17{0.1860 *15/0. 3898 *13)0.1304 *12{0.6188 *10|0.3842 * 9
13108842 *36{0, 1266 *29[0,3124 *24]0. 1605 *2110,4202 *18]0, 3227 *16{0.4901 *14{0.1235 *13|0.4547 *11]0.2239 *10
14§0.5728 *39]0. 2044 *31{0,2230 *26[0.6:397 *22{0. 1084 *20]0.5598 *17{0.616]1 *15]0.1170 *14/0.3340 *12{0.1305 °*11
1510. 3710 *42{0, 3209 *33]0. 1592 *2810, 2550 *24|0,2742 *21]0,9712 *18]0.7746 *16]0.1108 *15/0.2454 *13{0.7607 *11

Tairle n, 02«1 (concluded)

N 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
210.6040 * 110.4226 * 1{0.3066 * 10,2308 * 1{0,. 1804 * 1]0.1467 * 1{0.1243 * 1{0.1103 * 1{0.1024 * ] 1.0
3/0.2654 * 2(0.1479 * 2j0.8611 * 1{0.5234 * 1]0.333] * 1{0.2236 * 1/0.1601 * 1]0,1241 * 1/0.1056 * 1 1.0
410.1230 * 3/0.5553 * 2{0.2634 ¢ 2{0.1308 * 2/0,6802 ¢ 1]0.3739 * 1]0.2213 * 1]0.1454 * 1]0.1102 * 1 1.0
5[0.5771 * 3{0.2125 * 3]0.8288 * 2]0.3398 * 2]0.1459 * 2]0.6610 * 1(0.3219 * 1]0.1762 * 1{C.1162 * 1 1.0 .
610.2713 * 4]0.8170 * 30,2631 * 3(0.8965 * 2]0.3206 * 2]0.1206 * 2{0.4853 * 1]0.2197 * 1{0.1239 * 1| 1.0
710.1276 * 510.3145 * 410.8380 ¢ 3[0.2379 * 3]0,7120 * 2{0.2239 * 2{0.7490 * 1/0.2802 * 1]0.1334 * 1 1.0
8{0.0006 * 50,1211 * 5/0.2671 * 4]0.6327 * 3{0.15688 * 310.4197 * 2{0.1174 * 210.3639 * 1]/0.1450 * 1 1.0
9(0.2826 * 60,4666 * 5]0.8515 * 4|0, 1684 * 4]0.3552 * 3{0.7907 * 2(0.1858 * 2{0.4790 * 110.1590 * 1 1.0
10{0.1329 * 7(0.1797 * 6]0.2715 * 5]0. 4483 * 4]0.7950 * 3]0.1493 * 310.2959 * 20.6371 * 1|0.1756 * 1 1.0
11{0,6257 * 7{0.6923 * 6]0.8656 * 5j0.1194 * 5/0,1780 * 4|0.2825 * 3[0.4730 * 2]0.8542 * 1{0.1954 * 1 1.0
1210.2944 * 810.2667 * 7]0.2760 * 6]0.3179 * 50,3986 * 4]0.5347 * 3/0.7581 * 2]0.1152 * 2{0.2187 * 1 1.0
13]0.1385 * 9|0. 1027 * 8/0.8800 * 6{0.8465 * 5/0.8928 * 4]0.1012 * 4]0.1216 * 3|0.1560 * 2]/0.2463 * 1 1.0
14{0.6518 * 90,3956 * 8]0.2A0n * 7]0.2254 * 6}0.1999 * 5/0.1918 * 4/0.1954 * 3]0.2120 * 2{0.2787 * 1 1.0
1510, 3067 *10{0. 1524 * 9]0.8947 * 7|0.6003 * 6]0.4478 * 510.3632 * 4]0.3142 * 3'0.2888 ¢ 2/10.3167 ¢ 1 1.0

*4 means “multiply by IO‘," and a0 on,

SOURCE:  Quarterly Progress Report 4, Contrect MDA 36-030 SC-87398, SRI; reprinted in IAE Trens, PGNIT

(see Ref. 36 by L.

Young)
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Equation (6.02-17) is accurate to better than ahout 1 percent for
v, less than 0.1.

The attenuation given by Eyq. (6.02-11) for the Tchebyscheff
quarter-wave transformer can also be Jetermined from the graphs in
Figs. 4.03-4 to 4,03-10 for the corresponding lumped-constant, low-pass,
prototype filter [as already explained for the maximally flat case in
connection with Eq. (6.02-15)] by using the same Eq. (6.02-15) except
that now w’

1
low-pass filter.

is the Tchebyscheff (equal-ripple) band edge of the

In the design of transformers as such, one is interested only in
the pass-band performance for small R (usually less than 100), and
this is expressed in terms of maximum VSWR rather than maximum
attenuation. Tables 4.02-2 through 6.02-5 give directly the maximum
VSWR inside the pass band for transformers with output-to-input
impedance ratios, R, of less than 100, and fractional bandwidths, w0
up to 120 percent, for transformers of n = 1, 2, 3, and 4 sections.*

For all other cases, the maximum VSWH may be worked out from Table 6.02-1,

using the relation

v, - b (6.02-18)
4V,

o

where V_ is the ripple VSWR (maximum VSWR in the pass band), together
with Eqs. (6.02-8) and (6.02-16).

Example 1-—Determine the minimum number of sections for a trans-
former of impedance ratio R = 100 to have a VSWR of less than 1.15
over a 100-percent bandwidth (wq = 1.0).

From Eq. (6.02-18), for V = 1,15,

€

r

0.00489 (6.02-19)

and from Eq. (6.02-8), for R = 100,

€, = 2.5 . (6.02-20)
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Table 6.02-3

MAXIMUM VSWR FOR TWO-SECTION

Table 6.02-2
MAXIMUM VSWR FOR SINGLE-SECTION

QUARTER-WAVE TRANSFORMERS

QUARTER-WAVE TRANSFOMMERS

BANDVIDTH, v q

IMPEDANCE
RATIO,

1.2
53.
66.1

i

5.83{50.98

.0

1

8.92]40.98

0.8
2
3

BANDVIDTY, v
0.6

IRE Trans. PGNTT (see Ref. 4 by L. Young)

Table 6.02-5

MAXINUM VSWR FOR FOUR-SECTION

Table 6.02-4
MAXIMUM VSWR FOR THREE-SECTION

QUARTER- WAVE TRANSFORMERS

QUARTER-WAVE TRANSFORMERS

BANDWIDTH, » e

IMPEDANCE

RATIO,

1.0}1.2

BANDYIDTH, »

1.8213.25/7.13
1.95] 3.69]8.51

0.8

IMPEDANCE

IRE Trens. PONTT (see Mef. & by L. Young)

RATIO,
R

IR Trens, PGUTT (see Mof. 4 by L. Young)



Hence, bkq, (6.02-16) gives

~

M(n,wy) = T /ug) = 5= = 0.501 x 10 (6.02-21)

“r

From Table 6.02-1, in the column w, = 1.0, it is seen that this value
of M(n,wq) falls between n = 5 and n = 6, Therefore, the transformer

must have at least six sections. (See also Example 1 of Sec, 6.07)

SEC. 6.03, THE PERFORMANCE OF HOMOGENEOUS
HALF-YAVE FILTERS

The half-wave filter was defined in Sec. 6.01. It is shown in

Fig. 6.03-1. Tts fractional bandwidth v, is defined [compare
kEq. (6.02-1)] by

v, - o ¢ (6.03-1)

Cenorws. POt -0~
Enarns T r*]

NORMALIZED
IMPEDANCES :
2g%s z 2; iy -~ - 2, Zpe
JUNCTION VSWR's:
v, v, vy -—— v, Voo
REFLECTION
COEFFICIENTS.
L3 ‘rz !r, -—- 2‘1",, iTha
2\ vie!
I

A-3327-29¢
SONIRCE: Quarterly Progress Report 4, Contract DA 16-030 SC-R7398, SR
reprinied in IRF Trans. PGNTT (See Ref. 36 by .. Young)

FIG. 6.03.1 HALF-WAVE FILTER NOTATION
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and the length L' of each section [compare Eq. (6.02-2)) is

Ll = A.l)\|2 = )\'0 (6.030 2)
Ayt Ay 2

where X‘l and K.z are the longest and shortest wavelengths, respectively,
in the pass band of the half-wave filter. This can be simplified for
non-dispersive lines by dropping the suffix “g,’” as in Eqs. (6.02-3)

and (6.02-4). A half-wave filter with the same junction VSWRs V,

(Figs. 6.02-1 and 6.03-1) as a quarter-wave transformer of bandwidth

v, has a bandwidth

v
v, = 1 (6.03-3)
2

since its sections are twice as long and therefore twice as frequency-
sensitive. The performance of a half-wave filter generally can be
determined directly from the performance of the quarter-wave
transformer with the same number of sections, n, and junction VSWRs
V., by a linear scaling of the frequency axis by a scale-factor of 2.
Compare Figs. 6.03-2 and 6,02-2. The quarter-wave transformer with
the same n and V, as the half-wave filter is herein called its

prototype circuit.

In the case of the half-wave filter, R is the maximum VSWR, which
is no longer the output-to-input impedance ratio, as for the quarter-
wave transformer, but may generally be lefined as the product of the
junction VSWRs :

= ! .00
R VoV, oo ¥ (6.03-4)

This definition applies to both the quarter-wave transformer and the
half-wave filter, as well as to filters whose prototype circuits they
are. (In the latter case, the V‘ are the individual discontinuity
VSWRs as in Chapter 9.)

The equations corresponding to Eqs. (6.02-6) through (6.02-18) will
now be restated, wherever they differ, for the half-wave filter.



(0) MAXIMALLY FLAT

vewn ! [

|

|
| |
| i
! [
| !
] ]
I

4] e ! 172 2
NORMALIZED FREQUENCY, f OR,NORMALIZED RECIPROCAL GUIDE WAVELENGTH Ago/)g

(D) TCHEBYSCHEFF
VSWR

0 1”2 | e H
NORMALIZED FREQUENCY 1,0R, NORMALIZED RECIPROCAL GUIOE WWELENGTH Ago/Ag
A<3317-208

SOURCE: Quaerteriy Progress Report 4, Contract DA 36-039 SC-87398, SRI;
reprinted in /RE Trans. PGMTT (See Rof. 36 by L. Young)

FIG. 6.03-2 HALF-WAVE FILTER CHARACTERISTICS

For the maximally flat half-wave filter of n sections,

a - 12 a .
€ « B-D7 4in20 6’ < &, sin2" g’ (6.03-5)
4R
where
o . TR 29 (6.02-6)
)\l

instead of Eq. (6.02-7), so that 6' = 7 (instead of 6 = 7/2) at
band center. The 3-db bandwidth of the maximally flat half-wave

filter is

LIRS
2

(6.03-7)

¥a,34db
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and the bandwidth between the points of x-db attenuation is

v . Ca.sab (6.03-8)
h,xzdb 2

which can be obtained from lLgs. (6.02-9) and (6.02-10).

For the Tchebyscheff hall-wave filter,

£ . (k - 1)2 Tf(sin 0'/#0)

AR T2(1/uy)
(6.03-9)
= & T¥sin v'/u,)
where
i ne . mw,
g = Sin <——l> = sin < ) . (6.03-10)
4 2 Y

The quantities Su, S’, and the maximum transducer loss ratio are
still given by Eqs. (6.02-8), (4.02-13), and (6.02-14). For maximally
flat half-wave filters, the graph of Fig. 6.02-3 can again be used,
but with the right-hand scale.

The lumped-constant, low-pass, prototype filter gzraphs in
Figs. 4.03-2 and 4.03-4 to 4.03-10 may again be used for both the
maximally flat and Tchebyscheff half-wave filters by substituting

sin &' (6.03-11)

= D —

Ho

[ €

IS
<
L~

for Eq. (6.02-15), where u, is given by kq. (6.03-10).

Equation (6.02-16) and Table 6.02-]1 still apply, using Eq. (6.03-3)

to convert between w, and v,.

Example 1—Find R for a half-wave filter of six sections having a
Tchelyscheff fractional bandwidth of 60 percent with a pass-band

ripple of 1 db.
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Here, v, = 0.6, or v, = 1.2 . From Eq. (6.02-13),

antilog (0.1) -1 = (R- 1?2 1 (6.03-12)
4R Ti(1/1y)

and from Table 6.02-1 for v, = 1.2,

1.259 -1 =« (B-D? 1

4R 817

Hence, R = §50.

SEC. 6.04, EXACT TCHEBYSCHEFF AND MAXIMALLY FLAT SOLUTIONS
FOR UP TO FOUR SECTIONS

Enough exact solutions will be presented to permit the solution
of all intermediate cases by interpolation for Tchebyscheff and

maximally flat transformers and filters having up to four sections.

The solutions were obtained from Collin's formulas.? With the
notation of Fig. 6.02-1, they can be reduced to the expressions
given below. The equations are first given for maximally flat

transformers and then for Tchebyscheff transformers.

For maximally flat trensformers with n = 2, 3, and 4:

n= 2 v, = R )
> (6.04-1)
V, - RL& J
1/2 h
ns 3 V2+2RV2V1"'2R—‘-—R—-O
v, 144
1
\  (6.04-2)
1/,
v, = R, )
n = 4 v, = AR ]
1/4
= R L (6.04-3)
v,
y = A




where

1 - . Rlﬂ -

)

For Tchebyscheff Transformers with n = 2, 3, and 4:
ns=2 Vf = VCT+R+C
Vy, = R/Vf
where
(R = 1)ul
c « ——2
2(2 = ud)

and u, is given by Eq. (6.01-12).

ne3 V§+2/§V‘——2/E-—-ﬁ-.
I

v R'2v

2 " AL

1
V2 . vy

A2
v, « A2

y!

(R - 1)

4 - 3#3

(6.04-3)

(contd,)

(6.04-4)

(6.04-5)

(6.04-6)

N :3} & l:

R



vhere

A? .

2,2
2tlt2 413t3 R

1/ 4 \? . - 1\ _ 2
N CRCICRESEREs

- - 1
1= IR +[u 1/R)? _1_]

 (6.04-6)
and (contd, )
. 22 _
! 2 + Dul
22
tz = —'/:__;- l
) -
(V2 = Dy J

A difference between typical quarter-wave transformers, and half-
wave filters suitable for use as prototypes for microwave filters, is
that, for the former, R is rclatively small (usually less than 100)
and only the pass-tand performance is of interest; for the latter, R
is relatively large, and the performance in both pass hand and stop
band is important. Two sets of tables are presented for n = 2, 3,
and 4. The first set (Tables 6.04-1 to 6.04-4) cover R from 1 to 100.
Since these tables are most likely to be used in the design of
transformers, the impedances Zl and Z2 (Fig. 6.02-1) are tabulated;
the remaining impedances are obtained from the symmetry relation,
which can be written (for any n)

zz,.. = R (6.04-7)

(where the Zi are normalized so that Zo = 1), or

V. =
' Vava- (6.04-8)

Coom t e (6.04-9)
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Table 6.04-1

Z, FOR TW0O-SECTION QUARTER-WAVE TRANSFORMERS

(Forw = 2.0, 7 =2, =vk)
IMPEDANCE HANDRINTH,
WATIO,
[ 0.0 0,2 0,4 0.6 v, K 1.0 1.2 1.4 £ 1.6 [ 1.8
1.00 11000001, 00600 11, 00000 |1, 000001, 000061 1,00000 {1,00000|1, 000]1,000]1.000
1.25 [1.05737§1. 05810 {1, 06034 1. 06418{1.0697911,07725(1.08650[1.096]1. 107 {1. 115
1.50 (1. 10668 |1, 10808 [1, 11236 {1, 11973 11,1305 11, 14495 |1, 1629211, 18311.203{1.218
175 (1150061, 16208 £1, 15837 11, 16904 1, 1846911, 2057211, 231991, 261]1.291]1.314
2,00 (1L YRO2VEL, 19081 {1, 194979 11, 213001, 23388 11, 26122 1,29545{1. 3341, 373 |1. 402
2,50 [1.25743(1.2611311,27247 11,29215(1.3211711.30043 {1.40979 1. 466(1.522]1.564
3.00 {1.3160711.3207911.3352611,3603211. 39764 11, 44816 |1.5117911.584[1.656 {1.711
4.00 [1.4142111, 42080 (1,44105(1.4764011,5269211,60049 11,.6907411.793({1.894]1.971
5.00 |1,49535]1.50366 |1.52025[1.57405]1.640841.73205(1.84701|1,977|2. 105 |2.200
6.00 {1.5650811.5750111.6056311,65937(1,7397011.8495111.9876812.143(2.2952.407
8.00 [1.68179(1.69473(1.7347511.8052711.9110712.05579 2. 2369312, 43912.633 (2.775
10,00 [1.77828]1,79402 |1, 84281 [1,92006 (2.05879 |2, 23607 {2, 45663 2,700 2.931 [3. 100
12.50 |1.B8030|1. 89934 |1.9584012.06334 12, 22139 2. 43686 12, 7028212, 994 | 3. 266 3.463
15.00 11.96799(1,9601412,0590912,18171(2.3n172{2.618182.92611{3.259]3.568(3.791
17.50 12.04531]2.07045:2, 14880 12, 28850 | 2. 49938 (2. 78500 13. 13212 3. 505|3. 847 [4.093
20.00 2. 1147402, 14275 (2. 23019 ,2. 38640 2. 62224 {2. 94048 |3, 32447 ]3. 73314, 107 |4. 374
25.00 12,23607 |2, 2695512, 37439 12,56229]2.81580,3.225393.6774114.152{4.583 |4.888
30.00 [2.3403512.3790312.5C01612,T1863(3,04734(3.48399(3.99796814.533(5.01315. 353
40.00 [2.51487]2.56334]2.7161412,99167 |3, 40499 |3.94578 [4.57017 5. 210}5.779 6. 179
50.00 [2.65915|2. 71681 |2.89921 |3.22888(3,72073]4. 355365.07697|5.808|6.454{6.907
60.00 {2.78316(2,84956 {3. 060243, 44157{4.00711{4.72769!5.53691{6.350(7.065|7,565
80.00 }2.99070]3,07359[3.33788 {3.81n81[4.51833(5. 39296 |6. 35680(7.314/8.150 (8,733
100.00 {3.16228(2.26067 |3.57565 |4, 14625(4.97177]5.98279|7.0818118.164]9.10719.763
[ ]
Z2 is given by
z, = KZ
SOURCE: JRE Trans. PGNTT (see Hef. 3 by 1. Young)
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Tahle 6.04-2

Zl FOR THHREE - SECTION QUARTER-WAVE TnI\NS““NH\S.
(For v, © 2.0, 2 =2, =7y =k )

TMPEDANCE
RATIO,
L]

HANDM DT, v,

0.0 0.2

0,

]

1,00000
1. 02829
1.05202
1.07255
1. 09068
112177
1. 14793
1.1907}
1.22524
1.25439
1.30219
1. 34084
1.38110
1.41512
1. 44475
1.47108
1.51650
1.55498
1.61832
1.66978
1.71340
1.78522
1.84359

L Oope
MR X]
05303
07396
L 09247
. 12422
. 15096
. 19474
. 23013
. 26003
30916
. 34900
. 39048
. 42504
. 45630
. 48359
. 53075
. 57080
, 63691
. 69080
. 73661
.81232
.87411

— Pt Pt Bt et e s bt Gt Gt s bm S® b pen T et Gms Gvd uw  wes  yea e

1. 00000
1.03051
1.0 16
1.07839
1. 09808
1.13192
1. 16050
1.20746
1.24557
1.277490
1.33128
1.37482
1. 42039
1.45924
1. 49328
1.52371
1.57661
1.62184
1.69719
1.75924
1.81246
1.90144
1.97500

}__- - =
R

03350
JOalie
L0864
. 10830
. 14600
17799
. 23087
.27412
.31105
.37253
. 42320
47674
.52282
. 50355
.60023
.h6dn4
. 72040
81471
89378
.96266
. 08004
. 17928

i, 0

0.4

1.0 L_I'Z

1.6

1., 00000
1, 03839
1.07092
1.09933
1. 12466
1. 1u8n2
1.20021
1. 26801
1. 32078
1. 36551
1. 44091
1. 50397
1.57157
1, 63055
1.68331
1.73135
1.81693
1. 89229
2,02249
2.13434
2.23376
2.40750
2,55856

1.00000) 1,
104567 1,
1.
1. 14805
1. 18702
1.25594
1. 31621
1.41972
1.50824
1.58676
1.72383
1.84304
1.
2
2
2
2
2

1.08465
1.11892
1. 14966
1.20344
1.24988
1.32837

1.39428|

1.45187
1.55057
1.63471
1.72651
1.80797
1.88193
1.95013
2.07304
2. 18447
2.38028
2.55256
2.70860
2. 98700
3.23420

2.
3.
3,
3.
4.

NHoono
05636
10495

97543

.09480
. 20457
. 30687
. 49446
66499

97034
24219
49018
93524
33178

1.000
1,071
1.134
1.189

2.
2.354
2.532
2.698
2,848
3.129
3.384
3.845
4.249
4.616
5.286
5.870

1.240
1.332
1.413
1.
1
1
1

556

679
. 790
.985

159

1.000
1.091
1.170
1.243
1.310
1.434
1.543
1.736
1.907
2.060
2,333
2.577
2.849
3.098
3.325
3.541
3.934
4,288
4,920
5.480
5.987
6.896

1.000
1. 109
1.207
1.298
1.382
1.535
1.673
1.917
2.133
2.329
2,677
2.984
3.329
3.640
3.924
4.191
4.678
5.124
5.909
6.600
7.226
8.338

7.70009.318

.
Zz and 23 are given by

SOURCE :

Z
Z

2
3

—~
VR

(722

IRE Trans. PGNTT (see Ref. 4 by .. Young)
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Tuble 6.04-3

Z) FOR FOUR-SECTION QUARTEH-WAVE T“ANSFO“MERS.
(For wy = 2.0, 2, « 2, v 2y 2, =V )

INPEDANCE
RATIO,

BANDWIDTH,

Yq

L] 0.0

0.2 0.4

n.6 0.4

1.0

1.4 | 1.6

1.8

100.00

1.00 }1.00000
1.25 |1.01405
1.50 {1.02570
1.75 11.035608
2.00 [1.0444%
2.50 11.05933
3.00 11.07176
4.00 {1.09190
5.00 |1,10801
6.00 |1.12153
8.00 |1.14356
10.00 1.16129|
!

I

12.50 {1.17961
15.00 [1.19506
17.50 |1.20847
20,00 |1.22035
25.00 |1.24078
30.00 |1.25803
40.00 }11.28632
50.00 |1.30920
60.00 |{1,32853
80.00 |1.36025
1.38591

1.00000 | 1, 00000
1.01440{1.01553
1.02635|1.02842
1.03659]1.03949
1.045581. 0492}
1. 06088 | 1.06577
1.07304]1.07963
1.09435 1, 10216
1.11093 1. 12026
12486, 1. 13549
1475811, 16043
16588 11. 18060
18483 1. 20150
2008211, 21931
21471(1.23478

1.

1.

1.

2270311, 24854
24824 |1,27232
1.26618(1,29251
1.2956411,32587
1.319531. 35308
1.33974]1.37624

1.

L.

1.
1.
1.
1.
1.
1.
1.
1.

1.37297 1. 41455
1.39992] 1. 44587

1.00000 {1, 00000
1,0176111.02106
1.03227 | 1.03866
1.04488{1.05385
1.05598 [1.06726
1.07494 [1.09026
1.09086 |1, 10967
1.1168511. 14159
1. 13784 {1.16759
1.15559 1. 18974
1. 18482 /1. 22654
1.20803 1. 25683
1.2335311. 24483
1.25475'1. 31638
1.273351.34074
1.28998 '1. 36269
1.31891]1,40125
1.34367 |1, 43467
1.38498 '1.49127
1.41905 | 1.53879
1.44833;1.58022
1.49736 11.65091
1.5379Bi .71073

1.00000
1.02662
1.04898
1.06838
1.08559
1.115831
1. 14059
1. 18259
I.21721
1.24702
1.29722
1. 33920
1.38421
1. 42350
1.45869

1.49074!

1. 54791
1.59831
1.68552
1.76055
1.82732
1.94412
2.04579

1,00000
1.03560
1.06576
1.09214
1. 11571
1.15681
1.19218
1.25182
1.30184
1.34555
1.42054
1.48458
1.55461
1.61690
1.67357
1.72593
1.82099
1.90654
2.05820
2.19214
2.3137%
2.53156
2.72559

1.000/1.000
1.0501.073
1.6031.137
1.131{1.194
1.165)1. 247
1.22611.342
1.280]1. 426
1.371{1.574
1.450/1.703
1.520(1.820
1.642(2.028
1.749:2,213
1.86912. 420
1.97712.609
2.077/2.784
2.17012.948
2.342|3.249
2.498(3.524
2.780(4.015
3.031 4,451
3.26114.848
3.674/5.556
4.043(6.183

1.000
1.102
1.193
1.m
1.354
1.495
1.622
1.847
2.045
2.225
2.545
2.828
3. 146

3.433
3. 699
3.946
4.399
4.809
5.538
6.182
6.765
7.801
8.715

.
See Footnote,

SOURCE:

Table 6.04-4

IRE Trans, PGNTT (see Ref. 4 by L. Young)
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Table 6.04-4

Z, FOR FOUR-SECTION QUARTER-WAVE TRANSFORMERS °
(For v, » 2.0, 2, =2, =2,=2,°VR)

IMPEDANCE.

BANDSINTH, »,

RATIO,
n

9.0

0.2 0.4

0.6

6.8 1.0

1.2

1.4

1.6

1.00
1.25
1.50
1.75
2.00
2.50
3.00
4.00
5.00
6.00
8.00
10.00
12.50
15.00
17.50
20,00
25.00
30.00
40,00
50.00
60,00
80.00
100,00

1.00000
1.07223
1.13512
1.19120
1.24206
1. 33204
1.41051
1.5447
1.65686
1.75529
1.92323
2.06509
2.21803
2.35186
2.47160
2.58072
2, 77447
2,94423
3.23492
3. 48136
3.64752
4.06810
4.368263

1,00000 |1, 00000
1.07260(1,07371
1.1358411. 13799
1.1922411, 19537
1,24340(1.24745
1.33396 (1, 33974
1.41296 (1. 42036
1.5476011,85795
1.66118[1,67423
1.76043 1, 77600
1.92990 (1, 95009
2.07315(2.0075n
12.22770{2,25098
12. 36303 |2, 39686

2.57403 |2. 63681
2.79089 (2. 84069
2.96209 13, 01989
3. 257083, 32702
3.50835]3. 50021
3.728'6 {3.82111
4.10544 {4,21877
4.42610(4.55802

1

1. 00000
1.07559
1. 14162
1. 20065
1.25431
1. 34454
1. 43290
1.57553
1. 69642
1.80248
1.98440
2,13915
2. 30691

{2, 45455
2. 48426 (2.52237 12, 54739
2. 70880

2.92575
. nen
3. 44754
3.7302¢
3.98025
4.41293
4. 78420

1.00000 |1, 00000
1.07830{1.081%5
1. 1468511, 15394
1. 20827 11,2861
1.2642001,27764
1.3037011.38300
1.45105]1,47583
1.60%02{1.63596
1.7286411,77292
1.84098 {1.89401
2.03453(2.10376
2. 1998412.24397
2.3798812.44134
2. 53898 12, 656067
2.6826412,81570
2.8143312.962048
‘3.05065 3.22609
13. 26008 13, 46148
3.6237713.87328
3.937044.23091
4.21547 4.55096
4.700635. 11329
5.120035.60394

1. 00000
1.08683
1. 10342
1.23248
1.29572
1. 40907
1. 50943
1.68360
1.83358
1.96694
2. 19954
2. 40096
2.62317
2.82190
3.00321
3. 17095
3.47548
3.74905
4.23198
4.65555
5.03760
5.71502
6.31175

1.000
1,093
1.176
1.251
1.320
1 445
1.556
1.750
1.918
2.069
2.335
2.568
2.826
3.059
3.273
3.472
3.836
4.165
4.750
§.2¢5
5.734
6.568
7.304

1.000
1.102
1.193
1.217
1.354
1.494
1.620
1. 842
2.037
2.212
2.524
2.798
3. 105
3.383
3.639
3.878
4.315
4.711
5.415
6.038
6.601
7.603
8. 487

2o88n=8la
-— N O

8. 543
9.548

»

Zl is given in Teble 6.04-3, Z3 and Z‘ are given by

SOURCE:

Z = R/Z,

z

s T N

IRE Trens. PGNTT (see Ref. & by L. Young)
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The characteristic impedances, Z, , are obtained from the junction
VSWRs, V,, using Fig. 6.02-1 for the quarter-wave transformer and
Fig. 6.03-1 for the half-wave filter, It is convenient to normalise
with respect to Zo. and as a result, the values of Zx, 2,, ves given
in the tables are for Z) = 1. The tables giving the Z, all refer to
quarter-wvave transformers. To obtain the Z: of half-wave filters,
obtain the ¥V, from Fig. 6.02-1, and use these V. to obtain the Z:
from Fig. 6.03-1. This gives the half-wave filter with the same
attenuation characteristics as the quarter-wave transformer, but
having a bandwidth w, = %v'. (Compare Figs., 6.02-2 and 6.03-2,)

The solutions of Eqs. (6.04-1) to (6.04-6) for larger values of
R are presented in the second set of tables (Tables 6.04-5 to 6.04-8).
They give the values of V, and ¥V, for n = 2, 3, and 4. The remaining
values of V are obtained from Eq. (6.04-8) and

ViVy oo Voy = R (6.04-10)

which, for even n, reduces to

WVy oot V)W asayey = R (6.04-11)
and for odd n, reduces to
Vg ooe Vgt = 0 (6.04-12)

Equations (6.04-7) to (6.04-12) hold for all values of n .

Tables 6.04-5 to 6.04-8 give the step VSWRs for R from 10 to ®
in multiples of 10. Note that for Tchebyscheff transformers V,, Vs. ves,

V. and Vl/(R)x = V.,l/(ﬁ)% tend toward finite limits as R tends toward
infinity, as can be seen from Eqs. 6.04-1 to 6.04-6 for n up to 4, by
letting R tend toward infinity., (For limiting values as R tends
toward infinity and n > 4, see Sec. 6.10.) The tables give fractional
bandwidths, v from 0 to 2,00 in steps of 0.20. [The greatest
possible bandwidth is v, 2.00, by definition, as can be seen from
Eq. (6.02-1).]
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When interpolating, it is generally sufficient to use only the
two neareast values of V or 2. In that case, a linear interpolation
on a log V or log Z against log R scale is preferable. Such
interpolations, using only first differences, are most accurate for
small R and for large R, and are least accurate in the neighborhood

92 2(n=1)
R ~(—> (6.04-13)

Y

In this region, second- or higher-order differences may be used (or a
graphical interpolation may be more convenient) to achieve greater

accuracy.

Example 1—Design a quarter-wave transformer for R » 2,5, to have
a VSWR less than 1.02 over a 20-percent bandwidth.

Here, R = 2.5 and v, " 0.2. From Table 6.02-2, it can be seen
that one section is not enough, but Table 6.02-3 indicates that two
sections will do. From Table 6.04-1, we obtain Z, = 1.261, and
from Eq. (6.04-7), Z, = 1.982.

Example 2—Find the step VSWRs Vl' Vz'
section quarter-wave transformer of 80-percent bandwidth and R = 200.

V;» and V, for a three-
Also, find the maximum pass-band VSWR,

Here, n = 3 and v, = 0.8. For R = 100, from Table 6.04-6,

vV, = 3.9083 ,
~ log ¥V, = 0.5920 .
For R = 1000,
V, = 5.5671 ,
~ log V, = 0.7456

Now, for R = 200,

an



log R = 2,301 .
Interpolating linearly,
log ¥V, ~ 0.5920 + 0.301(0.7456 - 0.5920)
= 0.6382
V2 = 4,347 = V3 also .
From Eq. (6.04-10) or (6.04-12),
(V,v)* = R

V, = V, = 2.086
The maximum pass-band VSWR, V,, is found from Eqs. (6.02-8), (6.02-13),
and Table 6.02-1, which give € = 0.23, and then Eq. (6.02-18)
determines the maximum pass-band VSWR, V = 2.5,

SEC. 6.05, EXACT MAXIMALLY FLAT SOLUTIONS FOR UP
TO EIGHT SECTIONS

Enoﬁgh exact solutions will be presented to permit the solution
of all intermediate cases by interpolation, for maximally flat trans-
formers with up to eight sections,

The solutions were obtained by Riblet's method.?® This is a tedious
procedure to carry out numerically; it requires high accuracy, especially
for large values of R. In the limit as R becomes very large, approximate
formulas adapted from the direct-coupled cavity filter point of view
in Chapter 8 become quite accurate, and become exact in the limit, as
R tends to infinity. This will be summarized in Sec. 6.09. For our
present purposes, it is sufficient to point out that, for maximally
flat transformers, the ratios
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(6, 05-1)
A = | ’Hl/"r i # ] orn | '

tend to finite limits as B tends to infinity (sce Sec, 6,10),

Table 6.05-1 zives the impedances Zl to Z‘ (Fig., 6.02-1) of
maximally flat quarter-wave transformers of 5, 5, 7, und 8§ sections
for values of B up to 100, The impedances of maximally flat trans-
formers of 2, 3, and 4 sections were already ziven in Fal les 6,04-1
to 6.04-1 (case of w, = 0). The remainine imbedances not piven in

these tables are determined from g, (6,04-7),

Talle 6.05-2 pives the A defined in bq. (6,05-1) for maximally
tlat transformers of from 3 to 8 sectionx for values of I from | to *
in multiples of 10, the A change relatively little over the infinite
ranve of K, thus permitting very accurate interpolation,  The Vl are
then obtained from kgs. (6.05-1), (6.01-8), and (6,0i-10). The case

n =2 is not tabuluted, since the formulas in lq. (6.01-1) are so simple.

SEC, 6,06, APPROXTMATE DESTON WHEN LIS SMALL

First<Order Theory—FExact numerical Tchebyscheff solutions for
n > 4, corresponding to the maximally flat solutions up to n = 8 in
Sec. 6.05 have not yet bren computed, When the output-to-input
impedance ratio, H, approaches unity, the reflection coefficients of
the impedance steps approach zero, and a first-order theory is
adequate, The first-order theory assumes that each discontinuity
{impedance step) sets up a reflected wave of small amplitude, and
that these reflected waves pass through the other small discontinuities
without setting up further second-order reflections. This theory
holds for "*small R" as defined by

2 n/2
R <(—~> (6.06-1)

w
q

and can be useful even when R approaches (2/Wq)"' particularly for large
bandwidths. [Compare with Eqs. (6.07-2) and (6,09-1).]
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Denote the reflection coefficients of an n = section transformer

or filter by
r: , where i =1, 2, ..., n t ]

to give a Tchebyscheff response of bandwidth, w_. Let

q
,'7w>
q
¢ = cos
( 4

The quantity c is related tn uy of Eq. (6.02-12) by

e+ ul o=

(6.06-2)

(6.06-3)

Then, for n-section Tchetyscheff transformers, the following ratio

formulas relate the reflection coefficients up to n = 8.

For n s 2,

For n = 3,
FOr n = 4'
For n = 5,
Prelely = 1:5e?:5e¢2(1 + e?)
For n = 6,

For n = 7,

For n = 8,

Filgilyl il e 1:8c2:4¢2(2 + 5¢2):8c2(1 + 4e? + 2c4):

2¢2(4 + 18c? + 12c¢4 + c%) .

ass

= 1:6c2:3c¢%(2 + 3¢?):2c%(3 + 6c? + c¥)

s 1:7¢2:7¢2(1 * 2¢?):7¢2(1 + 3¢c? + c¥)

.

(6.06-4)

(6.06-5)

(6.06-6)

(6.06-7)

(6.06-8)

(6.06-9)

(6.06-10)



Table 6.06-1 tabulates the r,/r, for all fractional bandwidths in
steps of 20 percent in v, for transformers of up to eight sections.
The 's are obtained from the appropriate one of the above equations,
or from Table 6.06-1, together with Eq. (6.04-9) and the specified
value of R (see Example 1 of Sec. 6.06). When v, =0 (maximally flat
case), the s reduce to the binomial coefficients. (A general formula

for any n will be given below.)

Range of Validity of First-Order Theory—For a transformer of given
bandwidth, as R increases from unity on up, the r‘ all increase at the
same rate according to the first-order theory, keeping the ratios r‘/rl
constant. Kventually one of the ri would exceed unity, resulting in a
physically impossible situation, and showing that the first-order
theory has bheen pushed too far. To extend the range of validity of the
first-order theory, it has been found advantageous to substitute log V,
for Fi. This substitution,' which appears to be due to W. W. Hansen,!
might be expected to work better, since, first, log V, will do just

as well as Fi when the ri are small compared to unity, as then

1+
1~

i (6.36-11)
i

log Vi = log

= constant X Fi

and, second, log ¥, can increase indefinitely with increasing log R and
still be physically realizable.

The first-order theory generally gives good results in the pass
band when log V. is substituted for [,y provided that R is “small” as
defined by Fq. (6.06-1). (Compare end of Sec. 6.10.)

Example f1—=Design a six-section quarter-wave transformer of
40-percent tandwidth for an impedance ratio of R = 10. [This trans-
former will have a VSWR less than 1,005 in the pass band, from
Eqs. (6.02-8) and (6.02-18) and Table 6.02-1.]

Here (2/0')'/2 = 125, which is appreciably greater than R = 10,
Therefore, we can proceed by the first-order theory, From Table 6,06-1,

[P
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log V, :log V,:1l0g V :log V, = 1:5.4270:12.7903:16.7247

log V, log V, 1
- - 0.01813
log R 1 .
og 3 logV, 55.1593
=]
Since log R = log 10 = 1,
Vl ] V7 = antilog (0.01813) = 1.0426
V2 - V6 = antilog (5.4270 x 0.01813) = 1,254
V3 = Vs = antilog (12.7903 x 0.01813) = 1,705
and
V‘ = antilog (16.7247 x 0.01813) = 2,010
Hence
Zl =V, = 1.0426
Z, = szx = 1.308
Z3 - VSZ2 = 2,228
Z‘ = V‘Z3 = 4.485
Zs = VSZ‘ = 7.65
Z6 = VGZs = 9,60
R = Z7 = V.,Z6 = 10.00

Relation to Dolph-Tchebyscheff Antenna Arrays—VWhen R is small,
numerical solutions of certain cases up to n = 39 may be obtained
through the use of existing antenna tables. The first-order
Tchebyscheff transformer problem is mathematically the same as Dolph’s
solution® of the linear array, and the correspondences shown in
Table 6.06-2 may be aet up.



Table 6,06-2
TRANSFORMER-ARRAY CORRESPONDENCES

TCHEBYSCHEFF TRANSFORMER DOLPH-TCHEBYSCHEFF ARRAY
Firat-order theory Optical diffraction theory
Synchronous tuning Uniform phase (or linear phase taper)
Frequency Angle in space

Transformer Jength Array length

Pass band Side-lobe region

Stop band Main lobe

Reflection coefficient Radiation field

Number of steps (n + 1) Number of elements

H(n,w') Side-lobe ratio

10 loguﬂ Side-lobe level in db

log Vi Element currents, I'.

SOURCE: Quarterly Progress Report 4, Comtract DA 36-039 SC-87398,
SRI; reprinted in JRE Trens. PGNTT (see Ref. 36 by L. Young)

The calulation of transformers from tables or graphs of array

solutions is best illustrated by an example.

Example 2—Design a transformer of impedance ratio R = 5 to have a
maximum VSWR, V_, of less than 1,02 over a 140-percent bandwidth
(vy = 1.4).

It is first necessary to determine the minimum number of sections.
This is easily done as in Example 1 of Sec. 6.02, using Table 6.02-1,
and is determined to be n = ]11.

Applying the test of Eq. (6.06-1)

()"

whereas R is only 5, and so we may expect the first-order theory to
furnish an accurate design.

The most extensive tables of array solutions are contained in
Ref. 19. (Some additional tables are given in Ref. 20.) We first work
out ¥ from Eqs. (6.02-8), (6.02-18), and (6.02-16), and find ¥ = 8000.

Hence the side-lobe level is

10 log, ¥ = 39.0db .

aw



From Table II in Ref, 19, the currents of ann + 1 = 12 element array

of side-lobe level 39 db are respectively proportional to 3,249, 6.894,
12.21, 18.00, 22.96, 25.82, 25.82, 22.96, 18.00, 12.21, 6.894, and

3.249. Their sum is 178.266. Since the currents are to be proportional
to log V,, and since R = 5, log R = 0.69897, we multiply these currents by
0.69897/178.266 = 0,00392]1 to obtain the log V‘ . Taking antilogarithms
yields the V, and, finally, multiplying yields the Z, (as in Example 1).
Thus Zo through R are respectively found to be 1.0, 1,0298, 1.095R5,
1.2236, 1.4395, 1.7709, 2.2360, 2.8233, 3.4735, 4.0861, 4.5626, 4.8552,
and 5,0000, The response of this transformer is plotted in Fig. 6,06-1,

and is found to satisfy the specifications almost perfectly,

In antenna theory, one is usually not interested in side-lobe ratios
in excess of 40 db; this is as far as the antenna tables take us. Only
fairly large bandwidths can be calculated with this 40-db limit, For

"7 T T T T 1 T
16 -
s =
1af- .
x
3
|4
14— -
ve}- =
- -
10 i 1 N i 1 .
o 0z o4 06 o8 10 2 . 0 e 20

NORMALIZED FREQUENCY

SOURCE: Quarterly Progress Report 4, Contract DA 36-039 SC-87398, SRI;
reprinted in /RE Trans. PGMTT (See Ref. 36 by L.. Young)

FIG. 6.06-1 ANALYZED PERFORMANCE OF TRANSFORMER
DESIGNED IN EXAMPLE 2 OF SEC. 6.06



example, Table 6.02-1 shows that for n = 2 this limits us to

v, >0.18; for n = 4, to v, > 0.67; for ne 8, tow >1,21; and
for n = 12, to w, > 1.52. A general formula for all cases has been
given by G. J. Van der Maas,? which becomes, when adapted to the

transformer,

r i=2 /vl =g\ /i 2
i n
— o — cilr+l)
r, nt ] - r+ r
r=0

(6.06-12)

a
for 2 £ i< (n/2) t 1, where ¢ is given by Eq. (6.06-2), and (b) are

the binomial coefficients

a\, __a (6.06-13)
b b!'(a = b)!?

SEC. 6.07, APPROXIMATE DESIGN FOR UP TO MODERATELY LARGE R

Vodified First-Order Theory—In Sec. 6.06 a first-order theory was
presented which held for "“small’ values of R as defined by Eq. (6.06-1).
In Sec. 6.09, there will be presented formulas that hold for “large’
values of # as defined by Fq. (6.09-1). This leaves an intermediate
region without explicit formulas. Since exact numerical solutions for
maximally flat transformers of up to eight sections have heen tabulated
(Tables 6 05-1 and 6.05-2), these might be used in conjunction with
either the “small RB" or the "large R" theories to extend the one upward
or the other downward in B, and so obtain more accurate solutions for
Tchebyscheff transformers with K in this intermediate region. This idea
is applied here to the first-order (“small k') theory only, as will be
explained. 1Tt extends the range of the first-order theory from the
upper limit given by Fq. (6.06-1) up to “moderately large” values of R
as defined by

2\ n
R <<_) (6.07-1)

289



and gives acceptable results even up to the square of this limit,

w
L}

9 2a
R < <._.> . (6.07-2)
(Compare with Eqs. (6.06-1) and (6.09-1).] Of course, when R is less
than specified by Eq. (6.06-1), there is no need to go beyond the
simpler first-order theory of Sec. 6.06.

The first step in the proposed modification of the first-order
theory is to form ratios of the F‘, which will be denoted by ¥,, with
the property that

/ Fi F‘
e Yo |0 (6.07-3a)
s T, 5T
is] i=) ¢
Tehebysehef f maximally flet
transformer transformer

The 7, are functions of n (the same n for both transformers) and w
(the bandwidth of the desired Tchebyscheff transformer). The

9

substitution of log ¥V,  for I", will again be used, and therefore :é:ri
is replaced by log H, according to Eq. (6.04-10). If now we choose

R to be the same for both the Tchebyscheff transformer and the
corresponding maximally flat transformer, then Eq. (6.07-3) reduces to

l V . = X V ) . .
(log ¢ ?I'ehcbylcheﬂ 7'( log ' Zuinlly flat (6.07-3b)
transformer transformer

The modification to the first-order theory now consists in using the
exact log Vi of the maximally flat transformer where these are known
(Tables 6.05-1 and 6.05-2). The ¥, could be obtained from Eq. (6.07-3)
and Table 6.06-1, but are tabulated for greater convenience in
Table 6.07-1. The numbers in the first row of this table are, by
definition, all unity, The application of this table is illustrated
by an example given below.



Range of Validity of the Modified First-Order Theory—The analyzed
performance of a first-order design, modified as explained ahove and
to be illustrated in Example |, agrees well with the predicted
performance, provided that R satisfies Eq. (6.07-1) or at least
Eq. (6.07-2). (In this regard, compare the end of Sec. 6.10.)

As a rough but useful guide, the first-order modification of the
exact maximally flat design generally gives good results when the
pass-band maximum VSWR is less than or equal to (1 ¢ wz), where w
is the equal-ripple quarter-wave transformer bandwidth [Eq.(6.02-1)).

By definition, it becomes exact when v, 0.

Example 1-—1In Example 1 of Sec. 6.02, it was shown that a quarter-
wave transformer of impedance ratio A = 100, fractional bandwidth v = 1.00,
and maaimum pass-band VSVYR of less than 1.15 must have at least six
sections (n = 6). Calculate the normalized line impedances, Z, of this
quarter-wave transformer. Predict the maximum pass-band VSVR, l;. Then,
also find the bandwidth,u%,
corresponding half-wave filter.

and normalized line impedances, Z;,of the

First, check that R is small enough for the transformer to be
solved by a first-order theory. Using Eq. (6.06-1),

2 n/2
(-—-) = 23 .« 8 (6.07-4)

Therefore the unmodified first-order theory would not be expected to
give good results, since R = 100 is considerably greater than 8.
Using Eqs. (6.07-1) and (6.07-2),

(G e

> (6.07-5)

i)
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Therefore the modified first.order theory should work quite well,
slthough we may expect noticeable but not excessive deviation from
the desired performance since R = 100 is slightly greater then
(2/wg)" = 64.

From Table 6.05-1 and Fig. 6.02-1, or from Table 6.05-2 and
Eq. (6.05-1), it can be seen that a maximally flat transformer of
six sections with R = 100 has

V1 . V, = 1.094 log V‘ = 0,0391

V, = ¥, = 1.610 log ¥, = 0.2068
(6-07.6)

V. . Vs = 2,892 log V, = 0.4612

V., = 3.851 log V, = 0.5856

The log VSWRs of the required 100-percent bandwidth transformer are
now obtained, according to Eq. (6.07-3b), multiplying the log Vs in
Eq. (6.07-6) by the appropriate values of ¥ in Table 6.06-2:

-~

log Vl = 0.0391 % 2,586 = 0.1011
log V2 = 0.2068 * 1.293 = 00,2679 (6.07-1)
log V: = 0.4612 © 0,905 =~ 0.4170
log V, = 0.5856 < 0.808 = 0.4733 J
S
V, = V, = 1.262
V, = V. = 1.853
)y (6.07 8)
Vi = ¥, = 2,612
V, = 2.974 J
Now this product V V,...V, equals 105.4, instead of 100. It is

therefore necessary to scale the V, slightly downward, so that their
product reduces to exactly 100. The preferred procedure is to reduce
Vl and V1 by a factor of (100/105.4)1”2whi1e reducing Vz' A

1
by a factor of (100/105.4)'%. (In general, if R’ and R are respectively



the trianl and desired impedance ratios, then for an n-section trans-
3t e vn; and
(B, 00)V2n for V1 and Vn‘l.} It can be shown [see Example 2 of Sec. 6.09

former, the scaling factor is (R/R')l/" for Vz' 12

and iq. (6.09-2)] that this type of scaling, where Vl and Vn+1 are

scaled by the square root of the scaling factor for Vz, eeey ¥V, has

'
as its principal effect a slight increase in bandwidth while l:aving
the pass-lund ripple almost unaffected. Since the approximate
desians generally fall slightly short in bandwidth, while coming very
close to, or even improving on, the specified pass-band ripple, this
method of scaling is preferable, Subtracting 0.0038 from log Vl

and 0,.0076 from the remaining log V‘ in Eq. (6,07-7) gives the new V‘

(6.07-9)

by = ¥V, = 2,566
b, = 2922

and for the corresponding normalized line impedances of the quarter-

wave transformer (Fig., 6.02-1),

Z, = ZV, = 2280

2 12
Z, = Z,V, = 5.850
- ' [ (6.07-10)
i, = 74V, = 17.10
Zo o= 4V, = 43.91
Z, = ZJV, = 19.94

E = %V, = 100.00

We note in passing that the product of the VSWRs before reduction was
105.4 instead of the specified 100. 1 the discrepancy between these
two numbers exceeds about 5 to |0 percent, the predicted performance

will usunlly not be realized very closely, This provides an

wdditional internul check on the accuracy of the design.
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The maximum transducer attenuation and VSWR in the pass band
predicted from Eq. (6,02-16) and Table 6.02-1 are

€ = 0.0025, or 0.011 db .
Therefore by Eq. (6.02-18) , 5 (6.07-11)
v, = 1.106

7/

The computed plot of V against normalized frequency, f, of this
transformer (or against )\‘o/)\‘ if the transformer is dispersive) is
shown in Fig., 6.07-1. The bandwidth is 95 percent (compared to
100 percent predicted) for a maximum pass-band VSWR of 1.11.

"7 T - —_ - T - T
16} .
15k =
14} —
«
-
’d
>
13f- —
ref- -
(1] ol 'l
] . ]
19, 52 + ) %

NORMALIZED FREQUENCY

0-3987 202

SOURCE: Quarterly Progress Report 4, Coriract DA 36-039 SC-87398, SRI;
reprinted in /RE Trans. PGMTT (See Ref. 36 by L. Young)

FIG. 6.07-1 ANALYZED PERFORMANCE OF TRANSFORMER
DESIGNED IN EXANPLE 1 OF SEC. 6.07



(Notice that the response has equal ripple heights with a maximum VSWR
of 1.065 over an 86-percent bandwidth,)

The bandwidth w, of the half-wave filter for a maximum VSWR of
1.11 will be just half the corresponding bandwidth of the quarter-wave
transformer, namely, 47.5 percent (instead of the desired 50 percent).
The normalized line impedances of the half-wave filter are (see
Fig. 6.03-1):

Z, = 1.0 (input) h

z, = vV, = 1251

N
[ ]

s = Zy/V, = 0.6865

N
"

Y= 2,V = 1.764
> (6.07-12)

N
| ]

Zy/V, = 0.604

N
[ ]

P =2V, = 1550

N
]

¢ = Zy/V, = 0.850

Z, =2,V, = 1,065 (output) . )

It should be noticed that the output impedance, Z;, of the half-
wave filter is also the VSWR of the filter or transformer at center

frequency® (Fig. 6.07-1).

In this example it was not necessary to interpolate from the
tables for the V. or Z,. When R is not given exactly in the tables,
the interpolation procedure explained at the end of Sec. 6.04 should
be followed.

SEC 6.08, CORRECTION FOR SMALL-STEP
DISCONTINUITY CAPACITANCES

A discontinuity in waveguide or coaxial-line cross~section cannot
be represented by a change of impedance only--i.e., practical
junctions are non-ideal (see Sec. 6.01). The equivalent circuit for
a small change in inner or outer diameter of a coaxial line can be
represented by an ideal junction shunted by a capacitance,® and the
same representation is possible for an E-plane step in rectangular



waveguide. ¥ This shunt capacitance has only a second-order effect

on the magnitude of the junction VSWR, since it contributes a smaller
component in quadrature with the (already small) reflection
coefficient of the step. Its main effect is to move the reference
planes with real " out of the plane of the junction. Since the
spacing between adjacent and facing reference planes should be one-
quarter wavelength at center frequency, the physical junctions should
be moved the necessary amount to accomplish this, Formulas

have been given by Cohn.! The procedure outlined here is equivalent
to Cohn's formulas, but is in pictorial form, showing the displaced
reference planes, and should make the numerical working of a problem

a little easier. The necessary formulas are summarized in Fig. 6.08-1
wvhich shows the new reference plane positions. The low-impedance end
is shown on the left, the high-impedance end on the right., There are
two reference planes with real " associated with each junction, one
seen from the low-impedance side, and one seen from the high-impedance
side (Fig. 6.08-1). When the two “terminal-pairs' of a junction are
gitusted in the appropriate reference planes, it is equivalent to an
ideal junction. The following results can be shown to hold generally

when the step discontinuity can be represented by a shunt capacitance:

(1) The two reference planes associated with any junction are
both in the higher impedance line (to the right of the
junetion in Fig. 6.08-1).

(2) The two reference planes associated with any junction are
always in the order shown in Fig. 6.08-1--i.e., the
reference plane seen from the higher impedance line is
nearer to the junction.

{3) As the step vanishes, both reference planes fall into
the plane of the junction,

(4) The reference plane seen from the higher impedance line
(the one nearer to the junction) is always within one-
eighth of a wavelength of the junction. (The other
reference plane is not so restricted.)

The spacing between junctions is then determined as shown in Fig. 6.08-1.
It is seen that the 90-degree lengths overlap, and that the separation
between junctions will therefore generally be less than one-quarter
wavelength, although this does not necessarily always hold (e¢.g., if

%1 2 Xy

an
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FIG. 6.08-1 LENGTH CORRECTIONS FOR DISCONTINUITY CAPACITANCES

Example {—Design a transformer from 6.5- by 1.3-inch rectangular
waveguide to 6.5- by 3.25-inch rectangular waveguide to have a VSWR
less than 1,03 from at least 1180 to 1430 megacycles.

Here R = 2.5

K‘, = 15,66 inches , K.z = 10,68 inches

From Eq. (6.02-2),

A
s 3,17 inches ,

K'o = 12.68 inches , and
while Eq. (6.02-1) gives v = 0.38. From Tables 6.02-3 and 6.02-4,
it can be seen that at least three sections are needed. We shall
select v, - 0.50, which still meets the specification that the pass-band
VSWR be less than 1,02 (see Table 6.02-4). From Table 6.04-2, the
b dimensions of such a transformer are



b, = 1.300 inches
b, = 1.479 inches
b, = 2,057 inches
b, = 2.857 inches
b, = 3.250 inches .

Make all the steps symmetrical (as in Fig. 6.08-2), since in this case
the length corrections would be appreciable if the steps were unsym-

metrical.

SECTIONS:

is0 [ 2 3 4
JUNCTIONS:

el 2 3 4
e

WAVEGUIDE T
HEIONTS: 'Eh. 1479 in. 2057in.  2.0687ia. 3.2%0 .

WAVEGUIOE WIDTH ¢ 6.500 in.
4-3927-303

FIG. 6.08-2 SOLUTION TO EXAMPLE 1 OF SEC. 6.08 ILLUSTRATING
LENGTH CORRECTIONS FOR DISCONTINUITY
CAPACITANCES
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Now make up a table as follows:

SECTION OR JUNCTION NO.
(see Fig. 6.08-2)

QUANTITY 7 5 3 "
b/A, 0.117 | 0.162 ]0.225 | 0.256
bo/bs = Yi/Y o 0.88 | 0.72 [0.72 |o0.88

R.A
<T’-‘ Zi) (from Figs. 5,07-10 and -11) | 0.06 0,26 0.26 0.06

By/Y; 0.007 | 0,0421 |0.0585 | 0.0154
B'./Y',] 0.0062 0.0303 | 0.0421 | 0.0135
B/Y ey 0.052 | 0,208 {0,150 | 0.113
—— : i
1-Y./Y,

B./Y o !

vt 0.0033 | 0,0176¢ | 0.0245 | 0.0072

1+ )",’Y‘_l i
X electrical degrees 1.59 ! 3,60 5,00 3.45
* (from Fig. 6.08-1)
x. electrical degrees

i (from Fig. 6.06-1) 1.40 2,59 3.60 3.03
(X“_l - x,) electrical degrees 2.20 2.41 =0.15
L
£ K.y = x,) inches 0.077 0.085 =0, 005
360 ' '

The last line subtracted from 3,17 inches gives the section
lengths. The first two sections are somewhat-shorter than one-quarter
wavelength, while the third section is slightly longer. The final

dimensions are shown in Fig. 6.08-2.

SEC. 6.09, APPROXIMATE DESIGN ¥HEN R IS LARGE

Theory~Riblet's procedure,’ while mathematically elegant and
slthough it holds for all values of R, is computationally very
tedious, and the accuracy required for large R can lead to difficulties
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even with a large digital computer, :Collin's formulas? are more
convenient (Sec, 6.04) but do not go beyond n = 4 (Tables 6.04-1 to
6.04-8). Riblet’s procedure has heen used to tabulate maximally
flat transformers up ton = 8 (Tables 6.06-1 and 6.06-2). General
solutions applicalle only to “small H'" have heen given in Secs. 6.06
and 6.07, and are *abulated in Tables 6.06-1 and 6.07-1. In this
part, convenient formulas will be given which become exact only

when B 18 “large,’” as defined by

v
q

2 n
R > <——> . (6.09-1)
These solutions are suitable for most practical filter applications

(but not for practical transformer applications). [Compare with
Eqs. (6.06-1) and (6.07-2).]

For “large R" (or small w,), stepped impedance transformers and
filters may be designed from low-pass, lumped-constant, prototype
filters (Chapter 4) whose elements are denoted by g, (¢ = 0, 1,

n * 1).* The transformer or filter step VSWRs are obtained from

4 808,%) 1
Vl . Vﬂ.l . 02171
oW
q
2
, 16 “1 . (
v‘ " —— —— g, ,8;  vhen 2 S i<n (6.09-2)
n?  w?
q
(Vi large, w, small) J

where w; is the radian cutoff frequency of the low-pass prototype and
v, is the quarter-wave transformer fractional bandwidth [given by

Eq. (6.02-1) for Tchebyscheff transformers and Eqs. (6.02-9) or (6.02-10)
for maximally flat transformers]. Again, the half-wave filter band-
width, v, , is equal to one-half v, [Eq. (6.03-3)] .

‘NO“: Hete it is assumed that in the prototypes defined in Fig, 4,041 the eirenis is
symmetric or antimetric (see Sec. 4.05).
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The V‘ and F‘ are symmetrical about the center in the sense of
Eqs. (6.04-8) and (6.04-9), when the prototype is symmetrical or
antimetrical as was assumed.

With Tables 4.05-1, 4.05-2, 4.06-1, 4,06-2, ana 4.07-1,
it is easy to use Eq. (6.09-1). One should, however, always verify
that the approximations are valid, and this is explained next,
Procedures to be used in borderline cases, and the accuracy to be

expected, will be illustrated by examples.

Range of Validity—The criteria given in Fgs. (6.06-1) and (6.07-1)
are reversed. The validity of the design formulas given in this part
depends on R being large enough., It is found that the analyzed perfor-
mance agreces well with the predicted performance (after adjusting R,
if necessary, as in Examples 2 and 3 of this section) provided that
Lq. (6.09-1) is satisfied; R should exceed (2/w )" by preferably a
factor of about 10 or 100 or more. (Comparec end of Sec. 6.10.) The
ranges of validity for “small R and “large R’ overlap in the region
between Egs. (6.07-2) and (6.00-1), where both procedures hold only
indifferently well, (Sece Example 3 of this section.)

For the maximally flat transformer, Eq. (6.09-1) still applies

fairly well, when ¥, 34b 18 substituted for v

As a rough but useful guide, the formulas of this section generally
result in the predicted performance in the pass Land when the pass-band
maximum VSWR exceeds about (] * w:). This rule must be considered
indeterminate for the maximally flat case (w, = 0), when the following
rough generalization may be substituted: The formulas given in this
section for maximally flat transformers or filters generally result in
the predicted performance when the maximally flat quarter-wave trans-
former 3-db fractional bandwidth, Yo 3dbr is less than about 0.40."

The half-wave filter fractional bandwidth, W, y4pr MUSL, of course, be
less than half of this, or 0,20,

After the filter has been designed, a good way to check on whether
it is likely to perform as predicted is to multiply all the VSWRs,
V,V,...V 4, and to compare this product with R derived from the per-
formance specifications using Table 6.02-1 and Eq. (6.02-13). If they

.
Larger 3-db {ractional bandwidths can be designed accurately for small an , for example up to
sbout ¥4, 3db ® 0.60 for n = 2,
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agree within a factor of about 2, then after scaling each V so that
their VSYR product finally equals R, good agreement with the desired
performance may be expected.

Three examples will be worked out, illustrating a narrow-band and
s wide-band design, and one case where Eq. (6.09-1) is no longer
satisfied.

Example 1—Design a half-wave filter of 10-percent fractional
bandwidth with s VSWR ripple of 1.10, and with at least 30-db

attenuation 10 percent from center frequency.

Here v, = 0.1, ~ w = 0.2. A VSWR of 1.10 corresponds to an
insertion loss of 0.01 db. From Eqs. (6.03-12) and (6.03-10), or
{(6.02-17) and (6.02-12),

v,
Ky = sin - " sin 9° = 0,1564

At 10 percent from center frequency, by Eq. (6.03-11),

' sin 6’ sin 172° 1975
@] ™ 0.1564 :

From Fig. 4.03-4, a 5-section filter would give only 24.5 db at a
frequency 10 percent from band center, but a six-section filter will
give 35.5 db. Therefore, we must choose n = 6 to give at least 30-db
attenuation 10 percent from center frequency.

The output-to-input impedance ratio of a six-section quarter-wave
transformer of 20-percent fractional bandwidth and 0.01-db ripple is
given by Table 6.02-1 and Eq. (6.02-13) and yields (with S' = 0.0023
corresponding to 0.01-db ripple)

R = 4,08 x 100 | (6.09-3)

Thus R exceeds (2/w )" by a factor of 4 x 104, which by Eq. (6.09-1)
is ample, 30 that we can proceed with the design.



From Table 4,05-2(a), for n = 6 and 0.01-db ripple (corresponding
to a maximum VSWR of 1,10), and from Eq. (6.09-2)

Vl - V7 [ 4.98
Vv, = V. = 43,0

2 ¢ (6.09-4)
V3 - Vs = 92.8
V‘ = 105.0

This yielded the response curve shown in Fig. 6.09-1, which is very
close to the design specification in both the pass and stop bands.
The half-wave filter line impedances are

z; = 1.0 (input) )

2! - V, = 4.98

Z, = Zyv, = 0.1158

2! = Z'V. = 10.74

f f 3 > (6.09-5)

Z, = 2}V, = 0.1023

Z, = 2.V, = 9.50

z, = 2y/¥, = 0.221

Z; . Z; V7 . 1.10 (onutput) )

Note that Z, = 1.10 is also the VSWR at center frequency
(Fig. 6.09-1).

The correspunding quarter-wave transformer has a fractional

bandwidth of 20 percent; its line impedances are

z, = 1.0 C(input) ]
Z = V, = 4.98
zZ, =2V, = 2,14 x10%
z, =zy, = 1.987 x 10%  (6.09-6)
zZ, =2z,V, = 2.084 x 10°
zZ, =2V, = 1.9315%10°
Z, =2y, = 8.30 x10°
R = 2z, =2V, = 4,135 x 10!° (output) g
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which is within about 1% percent of R in Eq. (6.09-3). Therefore we
would expect an accurate design, which is confirmed by Fig. 6.09-1.
The attenuation of 35.5 db at f = 1,1 is clso exactly as predicted.

Example 2—=1It is required to design a half-wave filter of 60-percent
bandwidth with a 2-db pass-band ripple. The rejection 10 percent
beyond the band edges shall be at least 20 db.

Here w, = 0.6, - w, * 1.2. As in the previous example, it is
determined that at least six sections will be required, and that the

rejection 10 percent beyond the Land edges should then be 22.4 db.

From Eq. (6,02-13) and Table 6.02-1 it can be seen that, for an
exact design, R would be 1915; whereas (2/w’)" is 22. Thus R exceeds
(2/wq)” by a factnor of less than 100, and therefore, by Eq. (6.09-1),
we would expect only a fairly accurate design with a noticeable
deviation from the specified performance. The step VSWRs are found
by Eq. (6.09-2) to be

Vv, = ¥, = 3.028
v, = Vv, = 2.91
2 6 (6.09-7)
v, = ¥, = 3.93
V, = 4.06

Their product is 4875, whereas from Eq. (6.02-13) and Table 6.02-1,

R should be 1915. The ¥ must therefore be reduced. As in Example 1
of Sec. 6.07, we shall scale the V, so as to slightly increase the
bandwidth, without affecting the pass-band ripple. Since from

Eq. (6.09-2) V, and V_,, are inversely proportional to v whereas
the other (n = 1) junction VSWRs, namely V,, V,, ... ¥
proportional to the square of v, reduce ¥, and ¥V, by a factor of

.+ are inversely

1/2a 1/12
(izlé) = (121§) = 0.9251 ,
4875 4875

and V, through Vg by a factor of



(1915) 1/n (1915 ) 1/6 0.8559
4875 4875 ‘

(Compare Example 1 of Sec. 6.07.) This reduces R from 4875 to 1915.
Hence,

V, = VvV, = 2.803
Vo = Vg, = 2,486
6.09-
V, = Vg = 3.360 (6.09-8)
Vv, = 3.470
The half-wave filter line impedances are now
Z, =~ 1.0 (input) 3
Z, = 2.803
Z, = 1.128
Z, = 3.788
, > (6.09-9)
Z, = 1.092
Z, = 3.667
Z, = 1.475
Z; = 4.135 (output) . J

Since the reduction of R, from 4875 to 1915, is a relatively large
one, we may expect some measurable discrepancy between the predicted
and the analyzed performance. The analyzei performances of the designs
given by Eqs. (6.09-7) and (6.09-8), before and after correction for
R, are shown in Fig. 6.09-2. For most practical purposes, the agreement
after correction for R is quite acceptable. The bandwidth for 2-db
insertion loss is 58 percent instead of 60 percent; the rejection is
exactly as specified.

Discussion—The half-vave filter of Example 1 required large
impedance steps, the largest being V, = 105. It would therefore be
impractical to build it as a stepped-impedance filter; it serves,
instead as &« prototype for a reactance-coupled cavity filter (Sec. 9.04).
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FIG. 6.09-2 ANALYZED PERFORMANCE OF TWO HALF-WAVE FILTERS
DESIGNED IN EXAMPLE 2 OF SEC. 6.09

This is typical of narrow-band filters. The filter given in the second
example, like many wide-band filters, may be built directly from

Eq. (6.09-9) since the largest impedance step is Vo = 3.47 and it

could be constructed after making a correction for junction discontinuity
capacitances (see Sec. 6.08). Such a filter would also be a low-pass
filter (see Fig. 6.03-2). It would have identical pass bands at all
harmonic frequencies, and it would attain its peak attenuation at
one-half the center frequency (as well as at 1.5, 2.5, etc., times

the center frequency, as shown in Fig. 6.03-2). The peak attenuation
can be calculated from Eqs. (6.02-8) and (6.09-3). In Example 1 of
Sec. 6.09 the peak attenuation is 100 db, but the impedance steps are
too large to realize in practice. In Example 2 of Sec. 6.09 the
impedance steps could be realized, but the peak attenuation is only

27 db. Half-wave filters are therefore more useful as prototypes for
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other filter-types which are easier to realize physically. If shunt
inductances or series capacitances were used (in place of the impedance
steps) to realize the V, and to form a direct-coupled-cavity filter, then
the attenuation below the pass band is increased and reaches infinity at
zero frequency; the attenuation above the pass band is reduced, as com-
pared with the symmetrical response of the half-wave filters (Figs. 6.09-1
and 6.09-2). The derivation of such filters from the quarter-wave trans-

former or half-wave filter prototypes will be presented in Chapter 9.

Example 3—~This example illustrates a case when neither the first-
uvrder theory (Sec. 6.06) nor the method of this part are accurate, but

both may give usable designs. These are compared to the exact design.

It is required to design the best quarter-wave transformer of four
sections, with output-to-input impedance ratio f = 31.6, to cover a
fractional bandwidth of 120 percent.

Here n = 4 and v, " 1.2. From Eq. (6.02-13) and Table 6.02-1, the
maximum VSWR in the pass band is 2.04. Proceeding as in the previous
example, and after reducing the product V V,...V, to 31.6 (this required
a relatively large reduction factor of 4), yields Design A shown in
Table 6.09-1. Its computed VSWR is plotted in Fig. 6.09-3 (continuous
line, Case A).

Table 6.09-1

Si R " t
ince R exceeds (2/w') by s factor of THE THREE DESIGNS OF EXAMPLE 3

only 4 [see Eq. 6.09-1)], the first-order

procedure of Sec. 6,07 may be more appro- A="Large R” Approximstion.
B—"Saall A" Approximsation.

priate. This is also indicated by C—Exact Desi
——Exact Design.

Eq. (6.07-2), which is satisfied, although

Eq. (6.07-1) is not. Proceeding as in . " .
Sec. 6. i Desi ,

Example 1 of Sec. 6.07 yields esu‘zn B vy = ¥, | L.ese | 1700 | 1.9%

shown in Table 6.09-1 and plotted in v. =v. | 2.028 | 2.001 | 1.988

Fig. 6.09-3 (dash-dot line, Case B). Vs 2.800 | 2.289 | 2.140

DESIGN

In this example, the exact design can SOURCE: Quarterly Progreas Report 4,
Contract DA 36-039 SC-87398,

also be obtained from Tables 6.04-3 and SRI; repriated in IRE Trens.
PGNTT (oee Rof. 36 by
6.04-4, by linear interpolation of log V L. Young)

against log R. This gives Design C shown in
Table 6.09-1 and plotted in Fig. 6.09-3 (broken line, Case C).

Designs A and B both give less fractional bandwidth than the
120 percent asked for, and smaller VSWR peaks than the 2.04 allowed.
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FIG. 6.09-3 ANALYZED PERFORMANCE OF THREE QUARTER-WAVE
TRANSFORMERS DESIGNED IN EXAMPLE 3 OF SEC. 6.09

The fractional bandwidth (hetween V = 2,04 points) of Design A is

110 percent, and of Design B is 115 percent, and only the exact equal-
ripple design, Design C, achieves exactly 120 percent, It is rather
astonishing that two approximate designs, one based on the premise

R = 1, and one on R = ®, should agree so well.

SEC. 6.10, ASYMPTOTIC BEHAVIOK AS R TENDS TO INFINITY

Formulas for direct-coupled cavity filters with reactive discon-
tinuities are given in Chapter 8. These formulas become exact only in
the limit as the bandwidth tends to zero. This is not the only
restriction. The formulas in Secs. 8.05 and 8.06 for transmission-line

filters, like the formulas in Eq. (6,09-2), hold only when Eq. (6.09-1)

or its equivalent is satisfied. [Define the V. as the VSWRs of the

reactive discontinuities at center frequency; R is still given by
Eq. (6.04-10); for w_in Eq. (6.09-1), use twice the filter fractional
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bendwidth in reciprocal guide wavelength.] The varistion of the V‘

with bandwidth is correctly given by Eq. (6.09-2) for small bandwidths.
These formulas can be adapted for design of both quarter-wave transformers
and half-wave filters, as in Eq. (6.09-2), and hold even better in this
case than when the discontinuities are reactive. [This might be

expected since the line lengths between discontinuities for half-wave
filters become exactly one-half wavelength at band-center, whereas

they are only approximately 180 electrical degrees long in direct-coupled
cavity filters (see Fig. 8.06-1)].

Using Eq. (6.09-2) and the formulas of Eqs. (4,05-1) and (4.05-2)
for the prototype element values g, (i = 0, 1, 2,...,n, n *+ 1), one
can readily deduce some interesting and useful results for the V‘ as
R tends to infinity., One thus obtains, for the junction VSWRs of
Tchebyscheff transformers and filters,

i (2&-3” “in 2;‘-1”)
. 8 \? " 2n 2n
Al!m Vo = <-r;> it -1
’ sin? ( a
n
2t - 3 . 2t = 1
(4)2 nn( on r) un( o a
mo, vint (i -1 ”) >
n (6.10-1)
. 2
. n 2 - sin 5_
(”'h) . <t -1 )
sin - n
(i = 2, 3, y ) )
The quantity
v, 2
vi lin (V) = (-2—) Lim (V,) (6.10-2)
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is tabulated in Table 6.10-1 for i = 2, 3, ..., n and for
ne 2 3, ..., 14.
Table 6.10-1
Uq 2
TABLE OF (-—) lim (V) FOR SMALL »
2 Aot q

[Vi * Vn*!‘i]
i=2 i= ) [} i=$ is 6 i=T7 i=8
0.81056
1,08075

1,14631 |1.38372
1,17306 [ 1.44999
1.18675 | 1.47634 | 1.51254
1.19474 | 1.48981 | 1, 53668
1.19981 |1.49773 | 1.54885 | 1.55943
1.20325 | 1.50282 | 1.555%6 | 1.57073
10 [1,20568 | 1.50631 { 1.56052 | 1.57727 | 1.58146
11 [1.20747 [ 1.50880 | 1.56365 | 1.58145 | 1.58762
12 11.20882 | 1.51066 | 1.56589 | 1.58431 {1.59153 {1.59351
13 11.20987 | 1.51207 | 1.56757 | 1.58636 {1.59419 |1.59723
14 11.21070 | 1.51318 | 1.56886 | 1.58789 |1.59610 |1.59975 |1.60081

SOURCE: Quarverly Progress Report 4, Contrsct DA 36-039 SC-87398, SRI;
reprinted in IRE Trans. PGMTT (see Ref. 36 by L. Young)

O om0t ew Nl

We notice that for Tchebysrheff transformers and filters, the
V(i #1, n+ 1) tend to finite limits, and thus ¥V, = V ., tend to a
constant times R!/2, We also see that

16
viv, < — ¢ L6215 (i=2 3 ... n) (6.10-3)
n

for all n, and tends to 16/72 only in the limit i = n/2 = ®-

For maximally flat transformers, the ¥V, all tend to infinity with
R, but the quantities

p (6.10-4)




tend toward finite limits given by

N
lim A, = 2o(»=1)/n 4ip n
peo ! o
(6. 10-5)
lim A, = 22(s=1)/n i (2!'. -1 ”)'in <2t -3 ”>
e 2n 2n
(if1, n+l) ‘
from which we see that
S\
1/2n
4"
Vl - Vu#] <( R )
} (6.10-6)
4,‘_1 1/n
V(<<_") ("‘l,n+1)
J

for all n. They tend toward the values on the right hand side only in

the limit ¢ = n/2 = ©,

To show how a typical V. approaches its asymptotic value, the
exact solution for V, when n = 4 is plotted in Fig. 6.10-1 for all
fractional bandwidths w_in steps of 0.20. It is seen that each
curve consists of two almost linear regions with a sharp knee joining
them. In the sloping region above the origin (‘“small R"), the
approximations of Sec. 6.06 or 6.07 apply; in the horizontal region
(“large R”), the approximations of Sec. 6.09 apply. These two sets
of approximations probably hold as well as they do because the knee

region is so small.

The exact asymptotic values of in‘ = (v'/2)2V( are plotted against
w,in Fig. 6.10-2. If Eq. (6.10-1) were exact instead of approximate,
then all of the curves would be horizontal straight lines. As it is,
Eq. (6.10-1) gives the correct value only on the v 0 axis, As the
bandwidth increases, D:V‘ departs from the value at w = 0 slowly at
first, then reaches a minimum, and finally all curves pass through unity
at v = 2 (v, = 1).The values of (v'/z)’V‘ atw - Oup ton =8 are
also shown in Fig. 6.10-2. (They can be obtained more accurately
from Table 6.10-1.) They all lie below the value 16/7% = 1,62115, and
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may be expected to exhibit the same sort of general behavior as do the
curves up ton = 4, for which the exact solutions were obtained from
Eqs. (6.04-4) to (6.04-6).

The asymptotic valuea of the V, for i = 2, 3, ..., n, and for a
given fractional bandwidth, are seen to be fairly independent of n, on
examination of Eq. (6.10-1), Table 6.10-1, or Fig. 6.10-2. It follows
that the same is true of Vl//ﬁ a Vnox//ﬁ‘ Thus, as R increases indefi-
nitely, so do Vl and Vn,l; on the other hand for “small R,” Vf and
Vztl are less than the other V, (not squared) for small and moderately
wide fractional bandwidths (up to about 100-percent bandwidths, by
Table 6.06-1). If we assume that in the knee region (Fig. 6.10-1)

Vf ) Vz*, are of the order of the other Vi, then in the knee region
R is of the order of (Vi)“, for any ¢ ¥ 1, n + 1. From Eq. (6.09-2),
R is therefore inversely proportional to (const., X wqf". and from the
previous remarks this constant of proportionality is reasonably
independent of n. Using Fig. 6.10-1 for example, the constant is
very close to the value 4. This leads to the magnitude formulas of
Eqs. (6.06-1), (6.07-1), (6.07-2), and (6.09-1), which have been
confirmed by numerous sample solutions.

SEC. 6.11, INHOMOGENEOUS WAVEGUIDE QUARTER-WAVE
TRANSFORMERS OF ONE SECTION

Inhomogeneous transformers were defined in Sec. 6.01. They
come about, for instance, when rectangular waveguides having different
‘a’ dimensions are cascaded; or when rectangular waveguides are
combined with ridged, circular, or other types of waveguide; or when

the materials of an optical multi-layer are not uniformly dispersive.

At first, only ideal waveguide transformers will be considered.
The junction effects in non-ideal transformers can be compensated
by adjusting the lengths as in Sec. 6.08, except that the step
discontinuity effects cannot usually be represented by a shunt
capacitance alone. Only very limited information on waveguide junctions
(other than E-plane steps) is available,??and for large steps the
designer may have to make individual meas.rements on each junction.

The notation for an inhomogeneous quarter-wave transformer of one
section is shown in Fig. 6.11-1.
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To obtain zero reflec- ELECTRICAL

[
tion at center frequency LENGTH. r— —

(where the section length

18 one-quarter guide- IMPEDANCES:

ici z 4 2,2
wavelength) a sufficient JUNCTION 0 ' 2*RZ,
condition is that VESWR's: v v
REFLECTION ' !
COEFFICIENTS: r r
]

zZ, = (Zozz)A (6.11-1) CUTOFF ' !

WAVELENGTHS:
Aco Aet L Y

GUIDE

h zZ,, 2. 2 WAVELENGTHS:

where Z, 1 and , are Ao ro Agr

the characteristic imped-

) IF RECTANGULAR WAVEGUIDE
ances of the input wave-

guide, the transformer 1; I %. b, AND by, RESPECTIVELY
section, and the output -—

waveguide, respectively 6. o, AND oy, RESPECTIVELY N
(Fig. 6.11-1). For a

homogeneous transformer FIG. 6.11-1 INHOMOGENEOUS QUARTER-WAVE

Eq. (6.11-1) determines the TRANSFORMER OF ONE SECTION

design completely, since

the three cutoff wavelengths

are the same (X‘o = Ael = Agz); in the case of rectangular waveguide,
the three wide dimensions are then equal (a; = a, = a,) . However,
even when a homogeneous transformer is possible, that is, when

A = A__, we may prefer to make Ac different, and thus choose to

e0 e2 1
make the transformer inhomogeneous. This gives an extra degree of
freedom, which, it turns out, can always be used to: (1) lower the
VS¥K near center frequency, and simultaneously (2), shorten the

transformer.

When A _, and A_, are not equal, an inhomogeneous transformer results
of necessity, For a match at center frequency, Eq. (6.11-1) still holds,
but there are an infinity of possible cutoff wavelengths, hel {equal to
2a, for rectangular waveguide). This general case will now be considered.
(If a homogeneous transformer is required, then A_, can be set equal
to A, at any stage.)
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It can be shown® that the excess loss [see Eq. (6.02-5)) is given by

[(P, =T.)2 + 4" T, cos?2 8] . (6.11-2)
T’T’ 2 1 1 2
1° 2

For no attenuation at center frequency (¢ = 7/2), it is only necessary
that Fl - rz' which is equivalent to Eq. (6.11-1). Minimizing the
frequency variation of £ at center frequency, leads for both TE and T™
modes to:

A2+ A2
1 g0 82
)\:l 2 — :
- 2
1+(Z) (z, - %) (6.11-3)
4
2220
Note that
1
2 —_ 2 2
(K.l ,,‘_) < > (K'o + K.z) (6.11-4)
and that further, if Ao * Aez.
)\el opt. > )\eo - )‘ez . (6.11-5)

Therefore, one can always improve upon a homogeneous transformer

Ay = Ay = A,,). The computed VSWR against normalized wavelength of
three transformers matching from a, = 0.900 in., bo = 0,050 in., to

a, = 0.900 in., b, = 0.400 in. waveguide, at a center frequency of

7211 megacycles (A, = 1.638 in.) is shown in Fig. 6.11-2 for transformer
guide widths of a; = 0.900 in. (homogeneous), a, = 0.990 in., and

@, = 1.90 in. (optimum). Beyond this value the performance deteriorates
again. The performance changes very slowly around the optimum value.

It is seen that for the best inhomogeneous transformer (al = 1.90 in.),
the VSWR vs. frequency slope is slightly better than 45 percent of that
for the homogeneous transformer. Moreover a, is so uncritical that it
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FIG. 6.11-2 VSWR AGAINST WAVELENGTH OF THREE QUARTER-
WAVE TRANSFORMERS OF ONE SECTION, ALL FROM
0.900-INCH BY 0.050-INCH WAVEGUIDE TO 0.900-INCH
BY 0.400-INCH WAVEGUIDE. CENTER
FREQUENCY = 7211 Mc

may be reduced from 1.90 in. to 1.06 in. and the improvement remains
better than 50 percent. This is very useful in practice, since a,
cannot be made much greater than a, or a, without introducing higher-

order modes or severe junction discontinuities.

The example selected above for numerical and experimental investi-
gation has a higher transformer impedance ratio (R = 8), and operates
considerably closer to cutoff (A;/A, = 0.91), than is common. In such
a situation the greatest improvement can be obtained from optimizing
a,. In most cases (low R and low dispersion) the improvement ohtained
in meking the transformer section less dispersive than that of a
homogeneous transformer will only be slight. This technique, then, is
most useful only for highly dispersive, high-impedance-ratio transformers.

Table 6.11-1 connects (K/X') with (K‘/K), and is useful in the

solution of inhomogeneous transformer problems.

To compensate for the junction effects, we uote that a non-ideal
junction can always be represented by an ideal junction, but the no. -ideal
junction’s reference planes (in which the junction reflection coefficient
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" is real) are no longer in the plane of the junction. This can be
compensated for E-plane steps, as explained in Sec. 6,08. In compound
junctions involving both E-plane and H-plane steps, if the junction
discontinuities of these steps are small enough, they may be treated
separately of each other using the junction data in Marcuvitz;?3 the
two corrections are then superimposed. In most cases, fortunately,
these two corrections tend to oppose each other; the shunt inductance
effect of the Heplane step partly cancels the shunt capacitance effect
of the E-plane step. When for a rectangular waveguide operating in
the TE, ; mode, both the width a and height b are to be increased
together (or decreased together), the condition for resonance of the
two reactive discontinuities coincides with the condition for equal
characteristic impedances,

(b K.)
- : :- Waveguide 2 (6.11-6)

Weveguide 1

according to Ref. 24, p. 170; when an increase in the ‘e’ dimension is
accompanied by a decrease in the ‘b’ dimension (or vice versa), then an
empirical equation showing when the reactive discontinuities resonate
and so cancel is given in Ref. 25, but it is not known how accurate
this empirical data is,

In addition to the phase perturbation introduced by the non-ideal
junction, there may also be a noticeable effect on the magnitude of
the reflection coefficient. (In the case of E-plane steps alone, the
latter is usually negligible; see Sec. 6.08.) The increase in the
magnitude of the reflection coefficient for H-plane steps in rectangular
waveguide can be derived from the curves in Marcuvitz?3® (pp. 296-304).
The junction VSWR is then greater than the impedance ratio of the two
guides. For instance, in the example already quoted, the output-to-
input impedance ratio, R, is equal to 8 with ideal junctions. However,
because of the additional reflection due to junction susceptances,
this goes up to an effective R of 9.6 (confirmed experimentally?),

As a general rule, for rectangular waveguides the change in the
‘a’ dimension of an H-plane step should be kept below about 10-20 percent
if the junction effects are to be treated as first-order corrections to
the ideal transformer theory. This is mainly to keep the reference plane
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from moving too far out of the junction plane (see Marcuvitz, ® Fig. 5.24-2,
p. 299, and Fig. 5.24-5, p. 303). Symmetrical junctions are to be pre-
ferred to asymmetrical junctions. Larger H-plane steps are permissible

as the guide nears cutoff (smaller ‘a’ dimension).

SEC. 6.12, INHOMOGENEOUS WAVEGUIDE QUARTER-WAVE
TRANSFORMERS OF TWO OR MORE SECTIONS

The condition that an ideal inhomogeneous transformer of two
sections (Fig. 6.12-1) be maximally flat can be written for both TE
and ™ modes:

z,\?
(7) = R (6.12-1)

. %0\:3 - A2,) (6.12-2)

(Z‘> . ﬁf;*_*_ff.’i (6.12-3)

A3, + A3 RH

with the notation of Fig. 6.12-1. Equations (6.12-1) to (6.12-3) are

only three conditions for the four parameters k.l, A.z' Zl, Zz; or in
rectangular waveguide, for a,, a,, bl' bz' Thus there are an infinity of
maximally flat transformers of two sections (just aes there was an infinity
of matching transformers of one section), and some have flatter responses
than others, An exsmple is shown in Fig. 6.12-2, in which ideal junctions
are assumed. The transformation in this case is between two rectangular
wvaveguides, namely a, =8 in., bo = 2 in., to be transformed to ay = S ia.,
by = 3 in., st a center frequency of 1300 megacycles. The various values
of a, taken are shown in Fig. 6.12-2. There is probably an optimum (or
“flattest maximally flat”) transformer, but this hes not been found.
Instead, it is suggested that a, and a, be chosen to minimize junction
discontinuities and keep the transformer as nearly ideal as possible.

Equation (6,12-3) is plotted in Fig. 6.12-3, with (A‘,/K‘l)’ running
from 0.5 to 2.5, for R« 1, 2, ..., 9, 10.
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FIG. 6.12-3 DEPENDENCE OF Z, ON (A,/A,)2 TO OBTAIN A MAXIMALLY
FLAT TRANSFORMER, FOR TEN VAL UES OF R

In most practical applications the transformer should have
minimum reflection over a finite frequency band, rather than have
maximally flat frequency response. No exact method has yet been found
to broad-band inhomogeneous transformers, but an approximate design
procedure has worked out very well. This consists of first designing
for maximally flat response, and then applying the inhomogeneous

transformer theory as a multiplicative “correction” to the impedance
ratios,®

Example 1—Design a transformer from 0.900- by 0.400-inch (WR-90,
or RG-52/U or RG-67/U) to 0.750- by 0.400-inch waveguide to have a
VSWR of better than ].10 ~ver a 13-percent frequency band. Here,
Ay = 1,390 inches.
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The reciprocal-guide-wavelength fractional bhandwidth is approximately
(dA‘/A.)/(dA/A) = ()\'/)\)2 times the frequency fractional bandwidth of
0.13. The arithmetic mean of (K'/)\)z for the a = 0,900-inch and the
a s 0,750-inch waveguides is (2.47 + 7.04)/2 = 4,75, so that the (l/A‘)
bandwidth is approximately 4,75 X 13 = 62 percent. The characteristic
impedance is proportional to {(b/a) (K'/K), as in Eq. (6.11-6), and the
output-to-input impedance ratio, R, is 2,027. A homogeneous transformer
of R = 2,027, to have a VSWR of less than 1,10 over a 62-percent band-
width, must have at least two sections, according to Table 6.02-3.
Therefore choose n = 2,

Since the transformer is inhomogeneous, first design the maximally
flat transformer. The choice of one waveguide ‘a’ dimension is
arbitrary, so long as none of the steps exceeds about 10-2C percent.
Selecting a, = 0.850 inch, Eq. (6.12-2) yields a, = 0.771 inch and
then Eqs. (6.12-1) and (6.12-3), or Fig. 6.12-3, yield b, = 0.429 inch,
b2 = 0.417 inch. (Note that none of the H-plane steps exceed 10 percent.)
The computed performance of this maximally flat transformer, assuming

ideal waveguide junctions, is shown by the broken line in Fig. 6.12-4.

- ‘I Y T ¥ ] - ‘ ™ ] T “ ™ r

nsi- \\

BROAD - BANDED /

- e a  MAXIMALLY FLAT /

1.09)

A~ JORT - 200

SOURCE: IRE Trans. PGMTT (see Ref. 6 by 1.. Young)

FIG. 6.12.4 VSWR AGAINST WAVELENGTH OF BROADBANDED AND MAXIMALLY
FLAT TRANSFORMERS
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To broadband this transformer (minimize its reflection over the
specified 13 percent'frequency band), we note from Table 6.04-1 that, for
a two-section homogeneous transformer of R = 2,027 to be modified from
maximally flat to 62 percent bandwidth, Z1 increases about 2 percent, and
Z, is reduced about 2 percent. Applying exactly the same “corrections”
to b, and b, then yields b, = 0.437 inch and b, = 0.409 inch. The ‘a’
dimensions are not affected. The computed performance of this transformer
is shown in Fig. 6.12-4 (solid line), and agrees very Well with the

predicted performance.

In the computations, the effects of having junctions that are non-
ideal have not been allowed for. Before such a transformer is built,
these effects should be estimated and first-order length corrections
should be applied as indicated in Secs. 6.11 and 6.08.

Transformers having R = f—1]It is sometimes required to change the
‘a’ dimension keeping the input and output impedances the same (R = 1),
It may also sometimes be convenient to effect an inhomogeneous trans-
former by combining a homogeneous transformer (which accounts for all
or most of the impedance change) with such an inhomogeneous transformer
(which accounts for little or none of the impedance change but all of
the change in the ‘a’ dimension). Such inhomogeneous transformers are
sketched in Fig. 6.12-5. We set R = ] in Eqs. (6.12-1) and (6.12-2)

and obtain

Z, = Z = Z, = 2Z . (6.12-4)

The reflection coefficients at each junction are zero at center
frequency, and we may add the requirement that the rates of change of
the three reflection coefficients with frequency be in the ratio 1:2:1.
This then leads to

2 2 h
Al e 3___]\” " M
sl 4 L
(6.12-5)
2 2
)\2 = u
0 n p
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Equations (6.12-2), (6.12-4), and (6.12-5) then determine all the wave-
guide dimensions.

Example 2—Find the ‘a’ dimensions of an ideal two-section quarter-
wave transformer in rectangular waveguide from a, = 1,372 inches to
8,,. ® 1.09 inches to have R = ] and to conform with Eqs. (6.12-2),
(6.12-4), and (6.12-5). Here, A = 1,918 inches.

The solution is readily found to be a, = 1.226 inches and a, =
1.117 inches. 1In order for the impedances to be the same at center
frequency, as required by Eq. (6.12-4), the ‘b’ dimensions have to be in
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the ratio bo’bl:bz:bs = 1:0.777:0.582:0.526, since Z « (b/a) ()\‘/)\).
The performance of this transformer is shown in Fig. 6.12-6.

The performances of two other transformers are also shown in Fig. 6.12-6,
both with the same input and output waveguide dimensions as in Example 2,
given above, and both therefore also with R = 1, The optimum one-
section transformer has Z2 s Z, = Zo' from Eq. (6.11-3), but requires
}‘il = 0‘:0 + K:z)/2, where suffix 2 now refers to the output. This
yields @, = 1.157 inches. The third, and only V-shaped, characteristic
in Fig. 6.12-6 results when the two waveguides are joined without benefit
of intermediate transformer sections. The match at center frequency is
ensured by the ‘b’ dimensions which are again chosen so that R = 1 at
center frequency.

w
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\ L |
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NORMALIZED FREQUENCY
=187 -39

FIG. 6.12-6 PERFORMANCE OF THREE INHOMOGENEOUS TRANSFORMERS
ALL WITH R = 1, HAVING NO INTERMEDIATE SECTION
(. = 0), ONE SECTION (n = 1), AND TWO SECTIONS
(n = 2), RESPECTIVELY

#
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Transformers with more than two sections—No design equations have
been discovered for n > 2, [If a two-section transformer, as in
Example 1 of Sec. 6.12, does not give adequate performence, there are
two ways open to the designer: When the cutoff wavelengths A _of the
input and output waveguides are only slightly different, the transformer
may be designed as if it were homogeneous. In this case the A  of the
intermediate sections may be assigned arbitrary values intermediate to
the input and output values of A_; the impedances are selected from the
tables for homogeneous transformers for a fractional bandwidth based o.
the guide wavelength, Eq. (6.02-1), of that wavegnuide which is nearest
to being cutoff. Even though the most dispersive guide is thus selected
for the homogeneous prototype, the frequency bandwidth of the inhomogeneous
trensformer will still come out less, and when the spread in A  is appre-
ciable, considerably less. Thus, this method applies only to transformers

that are nearly homogeneous in the first place.

The second method is to design the transformer in two parts: one
an inhomogeneous trunsformer of two sections with R = ], as in Example 2
of this section; the other a homogeneous transformer with the required

R, preferably built in the least dispersive waveguide.

Example 3—Design a quarter-wave transformer in rectangular wave-

guide from a,, = 1.372 inches to a,,. = 1.09 inches, when R = 4, Here,

Ao = 1.918 inches.

t

Selecting a three-section homogeneous transformer of prototype band-
width v, 0.30 and B = 4, in ¢ = 1.372-inch waveguide, followed by the

two-section inhomogeneous transformer of Example 2 of this section, gives

a, = 1.372 inches , Z, = 1.0,
@, = 1.372 inches , Z, = 1.19992 ,
a, = 1.372 inches , Z, = 2.0 ,
a, = 1.372 inches , Z, = 3.33354 ,
a, = 1.276 inches . Z, = 4.0,
@, = 1.117 inches , 2, = 4.0,
_6, = 1.090 inches , Z, = 4.0 .



The ‘b' dimensions may again be obtained from Z o (b/a) ()\'/)\), as
in Example 2 of this section. The performance of this five-section
transformer is shown in Fig. 6.12-7. Its VSWR is less than 1,05 over
a 20-percent frequency band, although it comes within 6 percent of
cutoff at one end.

Where a low VSWR over a relatively wide pass band is important, and
where there is room for four or five sections, the method of Example 3
of this section is generally the best,

SEC. 6.13, A NONSYNCHHONOUS TRANSFORMER

All of the quarter-wave transformers considered so far have been
synchronously tuned (see Sec. 6.01); the impedance ratio at any junction
has been less than the output-to-input impedance ratio, R. It is pos-

sible to obtain the same or better electrical performance with an ideal

H—-

1o -~

o |

CUTOFF

109l L 4 ;

NORMALIZED FREQUENCY —

FIG. 6.12.7 PERFORMANCE OF A FIVE-SECTION
INHOMOGENEOUS TRANSFORMER



et

nonsynchronous transformer of

shorter length; howaver, the im- ety

pedance ratios at the junctions  E— —_—)
generally exceed R by a large \ r "
factor, and for more than two Zo z, 2o 2
sections such “supermatched"” AND ReZ,/2o
transformers appear to be i..- EXAMPLE : Zo® 50 ohms

Z; = 70 ohms

practical. There is one case of o
=- «=— ARC COT /m i+t
a nonsynchronous transformer that g 2 L]

A-3327-300
is sometimes useful. It consists
of two sections, whose respective FIG. 6.13-1 A NONSYNCHRONOUS
impedances are equal to the out- TRANSFORMER

put and input impedances, as

shown in Fig. 6.13-1. The whnle

transformer is less than one-sixth

wavelength long, and its performance is about the same as that of a
single-section quarter-wave transformer. It can be shown?® that the

length of each section for a perfect match has to he equal to

1 ' 1\ 4
- —— { + + - -
L el L cot \R 1 7 ) wavelengths (6.13-1)

which is always less than 30 electrical degrees, and becomes 30 degrees
only in the limit as R approaches unity. It can be shown further that,
for small R, the slope of the VSWR vs., frequency characteristic is
greater than that for the corresponding quarter-wave transformer by &
factor of 2//5 (about 15 percent greater); but then the new transformer
is only two-thirds the over-all length (A'/6 compared to K'/4).

The main application of this transformer is in cases where it is
difficult to come by, or manufacture, a line of arbitrary impedance.
Thus if it is desired to match a 50-ohm cable to a 70-ohm cable, it
is not necessary to look for a 59.1-ohm cable; instead, the matching
sections can be one piece of 50-ohm and one piece of 70-ohm cable.
Similarly, if it is desired to match one medium to another, as in an
optical multilayer antireflection coating, this could be accomplished
without looking for additional dielectric materials.
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SEC. 6.14, INTERNAL DISSIPATION LOSSES

In Sec. 4.13 a formula was derived for the center-frequency increase
in attenuation (ALA)o due to dissipation losses. Equation (4,13-11)
applies to lumped-constant filters which are reflectionless at band
center, and also includes those transmission-line filters which can be
derived from the low-pass lumped-constant filters of Chapter 4 (see,
for example, Sec. 6.09). If, however, the filter has not heen derived
from a lumped-constant prototype, then it is either impossible or
inconvenient to use Eq. (4.13-11). What is required is a formula giving
the dissipation loss in terms of the transmission-line filter parameters,
such as the V_ instead of the g .

Define S, as the VSWR at center frequency seen inside the ith filter
cavity, or transformer section, when the output line is matched
(Fig. 6.14-1). Here the numbering is such that i = ] refers to the
section or transmission-line cavity nearest the generator. Let

Ipl . — (F.14-1)

be the amplitude of the reflection coefficient in the ith cavity,
corresponding to the VSWR S, Let!2:27

POWER FLOW
e —

i=th CAVITY _J‘—J_
i 1 '

_— MATCHED

- ! LINE
— . ouTeuT
| I
Wt 0 1 2 === (=01 i ifie) =<~ " e
T
VSWR SEEN IN i-th
SECTION OR CAVITY IS §;
A-3327-30

FIG. 6.14-1 VSWR INSIDE A FILTER OR TRANSFORMER



Gross Power Flow

U ™
¢ Net Power Flow
1+ |p,l2
" — (6.14-2)
1-lp,l2
. §2 + )
28

The attenuation of transmission lines or dielectric media is usually

denoted by a, but it is measured in various units for various purposes.
Let

a, = attenuation measured in decibels per unit length
a, = attenuation measured in nepers per unit length (6.14-3)

a, = absorption coefficient (used in optics!?)

The absorption coefficient, a,, is defined as the fraction of the
incident power absorbed per unit length. Thus, if Pi.. is the incident
power (or irradiance) in the z-direction, then

dP
1 i
ao ™ - —— ; . (6.1‘04)
Pi-c dz

These three attenuation constants, a,, &, and @y, are related as
follows:

@, = 0a,/2 nepers

@, = (10 log,, e}, =~ 4.3430, decibels (6.14-5)
= (20 log,, e)a, = 8.686a, decibels

Denote the length of the ith cavity or section by l,. If each I, is
equal to an integral number of quarter-wavelengths, with impedance
maxima and minima at the ends, as is the case with synchronously tumed,



stepped-impedance filters and transformers at center frequency, then
the dissipation loss (if small) is given by!?

) 2 n N
(AL, = (1= lpel) Z eV, decibels
9 n
= (1= |p,l) ‘Zl a,,l,Ui nepers ¢ (6.14-6)
is [
2. * ,
« (1= dsgl) 2 ag, 0,
=]
as a fraction of the incident power J

where Ipol is again the reflection coefficient amplitude at the input.

To calculate the dissipation loss from Eq. (6.14-6), the gross-to-
net power flow ratio, U,, has to be determined from Eq. (6.14-2). For
half-wave filters this is particularly simple, since

Y
z; \*
S, = 77 > 1 (6.14-7)

at}

where Z; is the impedance of the line forming the ith cavity and 2;01
is the output impedance of the half-wave filter. The half-wave filter
impedances, Z;, can be worked out as in Example 1 of Sec. 6.07, or
Examples 1 and 2 of Sec. 6.09, or from Fig. 6.03-1. Since the filter

or transformer is synchronously tuned,

t1 (6.14-8)
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V2
s, (-5-) > 1 ) (6.14-8)

(contd.)

Vl
Input VSR « S = (-—-) >1 .

The internal VSWR, S‘, for synchronous filters, can also be written in
the form

v. . .v .V s
s, ( o Esama ) >1 . (6.14-9)

The highest suffix of any V in this equation is n + }.

Narrow-Band Filters—For narrow-band filters of large R (filters
with large stop-band attenuvation), Eq. (6.09-2) combined with the
formulas? for the 8, (Sec. 4.03) shows that the V, increase toward
the center (compare Table 6.10-1 or Fig. 6.10-2). Therefore, the
positive exponent must be taken in Eq. (6.14-9) and hence throughout
Eq. (6.14-8). Then

VeSS, (i = 1,2 ...,nt 1) . (6.14-10)

Since the output is matched (S ,, = 1), and from Eq. (6.04-10), the
maximum possible VSWR (in the stop band) is

R = S,(5,8,...5)% . (6.14-11)

With the resatriction of constant R, it can be shownl? that when all the
a,l, products sre equal, Eq. (6.14-6) gives minimum dissipation loss



when all the S, are made equal. The internal V  are then all equal

to each other, and equal to the square of ¥V, = V_ .. Such a filter
(called a “periodic filter') gives minimum band-center dissipation loss
for a given B (i.e., for a given maximum stop-band attenuation). (In
optical terms, it gives maximum “contrast”,) General formulas including

filters of this type have been given by Mielenz® 4nd by Abelds.?®

Since the attenuation, a , and the unloaded 0, Qu, are related by®

L o (A'> 2 (6.14-12)
o 2 —— = | — . . 14-
Qu A‘ A

therefore (ALA)0 can be expressed in terms of Q,

n 1 l.. /\‘l. 2 A
(AL, = (1= legl?yn e —\ v, nepers
il ui g
3
v D B PR 2
= 27,28 (1~ lplH 7 o\ Ui decibels ]
il Xy T
(6.14.13)

To relate this to Eq. (4.13-11), we must assume narrow-band filters
with large R. As in Chapter 4 and Hef. 31, it is convenient to
normalize the low-pass filter prototype elements to g, = 1. In
Eq. (4.13-2) and in Ref. 31, v is the frequency fractional bandwidth,

related to v  or v, (Secs. 6.02 and 6.03) of dispersive waveguide
filters by¥

A2 A3
v = ”q(T) or wh<)\—) (6.14-14)
‘ s

whichever is appropriate. This can be shown to lead, for small »
and large R, to
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(A, = (1- |Po|2) 21 % fi— nepers
2w in} Qu‘
p(6.14-15)
= (1~ |ﬁ0|2) fi (10 log, je) % fii decibels
2w i*] Qui

7

It differs from Lq. (4.13-11) and Ref. 31 for the low-pass Jumped-constant
filter Ly an additional factor

(1 = ol = 1/antileg [l(L) 17100 . (6.14-16)

If this factor is added to Eq. (4.13-11) or Eq. (1) in Ref. 31, they

also hecome more accurate. [For instance, multiplying the last column
in latle 4,13-2 by the factor in Eq. (6.14-16), approximates the exact
values in the first column for (LA)O more closely, reducing the error

by an order of magnitude in every case.]

Equation (6.14-6) is the most accurate available formula for the
dissipation loss at center frequency of a quarter-wave or half-wave
filter, and can le applied to any such filter directly; Eq. (6.14-15)
is the most accurate available formula for hand-pass filters derived
from the low-pass lumped-constant filter prototype of Chapter 4.
Equation (6.11-6) or (6.14-15) determines the dissipation loss at ‘the
center of the pass band. The dissipation loss generally stays fairly
constant over most of the pass band, rising to sharp peaks just
outside I oth edges, as indicated in Fig. 6.14-2(a). V‘hen the total
attenuation (reflection loss plus dissipation loss) is plotted ageinst
frequency, the appearance of the response curve in a typical case is
as shown in Fig., 6,14-2(b); the two "“dimples” are due to the two

dissipution peaks shown in Fig. 6.14-2(a).

The two peaks of dissipation loss near the two band-edges may be
attributed to a build-up in the internal fields and currents. Thus we
would expect the power-handling capacity of the filter to be approximately
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DISSIPATION | |
LOSS

(o)

FREQUENCY —>

REFLECTION
PLUS
DISSIPATION
LOSS

(o)

FREQUENCY —>
473827 302

SOURCE:  Jour. Opt. Soc, Am. (see Ref. 12 by .. Young)

FIG. 6.14.2 ATTENUATION CHARACTERISTICS
OF FILTERS

of bandwidth v, * 0.00185).

inversely proportional to the dissi-
pation loss, as the frequency
changes. An increase in stored
energy for a matched filter is in
turn associated with a reduced
group velocity, % or increased
group delay. Thus we would expect
the group delay through the filter
to Le approximately proportional
to the dissipation loss, as the
frequency changes. This has already
been pointed out in Sec. 4.13. These
questions are taken up further in

Sec. 6.15.

Exemple 1—The parameters of a
half-wave filter are: Zj = 1,
Z, = 245.5, Z, = 0.002425, Z; =
455.8, Z; = 0.0045, Z; = 1,106
(corresponding to a 0.01-db pass-
band ripple for a lossless filter

Calculate the center-frequency dissipation

loss if this filter is constructed in waveguide having an attenuation of

4.05 dl /100 ft.
1.015 inches.

The guide wavelength is

Wavelength = A, = 1.437 inches; waveguide width = a =

A = 2,034 inches

0

and

(A o/Ag)? = 2.00

The internal VSWis are by Eq. (6.14-7),

S, = (2)/z) = 222.0
S, = (Zy/2;) = 455.8
S, = (7y/25) « 4125
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S, = (2;/2;) = 245.5
S = 1.0 (by definition) .

Summing these gives

4
S U . -
2

4
; Z S, = 6671.9 .
i=1 =

i=] !

Since the center-frequency input VSHH is equal to Z; = 1.106,
therefore

lpgl2 = o0.0025 .
Hence from the first of Lkqs. (6.14-6),

4.05 )
(AL, = 0.9975 x o0 %< 12 - 1.017 X 667.9 decibels

= 2.29 db

SEC. 6.15, GROUP DELAY

The slope of the phase-versus-frequency curve of a matched filter
is & measure of the group delay through the filter. This has already
been discussed in Sec. 4,08, and results for some typical low-pass
filter prototypes with n = 5 elements are given in Figs. 4.08-1 and
4.08-2. In this section, group delay, dissipation loss, and power-
handling capacity will be examined in terms of stepped-impedance filters,
such as the quarter-wave transformer prototype.

it can be shown?? that the group delay at center frequency f°
through a homogeneous matched quarter-wave transformer is given by

L(2e) 5y
fo(“)o = : - i1 i (6.15'1)

where t, is the phase slope dp/dw and may be interpreted as the group
delay in the pass band. (The phase siope t, = d/dw will, as usual,



be referred to as the group delay also outside the pass band, although
its physical meaning is not clear when the attenuation varies rapidly
with frequency.)

The group delay of a half-wave filter is just twice that of itcs
quarter-wave transformer prototype; in general, the gioup delay of any
matched stepped-impedance filter at center frequency is given by?d?

: () )
- —— — ' -
foltade = 2 \57) WAL (6.15-2)

Combining Eq. (6.15-2) with Eq. (6.14-6) when o, = 0 (filter matched
at center frequency), and when the attenuation constants & and guide

wavelengths A' are the same in each section, yields

AL, = @A (MA ) e, (6.15-3)

where a may be measured in units of nepers per unit length (a ), or in
units of decibels per unit length (a,), AL, being measured accordingly

in nepers or decibels,

Equation (6.15-3) can also be written
AL, = — fot, nepers . (6.15-4)

These equations have been proved for center frequency only. It can be
argued from the connection between group velocity and stored energy®
that the relations (6.15-3) and (6.15-4) between dissipation loss and
group delay should hold fairly well over the entire pass band. For

this reason the suffix 0 has been left out of Eqs. (6.15-3) and (6.15-4).
This conclusion can also be reached through Eqs. (4.13-2), (4.13-3) and
(4.13-9) in Chapter 4.

Example f1—Calculate the time delay (t,), at the center frequency of
the filter in Exumple 1 of Sec. 6.14 from its center-frequency
dissipation loss, (AL,),.
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From Eq. (6.15-3),

A\
fo('d)o -(—f—) a)\‘ ° cycles at center frequency
‘

= .0 N ——a—
2.00 (4.05 x 2,034

2.29
cycles at center frequency
100 x 12 >
s 668 cycles at center frequency

Since A; = 1.437 inches, which corresponds to f, = 8220 Mc. therefore

668
8220

(t‘)o microseconds

= 81.25 nanoseconds

Universal Curves of Group Delay—Curves will be presented in
Figs. 6.15-1 through 6.15-10 which apply to stepped-impedance transformers
and filters of large R and small baudwidth (up to about u, C.4). They
were computed for specific cases (generally R ~ 102" and w = 0.20),
but are plotted in a normalized fashion and then apply generally for

large R, small w. The response is plotted not directly against
frequency, but against

(f - .fo)
x = %o (6.15-5)
fo

with o given by

o = pRl/ (6.15-6)

where p is the length of each section measured in quarter-wavelengths.
(Thus p = 1 for a quarter-wave transformer, and p = 2 for a half-wave
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filter.) For maximally flat filters, Eq. (6.15-6) with the aid of
Sec. 6.02 reduces to

1/2a
. i(‘ ) (6.15-7)
T\¥;.41

where w, ;. in Eq. (6.15-7) is the 3-db fractional bandwidth; while for
Tchebyscheff transformers,

g 1/20
o . i( ) . (6.15-8)
n »

Similarly it can be shown?? for maximally flat time-delay filters, that

2(n!) 1/a
g = BLG” ] fﬁ'd)o

r 2 1/a
"4 l_1.3.5.7. . .(2n-1)] fo('d)oj

and that for equal-element filters (corresponding to periodic filters),

> (6.15-9)

|

4
c = —
m

g8 (6.15-10)

It can be deduced from Eq. (6.09-2) that the attenuation charac-
teristics are independent of bandwidth or the value of R when plotted
against x, defined by Eq. (6.15-5). Similarly, it follows from
Eqs. (6.15-1) and (6.09-2) that the time delay should be plotted as

", fota
y — (6.15-11)

-4

so that it should become independent of bandwidth and the quantity R
(still supposing small bandwidth, large R),
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By using Fq. (6.15-7) through (6.15-10) to obtuin o, the curves in
Figs. 6.15-1 through 6.15-10 can be used ulso for lumped-constant filcers,

These curves are useful not only for predicting the group delay, but
also for predicting the dissipation loss and (less accurately) the power-
handling capacity in the pass band, when the values of these quantities
at midband are already known [as, for instance, by Fq. (6.14-6) or
(6.14-15)].

The following tilter types are presented: maximally flat; Tchebyscheff
(0.01 db ripple, 0.1 db ripple and 1.0 db ripple); maximally flat time delay;

and periodic filters. The last-named are filters in which Vf =V, = v?

ntl
for i =2, 3, ..., n. [They correspond to low-pass prototype filters in
which all the g (i = 1, 2, ..., n) in Fig. 4.04-1 are equal to one another.

For large Kk and small bandwidth periodic filters give minimum band-center

dissipation loss and preatest power-handling capacity® for a given

selectivity.]

The figures go in pairs, the first plotting the attenustion charac-
teristics, and the second the group delay. Figures 6.15-1 and 6.15-2 are-
for three periodic filters. The case n = ] cannot be labelled, as it be-
longs to all types. The case n = 2 periodic is also maximally flat. The
case n = 3 periodic is equivalent to a Tchebyschef{ filter of about 0.15 db
ripple.

Figures 6.15-3 to 6.15-8 are for n = 4, n = 8, and n = 12 sections,
respectively, and include various conv:ational filter types. Figures 6.15-9
and 6.15-10 are for several periodic filters, showing how the character-

istics change fromn = 4 ton = 12 sections.

Example 2—Calculate the dissipation loss at bhand-edge of the filter
in Example 1 of Sec. 6.14.

It was shown in that example that the band-center dissipation loss fér
that filter is 2.29 db. Since this is a Tchebyscheff 0.01-db ripple filter
with n = 4, we see from Fig. 6.15-4 that the ratio of band-edge to band-
center dissipation loss is approximately 0.665/0.535 = 1.243. Therefore
the band-edge dissipation loss is approximately 2.29 X 1,243 = 2,85 db.

The application of the universal curves to the power-handling capacity
of filters is discussed in Section 15.03.
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CHAPTER 7

LOW-PASS AND HIGH-PASS FILTERS USING SEMI-LUMPED ELEMENTS
OR WAVEGUIDE CORRUGATIONS

SEC. 7.01, PROPERTIES OF THE FILTERS DISCUSSED IN THIS CHAPTER

Unlike most of the filter structures to be discussed in later
chapters, the microwave filters treated in this chapter consist entirely
of elements which are small compared to a quarter-wavelength (at pass-
band frequencies)., In the cases of the TEM-mode filters treated, the
design is carried out so as to approximate an idealized lumped. element
circuit as nearly as pos ible. In the cases of the corrugated and
wvaffle-iron low-pass waveguide fiiters discussed, the corrugations are
also smal) compared to a quarter-wavelength., Such filters are a wave-
guide equivalent of the common series-L, shunt-C, ladder type of low-
pass filter, but due to the waveguide nature of the structure, it is
more difficult to design them as a direct approximation of a Jumped-
element, low-pass filter, Thus, in this chapter the waveguide filters
with corrugations are treated using the image method of design (Chapter 3).

In Sec. 7.02 will be found a discussion of how Jumped elements may
be approximated using structures which are practical to build for micro-
wave applications. In later sections the design of filters in specific
common types of construction are discussed, but using the principles in
Sec. 7.02 the reader should be able to devise additional forms of con-

struction as may be advantageous for special situations.

Figure 7.01-1(a) shows a coaxial form of low-pass filter which is
very common. It consists of short sections of high-impedance line (of
relatively thin rod or wire surrounded by air dielectric) which simulate
series inductances, alternating with short sactions of very-low-impedance
line (each section consisting of a metal disk with a rim of dielectric)
which simulate shunt capacitances, The filter shown in Fig. 7.01-1(a)
has tapered lines at the ends which permit the enlarging of the coaxial
region at the center of the filter so as to reduce dissipation losa.
However, it is more common to build this type of filter with the outer
conductor consisting of a uniform, cylindrical metal tube. The popularity

351



(o)

»

2%

4
AR
ENAIRINSNAN
L\V\\‘.\\l;\h\*\\‘l*

\\\\\\\\E\\_}\\\\\\?:
NN, SN

TN S g
i £ \\\\\\\\\\\\\W

1

AE i A
(o)
0-3827-477
FIG. 7.01-1 SOME SPECIFIC LOW-PASS FILTER STRUCTURES
DISCUSSED IN THIS CHAPTER



of this type of low-pass filter results from its simplicity of fabrication
and its excellent performance capabilitics. Its first spurious pass band
occurs, typically, when the high-impedan-e lines are roughly a half-
wavelength long. It is not difficult with this type of filter to obtain
stop bands which are free of spurious responses up as far as 1ive times
the cutoff frequency of the filter. F.lters of this type are commonly
built with cutoff frequencies ranging from a few hundred megacycles up

to around 10 Ge, A\ discussion of their design will be found in Sec. 7.03,

Figure 7,01-1(b) shows a printed-circuit, strip-line filter which;‘k
equivalent to the filter in Fig. 7.01-1(a) in most respects, but which has
somewhat inferior performance characteristics, The great advantage of
this type of filter is that it is unu:ually inexpensive and easy to fabri-
cate, It usually consists primarily of two sh-ets of low-loss dielectric
material with a photo-etched, copper-foil, :enver-conductor [shown in
Fig. 7.01-1(b)] sandwiched in betweer, an. :ith copper foil or metal
plates on the outer surfaces of the lielectric pieces to zerve as ground
planes, When this type of circuit is used -he dissipation loss is gener-
ally markedly higher than for the fitter in Fig. 7.01-1(a) because of the
presence of dielectric material throughout Lhe circuit. Also, when this
type of construction is used it is generallv not possible to obtain as
large a difference in impedance level between *he high- and low-impedance
line sections as is readily feasible ia the construction shown in
Fig. 7.01-1(a). As a result of this, the sttenuation level at frequencies
well into the stop band for filters constructel as shown in Fig. 7.01-1(b)
is generally somewhat Jower than that for filt:rs constructed as shown in
Fig. 7.01-1(a). Also, spurious responses ir tae stop band generally tend
to occur at lawer frequencies for the construction in Fig. 7.01-1(b).
Filters using this latter construction can also be used in the 200-Mc to
10-Gc range. llowevar, for the high porticn of this range they must be
quite small and they tend to have considerable dissipation losa., A dis-
cussion of the design of this type of filter will be found in Sec. 7.03.

Figure 7.01-1(c) shows another related type of printed-circuit low-
pass filter. The symbols L,, L,, C,, etc., indicate the type of element
which different parts of the circuit approximete, Elements L, and C, in
series approximate an L-C branch which will slort-circuit transmission at
its resonant frequency. Likewise for the part of the circuit which ap-
proximates L, and C,. These branches thea produce peaks of high attenu-
ation at frequencies above the cutoff frequency and fairly clese to it,



and by so doing, they increase the sharpness of the cutoff charucteristic,
This type of filter is also easy to fabricate in photo-etched, printed-
circuit construction, but has anot been used as much as the type in

Fig. 7.01-1(b), prebably because it is somewhat more difficult to design
accurately. This type of filter can also be designed in coaxial or co-
axial split-blork {nrm 20 as tc obtain improved performance, but such a
fil.er would, of ccurse, be markedly more costly to build. Discussion

of .ae design of f.)te:s such as that in Fig. 7.01-1(c) wil] be found in
Sec. 7.03.

The filter shown in Fig. 7.01-1(d) is a waveguide version of the
fil.ers in Vigs, 7.01-1(a) and (b)., 1In this case the low- and high-

impdance sections of Jine are realized by raising and lowering the height

of .he guide, which has led to the name "corrugated waveguide filter” by
whi:li 1t is commonlv krown. It is a low-pass filter in its operation, but
sin:e the waveguide has a cutoff frequency, it cannnt operate, of course,

to ). as do most low-pass filters, This type of filter can be made to
have very low pass-bhand loss because of its waveguide construction, and

it cen be expected to have a higher power rating than equivalent TEM-mode
filters, However, this type of filter has disadvanta es compared to,

say, the coaxiai filter in Fig., 7.01-1(a) because (1) it is larger and
more costly to build, (2) the stop bands cannot readily be made to be

fre: of spurious responsss to as high a frequency even for the normal

TE,, mode of propagation, and (3) there will be numerous spurious responses
in the stop-band region for higher-order modes, which are easily excited
at frejuencies above the normal TE,, operating range of the waveguide.

Due to the presence of the corrugations in the guide, modes having vari-
ations in the direction of the waveguide height will be cut off up to very
“.igh frequenc.es, Therefcre, TE , modes wil] be the only ones that need
be eunsidered. If the waveguide is excited by a probe on its center line,
the 7i,,, TE‘o, and other even-order modes will not be excited. In this
case, the first higher-order mode that wil] be able to cause trouble is
the TE,; mode which has a cutoff frequency three times that of the TE ,
mode. In typica) cases the TE,, mode might give a spurious response at
about 2.5 times the center frequency of the first pass band. Thus, if
the TE, ) mode is not excited, or if a very wide stop band is not required,
corrugated waveguide filters will frequently be quite satisfactory. The
only limitations on their useful frequency range are those resulting from
considerations of size ani ease of manufacture. Filters of‘i@}a type (or
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the waffle-iron filters discussed below) are probably the most practical
forms of Jow-pass filters for frequencies of 10 Ge or higher. This type
of filter is discussed in Sec. 7.04.

Figure 7.01-1(e) shows a waffle-iron filter which in many respects
is equivalent to the corrugated waveguide filter in Fig. 7.01-1(d), but
it includes a feature which reduces the problem of higher-order modes
introducing spurious responses in the stop band., This feature consists
of the fact that the low-impedance sections of the waveguide are slotted
in the longitudinal direction so that no matter what the direction of the
components of propagation in the waveguide are, they will see a low-pass
filver type of structure, and be attenuated. Filters of this type have
been constructed with stop bands which are free of spurious responses up
to three times the cutoff frequency of the filter. The inclusion of
Jongitudinal slots makes them somewhat more difficult to build than corru-
goted waveguide filters, but they are often worth the extra trouwble,
Their characteristics are the same as those of the corrugated waveguide
filter, except for the improved stop band. This type of filter is dis-
cussed in Sec. 7.0S5.

Figure 7,01-2 shows a common type of high-pass filter using coaxial
split-block construction, This type of filter is also designed so that
its elements approximate Jumped elements., In this case the short-
circuited coaxia) stubs represent shunt inductances, and the disks with
Teflon spacers represent series capacitors, This type of filter has

A
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FIG. 7.01.2 A HIGH-PASS FILTER IN SPLIT-BLOCK
COAXIAL CONSTRUCTION
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excellent cutoff characteristics since for a design with n reactive
elements there is an nth-order pole of attenuation (Sec. 2.04) at zero
frequency. Typical filters of this sort have a low-attenuation, low-VSWR
pass band extending up about an octave above tle cutoff frequency, with
relatively low attenuation extending up to considerably higher frequencies.
The width of the pass band over which the filter will simulate the response
of its idealized, lumped prototype depends on the frequency at which the
elements no longer appear to be sufficiently like lumped eloments, To
achieve cutoffs at high microwave frequencies, structures of this type
have to be very small, and they require fairly tight manufacturing toler-
ance. This makes them velatively difficult to construct for high microwave
frequency applications, For this reason they are used most often for cut-
offs in the lower microwave frequency range (200 to 2000 Mc) where their
excellent performance and compactness has considerable advantage, but they
are also sometimes miniaturized sufficiently to operate with cutoffs as
high as 5 or 6 Ge, Usually at the higher microwave frequency ranges the
need for high-pass filters is satisfied by using wideband band-pass filters
(see Chapters 9 and 10). The type of high-pass filter in Fig. 7.01-2 has
not been fabricated in equivalent printed-circuit form much because of the
difficulties in obtaining good short-circuits on the inductive stubs in
printed circuits, and in obtaining adequately large series capacitances,

SEC 7.02, APPROXIMATE MICROWAVE REALIZATION OF LUMPED ELEMENTS

A convenient way to realize relatively wide-band filters operating in
the frequency range extending from about 100 Mc to 10,000 Mc is to con-
struct them from short lengths of coaxial line or strip line, which approxi-
mate Jumped-element circuits, Figure 7.02-1 illustrates the exact T- and
7-equivalent circuits of a length of non-dispersive TEM transmission line,
Also shown are the equivalent reactance and susceptance values of the net-
works when their physical length | is small enough so that the electrical
length wl/v of the line is Jess than about 7/4 radians. Here we have used
the symbo]l w for the radian frequency and v for the velocity of propagation
along the treansmission line.

For applications where the line lengths are very short or where an
extremely precise design is not required, it is often possible to represent
a short Jength of line by a single reactive element. For example, inspec-
tion of Fig, 7.02-1 shows that a short length of high-Z, line terminated
at both ends by a relatively low impedance has an effect equivalent to that
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FIG. 7.02-1 TEM-LINE EQUIVALENT CIRCUITS

of a series inductance having a value of L = Zol/v henries. Similarly,

a short length of low-Z, line terminated at eit.er end by a relatively
high impedance has an effect equivalent to that of a shunt capacitance
C=Y,lLv-= l/Zov farads. Such short sections of high-Z, Jine and 'ow-Zo
line are the most common ways of realizing series inductance and sk

capacitance, respectively, in TEM-mode microwave filter structures,

A lumped-element shunt inductance can be realized in TEM transmission
line in several ways, as illustrated in Fig, 7.02-2{(a), The most con-
venient way in most instances is to employ a short length of high-Z, line,
short-circuited to ground at its far end, as shown in the strip-line ex-
ample. For applications where a very compact shunt inductance is required,
a short length of fine wire connected between the inner and outer con-
ductors can be used, as is illustrated in the coaxial line example in
Fig. 7.02-2(a),
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Also, a Jumped element series capacitance can be realized approximately
in TEM transmission lines in a variety of ways, as illustrated in
Fig. 7.02-2(b). Often the most convenient way is by means of a gap in the

! Where large values of series capacitance are required

center conductor,
in a coaxial system a short length of lov-Z,, open-circuited line, in
series with the center conductor can be used, Values of the series capaci-
tance of overlapping strip lines are also shown in Fig. 7.02-2(b).

Section 8,05 presents some further data on capacitive gaps,

A lumped-element, series-resonant, shunt circuit can be realized in
strip line in the manner shown in Fig. 7.02-2(¢). It is usually necessary
when computing the capacitive reactance of the low-impedance (Z,,) line in
Fig. 7.02-2(c) to include the fringing capacitance at the end of the Z,
line and at the step hetween lines, The end fringing capacitance can be

accounted for as follows., First, compute the per-unit-length capacitance
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84,73/,
COI 7

puf/inch (7.02-1)
01

for the Z,, line, where € is the rclative dielectric constant. Then
the effect of the fringing capacitances at the ends of the line can be
accounted for, approximately, by computing the tota] effective electrical

length of the Z,, line as the measured length plus a length

0.450 ve, [C}
Al = —— — | inches (7.02-2)
€ /-

COl

added at each end, In Eqs, (7,02-1) and (7.02-2), w is the width of the
strip in inches, and C;/e is obtained from Fig. 5,07-5. A further re-
finement in the design of resonant elements such as that in Fig. 7.02-2(c)
can be made by correcting for the junction inductance predicted by

Fig. 5.07-3; however, this correction is usually quite small,

A lumped-element parallel-resonant shunt circuit cen be realized in
the manner shown in Fig., 7.02-2(d). llere too it is necessary, when com-
puting the cepacitive reactance of the Jow-impedance (Z,,) line, to in-

clude the fringing capacitance at the end of the open-circuited line,

The series-resonance and parallel-resonance characteristics of the
lumped elements of Figs. 7.02-2(c) and 7.02-2(d) can also be approximated
over Jimited frequency bands by means of quarter-wavelength lines, re-
spectively, open-circuited or short-circuited at their far ends. Formulas
for computing the characteristics of such lines are given in Fig. 5.08-1,

Series circuits having either the characteristics of Jumped series-
resonant circuits or lumped parallel-resonant circuits are very difficult
to realize in semi-lumped-form TFM transmission lines, lowever, they can
be approximated over limited frequency bands, in coaxial lines, by means
of quarter wavelength stubs in series with the center conductor, that are
either open-circuited or short-circuited at their ends, respectively.
Such stubs are usually realized as lines within the center conductor in

a manner similar to the first example in Fig. 7.02-2(b).




SEC. 7.03, LOW-PASS FILTERS USING SEMI-LUMPED ELEMENTS

The first step in the design of filters of this type is to select
an appropriate lumped-element design (usually normalized), such as those
in the tables of low-pass prototypes in Secs. 4.05 to 4.07. The choice
of the type of the response (for example, the choice between a 0.1- or
0.5-db ripple Tchebysclieff response) will depend on the requirements of
a specific application. Also, the number n of reactive elements will be
determined by the rate of cutoff required for the filter. For Tchebyscheff
and maximally flat series-L, shunt-C, ladder low-pass filters the required

value of n is easily determined from the normalized attenuation curves in
Sec. 4.03.

Having obtained a suitable lumped-element design, the next step is

to find a microwave circuit which approximates it. = Some examples will
now be considered.

An Example of a Simple L-C Ladder Type of Lov-Pass Filter—1It is
particularly advantageous to design low-pass filters in coaxial- or
printed-circuit form using short lengths of transmission line that act
as semi-lumped elements. In order to illustrate the design procedure
for this type of filter the design of a 15-element filter is described
in this section. The design specifications for this filter are 0.1-db
equal-ripple insertion loss in the pass band extending from zero frequency
to 1.971 Gc, and at least 35-db attenuation at 2.168 Gc. A photograph
of the filter constructed from coaxial elements using the "“split-block”
coaxial line construction technique is shown in Fig. 7.03-1.

The form of the 15-element low-pass prototype chosen for this filter
has a series inductance as the first element, as illustrated in the
schematic of Fig. 7.03-2(a). At the time this filter was designed the
element values in Table 4.05-2(b) were not available, but the element
values for filters containing up to 10 elements as listed in Table 4.05-2(a)
were available. Therefore, the 15-element prototype was approximated by
using the nine-element prototype in Teble 4.05-2(a), augmented by re-
peating three times each of the two middle elements of the nine-element
filver. Comparison of these values with the more recently obtained exact
values from Table 4.05-2(b) shows that the end elements of the filter
are about 1.2 percent too small and that the error in the element values
increases gradually toward the center of the filter so that the center
element is sbout 4.2 percent too small. Theae errors are probably too
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small to be of significance in most applications. It should be noted
that since tables going to n » 15 are now available, good designs for
even larger n's can be obteined by augmenting n = 14 or n = 15 designs,
in the above manner.

The schematic of the lumped-constant prototype used in the design
of the actual filter is shown in Fig. 7.03-2(a). This filter is scaled
to operate at a 50-ohm impedance level with an angulaer band-edge fre-
quency w, of 12.387 x 10? radians per second. The values of the in-
ductances and capacitances used in the lumped-constant circuit are
obtained from the low-pass prototype by means of Eqs. (4.04-3) and
(4.04-4). That is, all inductances in the low-pass prototype are mul-
tiplied by 50/(12.387 x 10%) and all capacitsnces are multiplied by
1/(50 x 12,387 x 10%). Sometimes, instead of working with inductance
in henries and capacitance in farads, it is more convenient to work in
terms of reactance and susceptance. Thus, a reactance w;L; for the
prototype becomes simply w L, = (w\L;)(R)/Ry) for the actusl filter,
where R is the resistance of one of the prototype terminations and R,
is the corresponding resistance for the scaled filter. Also, the shunt
susceptances w,C, for the prototype become w,C, = (w|C,)(Ry/R,) for the
scaled filter. This latter approach will be utilized in the numerical
procedures about to be outlined.

The semi-lumped realization of a portion of the filter is shown in
Fig. 7.03-2(b). It is constructed of alternate sections of high-
impedance (Z, = 150 ohms) snd low-impedance (Z; = 10 ohms) coaxial line,
chosen so that the lengths of the high-impedance line would be approxi-
mately one-eighth wavelength at the equal-ripple band.-edge frequency of
1.971 Gc. The whole center conductor structure is held rigidly aligned
by dielectric rings (€_ = 2.54) surrounding each of the low-impedance
lengths of line. The inside diameter of the outer conductor was chosea
to be 0.897 inch so that the 2.98-Gc cutoff frequency of the first
higher-order mode’ that can propagate in the low-impedance sections of
the filter is well above the 1.971-Gc band-edge frequency of the filter.
The values of the inductances and capacitances in the lumped-constant
circuit, Fig. 7.03-2(a), are realized by adjusting the lengths of the
high- and low-impedance lines respectively.

* Ae discunned in Sec. 5.03, the first higher mode san ccour when £ 2 1.51(b + QIVA,, where £ is ia Ge
and b and ¢ are the outer and inner diameters in inches.
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The exact equivslent circuit of the semi-lumped realization of the
first three ¢nd elements of the filter are shown in Fig. 7.03-2(¢). In
this figure C,° is the fringing capacity at the junction of the 50-ohm
terminating line and the 150-ohm line representing the first element in
the filter, as determined from Fig. 5.07-2. Similarly, C, is the fringing
capacitance at each junction between the 10-ohm and 150-ohm lines in the
filter. It is also determined from Fig. 5.07-2, neglecting the effect
on fringing due to the dielectric spacers in 10-ohm lines. The velocity
of prop .gation v, of a wave along the 150-ohm line is equal to the veloc-
ity of light in free space while the velocity of propsgation v, along the
10-ohm line is v, /Ve,.

Some of the 150-ohm lines in this filter attain electrical lengths
of approximately 50 electrical degrees at the band-edge frequency w,.
For lines of this length it has been found that the pass-band bandwidth
is most closely apr-oximated if the reactances of the lumped-constant
inductive elements at frequency w, are matched to the exact inductive
reactance of the transmission line elements at frequency w, using the
formulas in Fig. 7.02-1. The inductive reactance of the 10-ohm lines
can also be included as a small negative correction to the lengths of
the 150-ochm lines. Following this procedure we have

w, 1 2, ,w
will, = Z, sin < ! l)" '2: ! ohms (7.03-1)
Yy t

The capacitance of each shunt element in the low-pass filter in
Fig. 7.03-2(a) is realized as the sum of the capacitance of a short
length of 10-ohm line, plus the fringing capacitances between the 10-ohm
line and the adjacent 150-ohm lines, plus the equivalent 150-ohm-line
capacitance as lumped at the ends of the adjacent 150-ohm lines. Thus,
we can determine the lengths of the 10-ohm lines by means of the
relations



Y 10, Yiw, Kilw,

AT171
C. = + 2C + + h .03-
w,Cy v N o™ 7, mhos  (7.03-2)
Yl w Y. l.w Y, I w
®.C . lll+2cw+h31+551
174 v, 11 zvh 2”h
etc.

In Eqs. (7.03-1) above, the first term in each equation on the right
is the major one, and the other terms on the right represent only small
corrections. Thus, it is convenient to start the computations by neg-
lecting all but the first term on the right in each of Eqs. (7.03-1),
which makes it possible to solve immediately for preliminary values of
the lengths 1, l,, I, etc., of the series-inductive elements. Having
approximate values for ll, 13, lg, ete., 1t is then possible to solve
each of Eqs. (7.03-2) for the lengths lz' 14, l‘, etc., of the capacitive
elements. Then, having values for 1 ,, I,, 1l , etc., these values may
then be used in the correction terms in Eqs. (7.03-1), and Eqs. (7.03-1)
can then be solved to give impro“ed values of the inductive element
lengths 1, Ly lg, etc.

The iterative process described above could be carried on to insert
the improved values of [,, l,, ly, etc., in Eq. {(7.03-2) in order to re-
compute the leagths 1,, I, 1l ,, etc. However, this is unnecessary because
the last two terms on the right in each of Eqs. (7.03-2) are only small
correction terms themselves, and a small correction in them would have
negligible effect on the computed lengths of the capacitor elements.

The reactance or susceptance form of Eqs. (7.03-1) and (7.03-2) is
convenient because it gives numbers of moderate size and avoids the
necessity of carrying multipliers such as 107'2, The velocity of light
is v = 1,1803 x 101°//?: inches per second, so that the ratios wl/u.
end @, /v, are of moderate size.

The effect of the discontinuity capacitances C,o and Y, 1,/2v, at
the junction between the 50-ohm lines terminating the filter and the
150-ohm lines comprising the first inductive elements of the filter can
be minimized by increasing the length of the 150-ohm lines by a small
amount lo to simulate the series inductance and shunt capacitance of a



short length of 50-ohm line. The necessary line length I, can be
determined from the relation

Zhlo
Uy Series Inductance
20 = 50 = = - - -
Y, Shunt Capacitance
(. +
fo 2v,

Solving for I gives

@, C v, 1,
g, =z | L= (7.03-3)
/4‘.(4)‘ 22"'2

Figure 7.03-3(a) <hows the dimensions of the filter determined using
the above procedures, while Fig. 7.03-3(b) shows the measured response
of the filter. It is seen that the maximum pass-band ripple level as
determined from VO>WR measurements is ahout 0.12 db over most of the pass
band while rising to 0.2 dh near the edge of the pass band. It is
believed that the discrepancy hetween the measured pass-band ripple
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level and the theoretical 0.1-db level is caused primarily by the fact
that the approximate prototype low-pass filter was used rather than the
exact prototype as given in Table 4,05-2(b). The actual pass-band at-
tenuation of the filter, which includes the effect of dissipation loss

in the filter, rises to approximately 0.35 dh near the edge of the pass
band. This behavior is typical and is explained by the fact that d¢/dw',
the rate of change of phase shift through the low-pass prototype filter
as a function of frequency, is more rapid near the pass-band edge, and
this leads to increased attenuation as predicted by Eq. (4.13-9). A more

complete discussion of this effect is contained in Sec. 4.13.

This filter was found to have some spurious responses in the vicinity
of 7.7 to 8.5 Gc, caused by the fact that many of the 150-ohm lines in the
filter were approximately a half-wavelength long at these frequencies. No
other spurious responses were ohserved, however, at frequencies up through
X-band. In situations where it is desired to suppress these spurious
responses it is possible to vary the length and the diameter of the high-
impedance lines to realize the proper values of series inductance, so
that only a few of the lines will be a half-wavelength long at any fre-
quency within the stop band.

The principles described above for approximate realization of low-
pass filters of the form in Fig. 7.03-2(a) can also be used with other
types of filter constructions. For example, Fig. 7.03-3(c) shows how the
filter in Fig. 7.02-3(a) would look if realized in printed-circuit, atrip-
line construction. The shaded area is the copper foil circuit which is
photo-etched on a sheet of dielectric material. In the assembled filter
the photo-etched circuit is sandwiched between two slabs of dielectric,
and copper foil or metal plates on the outside surfaces serve as the
ground planes. The design procedure is the same as that described above,
except that in this case the line impedances are determined using
Fig. 5.04-1 or 5.04-2, and the fringing capacitance C, in Eqs. (7.03-2)
is determined using Fig. 5.07-5. It should be realized that C; in
Fig. 5.07-5 is the capacitance per unit length from one edge of the
conductor to one ground plnne.. Thus, C, in Eqs. (7.03-2) is C, -2C;W,,

where W, is the width of the low-impedance line sections [Fig. 7.03-3(c})..

The calculations then proceed exactly as described before. The relstive

" It in computing C; from Cy/e in Fig. 5.07-5, ¢ » 0.285¢, & 10713 ia wed, then Cf vill have the wite of
fareda/inch.
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advantages and disadvantages of printed-
circuit vs. coaxial construction are
discussed in Sec. 7.01.

Low-Pass Filters Designed from
Prototypes Having Infinite Attenuation
at Finite Frequencies—The prototype
fileers tabulated in Chapter 4 all have

their frequencies of infinite attenuation
(see Secs. 2.02 to 2.04) at w = ©. The

corresponding microwave filters, such as

] ¥ Wep Weo
W ——

A-3327-2%0

the one just discussed in this section,
FIG. 7.03-4 TCHEBYSCHEFF FILTER . . .
CHARACTERISTIC WITH are of a form which is very practical to

INFINITE ATTENUATION build and commonly used in microwave en-
POINTS AT FINITE gineering. However, it is possible to
FREQUENCIES design filters with an even sharper rate
of cutoff for a given number of reactive
elements, by using structures giving in-
finite attenuation at finite frequencies. Figure 7.03-4 shows a
Tchebyscheff attenuation characteristic of this type, while Fig. 7.03-5
shows a filter structure which can give such a characteristic. Note that
the filter structure has series-resonant branches connected in shunt,
which short out transmission at the frequencies w,, and wy,, and thus
give the corresponding infinite attenuation points shown in Fig. 7.03-4.
In addition this structure has a second-order pole of attenuation at
w » ® gince the w,, and w,, branches have no effect at that frequency,
and the inductances L,, L,, and L, block transmission by having infinite
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series reactance, while C, shorts out transmission by having infinite

shunt susceptance (see Sec. 2.04).

Filters of the form in Fig. 7.03-5 having Tchebyscheff responses
such as that in Fig. 7.03-4 ure mathematically very tedious to design.
However, Saal and Ulbrich? have tabulated element values for many cases.
1f desired, of course, one may obtain designs of this same general class
by use of the classical image approach discussed in Secs. 3.06 and 3.08.
Such image designs are sufficiently accurate for many less critical

applications,

COPPER FOIL
GROUND PLANES

LOW-L0SS
DIELECTRIC

PRINTED CIRCUIT

IN CENTER
TOP VIEW OF COPPE oy
P VIEW L]
PRINTED CIRCUIT :'w'legtwl
a-3920-282

FIG. 7.03-6 A STRIP-LINE PRINTED-CIRCUIT FILTER WHICH CAN
APPROXIMATE THE CIRCUIT IN FIG. 7.03-5

Figure 7.03-6 shows how the filter in Fig. 7.03-5 can be realized,
approximately, in printed-circuit, strip-line construction. Using this
construction, low-loss dielectric sheets are used, clad on one or both
sides with thin copper foil. The circuit is photo-etched on one side of
one sheet, and the printed circuit is then sandwiched between the first
sheet of dielectric and a second sheet, as shown at the right in the
figure. Often, the ground planes consist simply of the copper foil onthe
outer sides of the dielectric sheets.

The L's and C's shown in Fig. 7.03-6 indicate portions of the strip-
line circuit which approximate specific elements in Fig. 7.03-5. The
various elements are seen to be approximated by use of short lengths of
high- and low-impedance lines, and the actual dimensions of the line

n

©ra e A vz B
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elements are computed as discussed in Sec. 7,02, In order to obtain best
accuracy, the shunt capacitance of the inductive Jine elements should be
compensated for in the design, Ny Fig, 7.02-1(c) the lengths of the
inductive-line-elements can be computed by the equation

v wil,
I, = — sin”"! —
] b
1 “h

and the resulting equivalent capacitive susceptance at each end of the

pi-equivalent circuit of inductive-line-element k is then

o l ’J)ll‘
' VA Ri%

(7.03-4)

where «; is the cutoff frequency, Zh is the characteristic impedance of
inductive-line-element k, [, is the length of the line element, and v is
again the velocity of propagation. Now, for example, at the junction of
the inductive line elements for L,, L,, and Ly in Fig. 7.03-6 there is
an unwanted total equivalent capacitive susceptance of w,C, = wl(C")l +
wy (€l , * @ €0y due to the three inductance line elements, The un-
wanted susceptance «,C, can be compensated for by correcting the sus-

ceptance of the shunt branch formed by L, and ¢, so that
By = € +B; (7.03-5)
where B, is the susceptance at frequency w, of the branch formed by L,
and C, in Fig. 7.03-5, and B is the susceptance of a "compensated” shunt
branch which has L, and C, altered to become L and C§ in order to com-

pensate for the presence of C,. Solving Eq. (7,03-5) for w,C; and w L}
gives

wl 2
0 €F = @€ - wC 1"(—) (7.03-6)
wo.
1 (“’-l 2
wly = —(‘—-> (7.03-7)
wlC; wﬂ’c
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vhere
wl 2
(;J——) L wlL2w102 . (1. 03'8)

Then the shunt brench is redesigned using the compensated values L] and
C3 which should be only slightly different from the originai values
computed by neglecting the capacitance of the inductive elements.

In filters constructed as shown in Fig. 7.03-6 (or in filters of
any snalogous practical construction) the attenuation at the frequencies
We, 8nd wy, (see Fig. 7.03-4) will be finite as & result of losses in
the circuit. Nevertheless, the attenuation should reach high peaks at
these frequencies, and the response should have the genera) form in
Fig. 7.03-4, at least up to stop-band frequencies where the line elements
are of the order of a quarter-wavelength long.

Example—One of the designs tabulated in Ref. 2 gives normalized

element vaJues for the circuit in Fig. 7.03-5 which are as follows:

z, = 1.000 L, = 0.7413
L] = 0.8214 c, = 0.9077
Ly = 0.3892 Ly = 1.117
C; = 1.084 C, = 1.136
L, = 1.188 w] = 1.000

This design has a maximum pass-band reflection coefficient of 0.20
(0.179 db attenuation) and a theoretical minimum stop-band attenuation
of 38.1 db which is reached by a frequency w’' = 1.194 w{. As an example
of how the design calculations for such a filter will go, calculations
wil] be made to obtain the dimensions of the portions of the circuit in
Fig. 7.03-6 which approximate elements L, to L,. The impedance Jevel is
to be scaled so that Z; = 50 ohms, and so that the un-normalized cutoff
frequency is f, = 2 Gec or w, = (27)2 X 10° = 12.55 x 10° radiens/sec.

A printed-circuit configuration with a ground-plane spacing of
b = 0.25 inch using dielectric with €, = 2.7 is assumed. Then, for the
input and output line /?'Z. = 1,64 (50) = 82, and by Fig. 5.04-1,
W,/b = 0.71, and a width Wy = 0,71 (0.25) = 0.178 inch is required.
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Now v = 1,1808 x 10!%//¢, inches/sec

x 1010
L. 1.1803 x 10 . 0.573 .

@y (1.64)(12.55 x 10°)

For inductor L, w,L, = w|L{(Z,/Z}) = 1(0.8214)(50)/1 = 41.1 ohms.
Assuming a line impedsnce of Z, = 118 ohms, /?:Zl = 193, and Fig. 5.04-1
calls for a line width of W, = 0.025 inch. Then the length of the
L,-inductive element is

wl, - 41.1
l, = — sin! » 0.573 sin”! === = 0.204 inch
W, Z, 118

The effective, unwanted capacitive susceptance at esch end of this
inductive line is

1 "’n) L 0.204
c), = =(—=)= « —==— . o.001 h
@6y = 3 (» Z,  2(0.573)118 5. mhe

After some experimentation it is found that ir order to keep the
line element which realizes L, from being extremely short, it is desirable
to use a lower line impedance of Z’ = 90 ohms, which gives a strip width
of ¥, = 0.055 inch. Then wL, = w;L (2,/2]) = 19.95 and

o ks 19.95 :
l, = —sin"} — = 0.573 sin”! = 0.128  inch
@y Z,

Even a lower value of Z, might be desirable in order to further lengthen
ly s0 that the large capacitive piece realizing C, in Fig. 7.03-6 will be
further removed from the L, and L, lines. However, we shall proceed with
the sample calculations. The effective unwanted capacitance susceptance
at each end of I, is

w 1 0.128

— e e—— . 001 mho
v Z, 2(0.573)90 0.0012

1
@y (C,,), "3
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Similar calculations for L, give I, = 0.302 inch and
w,(C,) 3 = 0.0022 mho, where Z; is taken o be 118 ohms as was Z,. Then

the net unwanted susceptance due to line capacitance at the junction of
L, L, and L, is

wl(“L = wl(C")l + wl((.‘,")2 + wl(Cw)J = 0.0049 mho .

!

Now @,C, = w|C}(Z}/Z,) = 1(1.084)/50 = 0.0217 mhos. Then by Eq. (7.03-8)

wy\2
<——-> = 19.45(0.0217) = 0.422,

wo.
and by Eq. (7.03-6) the compensated value for ,C, is
@, Cs = 0.217 - 0.0049 (1 = 0.422] = 0.0189 who .

Now the compensated value for wl, is

“’121
aﬁL; - <-——> — = 22.3 ohms .

w, [ 4
® g wlcz

Then the compensated value for the length l, of the line for L, is

- 22.3
I, = 0.573 sin! —= =« 0.144 inch
2 90

To realize C, we assume a line of impedance Z, = 30.5 ohms which calls

for a strip width of ’cz » 0.362 inch. This strip should have a capacitive
susceptance of w;C§ = ,(C ), = 0.0189 = 0.0012 = 0.0177 mho. Neglecting
end-fringing, this wil] be obtained by a strip of length

v
lc, = [wC§ - v (C,),] zc, ‘-"_1

= 0.0177(30.5)(0.573) = 0.309 inch
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To correct for the fringing capacitance at the ends of this strip we
first use Eq. (7.02-1) to obtain the line capacitance

84.73Ve, 84.73(1.64)

C = Zcz = 305 = 4.55 puf per inch

Then by Fig. 5.07-5, C;/e = 0,45, and by Eq. (7.02-2) we need to subtract

about
- [
AL . 0.450Wc' (Ei)
C €

0:45000.362) (5.9)(0.45) = 0.0435 inch
4.55

from each end of the capacitive strip, realizing C; in order to correct

for end-fringing. The corrected length of the strip is then

lc2 - 2A1 = 0.222 inch. This calculation ignores the additional

fringing from the corners of the €, strip (Fig. 7.03-6), but there ap-

pear to be no satisfactory data for estimating the corner-fringing. The

corner-fringing will be counter-balanced in some degree by the loss in

capacitance due to the shielding effect of the line which realizes L,.

In this manner the dimensions of the portions of the circuit in
Fig. 7.03-6 which are to realize L;, L,, C,, and Ly in Fig. 7.03-5 are
fixed. It would be possible to compensate the length of the line
realizing L, so as to correct for the fringing capacitance at the junction
between Ll and Zo (Fig. 7.03-6), but in this case the correction would be
very sma)) and difficult to determine accurately,

SEC. 7.04, LOW-PASS CORRUGATED-WAVEGUIDE FILTER

A low-pass* corrugated-waveguide filter of the type illustrated
schematically in Fig. 7.04-1 can be designed to have a wide, well-matched

* Thet is the filter is lew-pass in nature exgept for the cutoff effect of the waveguide,
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SOURCE: Proc. IRE (See Ref. 4 by S. B. Cohn)

FIG. 7.04-1 A LOW-PASS CORRUGATED WAVEGUIDE FILTER

pass band and a wide, high-attenuation stop band, for power propagating
in the dominant TE,, mode. Because the corrugations are uniform across
the width of the waveguide the characteristics of this filter depend

only on the guide wavelength of the TE ;, modes propagating through the
filter, and not on their frequency. Therefore, while this type of filter
can be designed to have high attenuation over a particular frequency band
for power propagating in the TE,, mode, it may offer little or no attenu-
ation to power incident upon it in the TE,, or TE;, modes in this same
frequency band, if the guide wavelengths of these modes falls within the
range of guide wavelengths which will give a pass band in the filter
response.

A technique for suppressing the propagation of the higher-order TE, ,
modes, consisting of cutting longitudinal slots through the corrugations,
“waffle-iron’ filter, is described in Sec. 7.05. However,
the procedure for designing the unslotted corrugated waveguide filter
wil] be described here because this type of filter is usefu) in many ap-
plications, and an understanding of design techniques for it is helpful
in undersctanding the design techniques for the waffle-iron filter.

thus meking a

The design of the corrugsted waveguide filter presented here follows
closely the image parameter method developed by Cohn** When b < 1 the
design of this filter can be carried out using the lumped-element proto-
type approach described in Sec. 7.03; however, the present design applies
for unrestricted values of b, Values of |’ are restricted, however, to

m



be greater than about b'/2 so that the fringing fields at either end
of the line sections of Jength I’ will not interact with each other.

Figure 7.04-2 illustrates the image parameters of this type of
filter as 8 function of frequency. The pass band extends from f_, the
cutoff frequency of the waveguide, to f,, the upper cutoff frequency

270° L p
180°|-

90}~

WASE ATTENUATION — o
IMAGE PHASE SMIFY — 8

NORMALIZED MASE
ADMITTANCE y,
~

o [
(Agra) (Agehgm) (Agedg,) hg*Ageo) Agehge)

A-3927-284

FiG. 7.04-2 IMAGE PARAMETERS OF A SECTION OF A
CORRUGATED WAVE GUIDE FILTER

of the first pass band of the filter. At the infinite attenuation fre-
quency, f,, the image phase shift per section changes abruptly from 180
to 360 degrees. The frequency f, is the lower cutoff frequency of the
second pass band. The normalized image admittance y, of the filter is

maximum at f_  (where the guide wivelength K‘ = ®) and zero at f, (where
L A.,).

The equivalent circuit of a single half-section of the filter is
illustrated in Fig. 7.04-3. For convenience all admittances are normalized
with respect to the waveguide characteristic admittance of the portions of
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FiG. 7.04-3 NORMALIZED EQUIVALENT
CIRCUIT OF A WAVEGUIDE
CORRUGATED FILTER
HALF-SECTION
Y9y ond yo, ore normalized
caerccm'i stic admittances
and y, is the normalized
image admittance

the filter of height b and width a. Thus, the normalized characteristic
admittance of the terminating Jines are b/b,, where b and b, are defined
in Fig. 7.04-1.

The half-section open- and short-circuit susceptances are given by

- -
1 U - .
bue = 5 tan 1’;- + can~! (85)) (7.04-1)
L s .
1 nl' 1
b" - g-t.n T + tan =1 (Sb:e) (7.04-2)
S .
where
. nl
b,, = tan ()\—) tB,, (7.04-3)
s
, ml
b', = -cot (T)+ B, + 2, (7.04-4)
s
and
$ = b'/b
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The susceptances marked oc are evaluated with the ends of the wires on
the right in Fig. 7.04-3 left open-circuited, while the susceptances
marked sc are evaluated with the ends of the wires on the right al)

shorted together at the center line,

When 8 $ 0.15, the shunt susceptance B , is given accurately by the

equation
* cant knlF
B 2 lin L= 0,238 + "o 1 gt
e2 = )\— n g- —F— 0.0 ;\—' (7.04-5)
[ [ ]
A=l

and the series susceptance B | has the value

® Ik IF

y esch
24 [
Bel“ — E -——~F————- (7.04-6)
[

k=]

wvhere

e

Feyew)

The normalized image admittance Y; Vyoey" is

&' &'
cot :; (' N tan 2) b4 tan 3

ee¢ 8 e 8
vy =3 = = (7.04-7)
cot — cot —
' 2 ' 2)
b - b -
se 5 (X 5

and the image propagation constant for a full section is

y
y = a+ jB = 2 tanh”!} =:

Yae



or

an — cot ~
° 8 se 8

t 9' ta 9'
[+] — n —
Y 2
b.t‘ = 8 bac + 8

where 6' = 2ﬂl'/k' is the electrical length of the low-impedance lines
of length 1’ *

y = 2 tanh™!

(7.04-8a)

The attenuation per section of a corrugated filter can be computed
by use of Eq. (7.04-8a) (for frequencies where the equivalent circuit in
Fig. 7.04-3 applies). llowever, once the image cutoff frequency of the
sections has been determined, with its corresponding guide wavelength
K'l, the approximate formula

A
@« = 17.372 cosh”! -:'—‘- db/section (7.04-8b)

is convenient, where K. is the guide wavelength at a specified stop-band
frequency. Equation (7.04-8b) is based on Eq. (3.06-7) which is for
Jumped-element filters. Thus, Eq. (7.04-8b) assumes that the corrugations
are smal] compared to a wavelength. Note that a section of this filter is
defined as the region from the center of one tooth of the corrugation to
the center of the next tooth. The approximate total attenuation is, of
course, 0 times the numbher of sections.

Equations (7.04-7) and (7.04-8a) can be interpreted most easily with
the aid of Fig. 7.04-4, which shows a sketch of the quantities in these
equations as a function of reciprocal guide wavelength. It is seen that
the image cutoff frequency f, at which y, = 0, is determined by the
condition that

6[
tan —2—

blet , -0 . (1.04-9)

* The equations wsed here for yr end 7 are essentiolly the seme as equations which con be found in
Teble 3.03-1, Their validity for the case in Fig. 7.04-3, where there sre more thea twe terminals on
the right, can be proved by wae of Barclett's Bisection Theoreas
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FIG. 7.04-4 GRAPH OF QUANTITIES WHICH DETERMINE CRITICAL FREQUENCIES
IN CORRUGATED-WAVEGUIDE FILTER RESPONSE

The infinite attenuation frequency f, is determined by the condition
that

bl = b, . (7.04-10)

Finally, the image cutoff frequency f, at the upper edge of the first
stop band is determined from the condition that

¢
, cot 9
3¢ 5

= 0 . (7.04-11)

Design Procedure—One can design corrugated waveguide filters by
means of Eqs. (7.04-1) to (7.04-11), using computed values of b, and b,
or the values plotted by Cohr® for l/b = 1/m, 1/27, and 1/4m. Alterna-
tively one can use the values of b'"and b;. derived from the equivalent
circuit of a waveguide E-plane T-junction as tabulated by Marcuvité for
1/b' §1,0. However, it is generally easier to use the design graphs

Lot méf >§



(Figs. 71.04-5, 7.04-6, and 7.04-7) prepared by Cohn,” which are sccurate
to within a few percent for 5 £ 0.20.* In using these graphs the first
step is to specify f_, f,, and f,. The width a is then fixed, since

5.9
7y

(7.04-12)

a = (

where a is measured in inches and (fc)c‘

and A‘, measured in inches are then calculated in the usual way from the

in gigacycles. Values of K.l

relation
11.8

A.n -
Jui,- o,

using n = 1 and n = ®©,

(7.04-13)
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SOURCE: Proc. IRE (Ses Ref. 7 by S. B. Cohn)

_ FIG, 7.04-5 DESIGN GRAPH GIVING THE PARAMETER b
USED IN SEC. 7.04

* 1o will be aot_.o! that uwse of Coba's graphs bypasses the use of Eqa, (7.04-5) ead (7.04-6), whieh were
sseurate for 3 = 0.18,
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The next step in the filter design is to choose s convenient value
of 1/b., Using this value of l/b and the value of A.l/k'. one then enters
Fig. 7.04-5 and determines b/k‘1 and bo/kll, thus fixing the values of
b, by, and L. Here b, is the terminating guide height which will match
the filter as X approaches infinity. Then one determines the design
parameter G frou Fig. 7 04-6 in terms of l/b and b/h Finally, one
assumes a value of 5 £ 0.20 and calculates I' from the relation

1 b
can— = w5 — |6 -2 lsos| . (7.04-14)
)\ [ X.l n $ i

If 1'/b' is less than 0.5, a different value of 5 should be used.

The image admittance in the pass band of -he filter, normalized to
a guide of height b, is given to very good approximation by

(7.04-15)

where k‘l is the guide wavelength at frequency f,. In order that a
perfect match to the filter be achieved at some frequency f_ (for which

x‘ . A..), the height b, of the terminating guide may be adjusted so that

by ® — (7.04-16)

If by = 0.7 b, a fairly good over-all match in the pass band is obtained.
The amount of mismatch can be estimated by use of Eq. (7.04-15) and

Fig. 3.07-2, where the abscissa of Fig. 3.07-2 is a = yb,/6. A superior
alternative for achieving a wide-band match is to use transforming end
sections as described in Sec. 3.08. In this case, one sets bo -~ br' both
for the interna] sections and for the transforming end sections. However,
the internal sections are designed to have a cutoff at K.l, while the

transforming end sections are designed to have their cutoff at about
A‘x/l.S.




An explicit relation for b/Alo in terms of /b is also presented
in Fig. 7.04-7, which is often useful in design work.

Unfortunately Cohn's” simplified design procedure does not enable
one to specify f,. However, it is generally found that f, is only about
20% higher in frequency than f,. Therefore, it is wise in any desiygn
situation to place fy quite near the upper edge of the prescribed stop
band.

The length ['/2 of the low-impcdance line of height b'; connecting
to the terminating line of height b,, must be reduced by an amount al'’
to account for the discontinuity susceptance B of the junction. This 1is
illustrated in Fig. 7.04-1. The amount of Al' that the line should bLe

decreased in length is given by the expression

b' [N B
Al - — | — (7.04-17)
o7 bT Yo

where Y is the characteristic admittance of the terminating line. The

appropriate value of[(A‘/bT)(B/Yo)] is easily determined from Fig. 5.07-11.

Two examples of this procedure as applied to the design of waffle-

iron filters will be presented in the next section.

SEC. 7.05, LOW-PASS WAFFLE-IRON FILTERS
HAVING VERY WIDE STOP BANDS

This section desrribes the desiygn of low-pass corrugated waveguide fil-
ters containing longitudinal slots cut through the corrugations.® These types
of filter, known as waffle-ironiiiters, have wide, well matched pass bands
and wide, high-attenuation stop bands which ranbe made to be freeof spurious

responses for all modes. Several specitic designs will be discussed.

Figure 7.05-1 is a drawing of a walfle-iron filter, illustrating the
metal islands, or bosses (from which it derives its name) lying between
the longitudinal and transverse slots. In these filters it is essential
that the center-to-center spacing of the bosses be no greater than a half
of a free-space wavelengih at the highest required stop-band frejuency.
Under these conditions the waffle-iron structure is essentially isotropic
and has the same characteristics, at a given frequency, for TEM waves

.
This type of filter was originated by S. B, Cohn.
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FIG. 7.05-1 DETAILS OF A TYPICAL WAFFLE-IRON
FILTER

propagating through it in any direction. Thus, since any TE_, mode can

be resolved into TEM waves traveling in different directions through the
filter it is seen that the properties of the waffle-iron filter for TE ,
modes are functions of frequency only. This is in contrast to the un-
slotted corrugated waveguide filters described in Sec. 7.04, whose response
properties involve guide dimensions and mode numbers also, and are functions
of guide wavelength.

Incident modes having horizontal compo: ents of electric field can
excite slot modes that will propagate through the longitudinal slots in
the filter at frequencies where the slot height b is greater than one half
a free-space wavelength. Usually these modes are troublesome only at the
highest stop-band frequencies. However, when unslotted step transformers
are used to match the waffle-iron filters to waveguide of the standard

387



A% height, the reduced height of the stepped
} | ! ‘ transformers effectively suppresses the
| ' i L . .
e | ___1_1; incident modes with horizontal components
| ‘ L of electric field which could otherwise
r—_‘ ' F-_?_T l excite slot modes in the filters.
i '_L::i__J_l'% . Design Utilizing Cohnja Corrugated
r& ¢ 3™ Filter Data—Waffle-iron filters can be de-
L——-——i—————J signed approximately using the technique
{a) described in Sec. 7.04 if the guide wave-

length A' used there is everywhere replaced
by the free-space vavelength A,. As an

{ It" __m:,“'r,_‘l, % illustration we will consider the design of
L
ghihhi

v T Waffle-Tron-Filter-1I, used with WR-650 wave-
— guide of width @ = 6.5 inches. We use the
SECTION A—A
(o1 notation in Sec. 7.04 and that shown in

2-3827-20 Fig. 7.05-2, and choose f, = 2.02 Gc

(Ay = 5.84 inches), f, * 5.20 Gc
FIG. 7.05-2 A SINGLE-FILTEK

SECT'ONOFA (A'O = 2,27 inches), so that )\l/)\Q = 2,57,
WAFFLE-IRON Letting I/b = 0.318 = 1/7, we find from
FILTER Fig. 7.04-5 that b/, = 0.077, and

b/h) = 0.275, so that b, = 0.450 inch,
b = 1,607 inches and ! = 0.511 inch. Referring to Fig. 7.04-6 we find
the design parameter G to he 3.85, Now, we make the assumption that we
want five bosses across the ¢ = 6.5-inch width of the filter so that
Il +1' =6.5/5 = 1.3 inches and !' = 0,789 inch. From various tris)
designs, it has been found that for a 3:1 stop-band width, five bosses
is about optimum in terms of giving convenient dimensions. For narrower
stop-band widths more bosses can be used. Substituting the values of G
and I’ into Eq. (7.04-16) we ind that & = b'/b = 0.176 and since
b = 1.607 inches, b' = 0,282 inch.

The presence of the Jongitudina) slots through the filter has the
effect of decreasing the capacitance per unit length of the low-impedance
lines. This decrease in capacitance can be compensated for by decreasing
the dimension b' for an unslotted filter to b"., The ratio b"/b' is given
approximately by

” ' " g /_;"'_ut
b o2 [m_,(b b ) , AT T (.05-1)

— 4 - -—
T T =N TR b 1 e .
b o



Solving the above equation gives t"/b' » 0.81. However, the filter
described here has the edges of the bosses rounded with a 0.0625-inch
radius to increase its power-handling capacity, and this rounding further
decreases the capacitance of the low-impedsnce lines. Therefore, b"/b’
was chosen to be 0.75, yielding a value of b" = 0.210 inch.

The height of the unslotted terminating guide b, necessary to match
this filter at some pass-band design frequency f, is related to by, the
height to give s match when X' - ® by

by v—— . (7.05-2)

In order to maintain a reasonably good match across the band, f. should
$0.7 f, is desirable. For the best
wide-band match, matching end sections should be used, as will be described
in a following example. Using f_ = 1.3 Gec, Eq. (7.05-2) predicts

by = 0.555 inch. Step transformers were used at each end to match t. .s
guide of height b, to standard guide.

not be too close to f,; typically, f

The attenuation per section in the stop-band region just above the
pass band can be estimated by use of Eq. (7.04-8b), with K. and K'l
replaced by A and A,.

Figure 7.05-3 shows the measured insertion loss of this filter in
the stop band. It is seen to be everywhere greater than 60 db from 2.2
to 5.7 Ge. The VSWR in the 1.25-t0-1.40-Gc required pass band of this
filter was less than 1.08 and the attenuation was less than 0.1 db. As
will be discussed at the end of this section, a broader band of good
impedance match could have been obtained if the filter had been constructed
to start and end in the center of a boss [i.e., at plane 4.4 in
Fig. 7.05-2(a)] instead of in the center of a row of teeth [i.e., in the
plane of one of the dotted lines in Fig. 7.05-2(a)].

Design Using the T-Junction Equivalent Circuit of Marcuvitsz—Though
the method described above is usually easier, waffle-iron filters can
also be designed using the equivalent circuit of a waveguide T-junction
as given by Marcuvitz® when 1/b' $ 1, for arbitrary values of § = b'/b,
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so long as 1’ b' is greater than about 0.5. Cohn's graphs apply only
when 1/’ > 1, so if 1’4’ <1, the use of Marcuvitz's data is the most
convenient. In order to illustrate this procedure we will now describe
the design of Waffle-Iron-Filter-II, used with WR-112 waveguide of width
a = 1.122 inch. It has a pass band extending from 7.1 to 8.6 Gc and a
stop band with greater than 40-db attenuation extending from 14 to 26 Ge.
This filter could also be designed by the technique described above but
the alternate procedure is presented here for completeness.

Figure 7.05-4 illustrates the bottom half of a single section of the
waffle-iron filter together with its equivalent circuit. The part of the
equivalent circuit representing the junction of the series stub with the
main transmission line of characteristic impedance Z, is taken from
Marcuvitz’'s Fig. 6.1-2., (The parameter labeled b/)\. on Marcuvitz's
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curves® in his Figs. 6.1-4 to 6.1-14 should in reality be 2b/)s‘.) The
normalized image impedance of a filter section is

zl
1 +cot£ L+ n’—o-t.lncb'
z: 1 N | 2 \%, zo
Z - '2: Z..Z.‘ - E‘ ¢ <x z; (7-05'3)
l-un——+n'—'nn¢>
2 \Z, z,

vhile the image attenuation constant ¥ = @ + j8 per section is related
to the bisected section open- and short-circuit impedance Z,_ and Z, by
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FIG. 7.05-4 FULL-FILTER SECTION - CROSS SECTION
OF WAFFLE-IRON FILTER AND
EQUIVALENT CIRCUIT
At (¢) the equivalent circuit has been bisected
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e oam[i+0
—_— . =— -d|, 7.05-5
2 AL o2 ] ( )
2 rb -b' ]
LA +d'l, 7.05-
¢ x| 2 ] (7.05-6)

and the remaining parameters are as indicated in Fig. 7.05-4. In applying
Eqs. (7.05-3) and (7.05-4) it has been found that ¢/¢' = 1 is nearly
optimum. Values of ¢/¢’' ~ 2 are to be avoided because they cause the
filter to have a narrow spurious pass band near the infinite attenuation
frequency fgq.

The design of this filter proceeded by a trial and error technique
using Eq. (7.05-4) to determine the dimensions to yield approximately
equal attenuations at 14 and 26 Gc. In this design the curves for the
equivalent-circuit element values for series T-junctions in Marcuvitz®
were extrapolated to yield equivalent-circuit parameters for l'/b ~ 1.17,
and K‘ was replaced by A, The choice of dimensions was restricted to
some extent in order to have an integral number, ®=, of bosses across the
width of the guide. The value of m was chosen to be 7. The calculated
attenuation per section was calculated to be 7.6 db at 14 Gc and 8.8 db
at 26 Gc. The total number of sections along the length of the filter
was chosen to be 7 in order to meet the design specifications. Reference
to Eq. (7.05-1) showed that 5" was within 5 percent of b', s0 b" = b’ was

used. The final dimensions of the filter obtained by this method are
those shown in Fig. 7.05-1.

The normalized image impedance Z,/Z, of the filter was computed from
Eq. (7.05-3) to be 2.24 at 7.9 Gec. Thus, it is expected that the height
by of the terminating guide shouvld be

b' LI 'z_'- (7-05'7)



or 0.036 x 2,24 = 0.080 inch. Experimentally, it was determined that
the optimum value for b, is 0.070 inch at 7.9 Ge.

This filter was connected to standard WR-112 waveguide by means of
smooth tapered transitions which had a VSWR of less than 1.06 over the
frequency band from 7.1 to 8.6 Gc, when they were placed back-to-back.
The measured insertion loss of the filter and transitions in the stop
band was less than 0.4 db from 6.7 to 9.1 Gc while the VSWR was less than
1.1 from 7 to 8.6 Gc. The measured stop-hand attenuation of the filter
is shown in Fig. 7.05-5, and it is seen to agree quite closely with the

theoretical analysis.

50 T T T — T
40 — —
e Or _
|
o
< 20 =
10— —
o ] i 1 — ]
[+ 10 12 ) [ 3 26 20 30

FREQUENCY — Ge¢
A-3327-263

FIG. 7.05-5 STOP-BAND ATTENUATION OF
WAFFLE-IRON FILTER I

No spurious responses were measured on either of the above described
filters in the stop band when they were terminated by centered waveguides.
However, if the terminating waveguides are misaligned at each end of the
filter, it is found that spurious transmissions can occur when A < 2b,
These spurious responses are caused by power propagating through the
longitudinal slots in the filter in a mode having a horizontal component
of electric field. Thus, it is seen to be essential to accurately align
the vaveguides terminating waffle-iron filters if maximum stop-band width
is desired.

A Third Example with Special End-Sections to Iaprove Impedance
Match—As a final example, the design of a low-pass waffle-iron filter



having integral longitudinally slotted step transformers will be described.
This filter is designed to be terminated at either end with WR-51 wave-
guide. The pass band of the filter extends from 15 to 21 Gec and the stop
band which has greater than 40-db attenuation, extends from 30 to 63 Ge.

A photograph of this filter is shown in Fig. 7.05-6, illustrating the
split-block construction, chosen so that the four parts of the filter would

be easy to machine.

The longitudinal slots in the stepped transformers necessitate that
the design of this filter be different than those described previously.
This occurs because these slots allow modes incident on the transformers
such as the TE;; or TM;, to set up the previously described slot modes,
having horizontal electric fields, which propagate through the filter when
b % A’2. Thus, it is necessary in the design of this filter to choose
b ¥ A2 at the highest stop-band frequency of 63 Gec. In the design pre-
sented here, b = 0.0803 and f, = 24.6 Ge (A, = 0.480 inch). It was de-
cided to use 5 bosses across the width of the guide with | = 0.0397 inch
and !’ = 0.0623 inch. Referring to Fig. 7.04.5 we find by = 0.021 inch,
and from Fig. 7.04-6 we find the design parameter G = 7. Substituting in
Eq. (7.04-16) we find & = 0.139 or &' = 0.0113 inch. We find the reduction
in gap height due to the presence of the longitudinal slots fromEq. (7.05-1),
which predicts 6" b' »0.77 or b" =« 0.0087 inch.

The height b, of a parallel-plate terminating guide that will give a
match at 18 Gc is determined from Eq. (7.04-16' to be 0.031 inch. The
actual height of the longitudinally slotted lines used in this design is
by = 0.030 inch.

In order to further improve the match of this filter over the oper-
ating band, transforming end sections were used at either end having the
same values of b, b", and I, but with !’ reduced from 0.0623 inch to
0.040 inch. This reduction in the value of I' causes the end sections to
have a low-frequency image admittance about 14 percent lower than that of
the middle sections and an image cutoff frequency about 14 percent higher
than that of the middle sections. Figure 7.05-7 shows a sketch of the
image admittance of the middle and end sections of the filter normalized
to the admittance of a parallel-plate guide of height b = 0.0803 inch.

The image phase shift of the end sections is 90 degrees at 21 Gc (the upper
edge of the operating band) and not greatly different from 90 degrees over
the rest of the operating band. The approximate admittance level of the

3%
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filter is transformed to closely approximate the normalized terminating
admittance y, = 2.68 over the operating bend, as indicated in the figure.
A more general discussion of this matching technique is presented in
Sec. 3.08.

The discontinuity capacity at the junction between each end section
and the terminating line was compensated for by reducing the length of
each end section by 0.004 inch as predicted by Eq. (7.04-17).

Quarter-Wave Transformers vith Longitudinal Slots —Quarter-wave
transformers, some of whose sections contained longitudinal slots, were
designed for Waffle-Iron Filter III using the methods presented in
Chapter 6. If there were no longitudinal slots in any of the steps of
the transformers the appropriate transformation ratio to use in the
design of the transformers would be the ratio of the height of the termi-
nating guide, which is 0.255 inch, to the height of the guide which
properly terminates the filter, which in this case is 0.030 inch. Thus,
the transformation ratio would be 0.255/0.030 = 8.5.



If the filters and the step transformers are made from the same
piece of material it is difficult to machine longitudinal slots in the
main body of the filter without machining them in the step transformers
at the end also. However, this difficulty can be avoided if the step
transformers are made as inserts or as removable sections. Alternately,

the step transformers can be designed to include longitudinal slots.

The presence of the longitudinal slots would tend to increase the
transformation ratio about 8 percent since the impedance of a slotted
transformer step is slightly lower than that of an unslotted step. The
procedure used to calculate the impedance of a slotted waveguide is ex-
plained in detail later in this section. Qualitatively, however, it cen
5e seen that the impedance of a slotted waveguide tends to be increased
because the capacity betweer the top and bottom of the waveguide is re-
duced. On the other hand, the slots also reduce the guide wavelength
which tends to decrease the waveguide impedance. Ordinarily it is found
that the net result of these two competing effects is that the impedsnce
of a longitudinally slotted waveguide is less than that for an unslotted
waveguide.

The present design was carried out including the presence of the
slots; however, it is believed that in future designs they may well be
neglected in the design calculations.® The ratio of guide wavelengths
at the lower and upper edge of the operating band of the transformers was
chosen to be 2.50, which allowed ample margin to cover the 2.17 ratio of
the guide wavelengths at the lower and upper edges of the operating band
of the filter. The maximum theoretical pass-band VSWR is 1.023, and five
K./4 steps were used.

The procedure used to account for the presence of the longitudinal
slots in the step transformers is as follows:

One assumes that the impedance Zo. of the longitudinally slotted
guide is

(7.05-8)

¢ Calenlations have shewn that st least in sems cases the correstions for the presense of the slets is
ite spell.
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where Z,(®) is the impedance of the slotted waveguide at infinite
frequency and A, is the cutoff wavelength of the slotted waveguide.

Both Zo(w) and K/Xe are functions of the guide height hi, which is taken
as the independent variable for the purpose of plotting curves of these
quantities. [If Fig. 7.05-2(b) is interpreted as a cross section of
the longitudinally slotted transformers, h, corresponds to b".]

First Z (®) is calculated for several values of h < b [where b is
again as indicated in Fig. 7.05-2(b)] by considering TEM propagation in
the longitudinal direction. Since the line is uniform in the direction
of propagation

84.73 10°1? .
Z,(®) & ——r— ohms (7.05-9)

Co

where C, is the capacitance in farads per inch of length for waveguide a

inches wide. The capacitance C, can be expressed as

C, » Cp +Cu . (7.05-10)

Here the total parallel-plate capacitance C" of the longitudinal ridges
of the waveguide of width a is given approximately by

¢, = 0.225 x 107!? (l,l+ z) h"—‘ farads/inch . (7.05-11)

The total discontinuity capacitance C, of the 2m step discontinuities
across the width of the guide is given approximately by

l
C, = (2a) 2 x0.225 x 10712
4 h‘

(7.05-12)
h, In VT + 1783
tan"! — + farads/inch .
l l/’hi

The cutoff wavelength, A , of a rectangular waveguide with longitudinal
slots is then calculated from the condition of transverse resonance for
the values of h, used above. For this calculation it is necessary to
consider the change in inductance as well as the change in capacitance



for waves propagating in a direction perpendicular to the longitudinal
slots, back and forth across the guide of width a.

We will use static values of capacitance and inductance, and to be
specific, consider that the waves propagating back and forth across the
width of the guide are bounded by magnetic walls transverse to the
longitudinal axis of the guide and spaced a distance w inches apart.
The capacitance per slice w wide, per inch of guide width (transverse

to the longitudinal axis of the guide), is

Cow

_ farads/inch . (7.05-13)
e

The inductance per inch of the same slice is approximately

b +1'b’ . .
L, = 0.032 x 10°¢ £————————71 henries/inch (7.05-14)
w(l + 1)

wvhere all dimensions are in inches. A new phase velocity in the trans-

verse directicn is then calculated to be

v, - I inches/second . (7.05-15)
i;"oco a
The new cutoff wavelength is now
Ay = 2a (-2—) inches (7.05-16)
\Y»

where v is the plane-wave velocity of light in air—i.e.,
1.1803 x 10!° jnches/second.

A graph of Zo. vs. h is then made using Eq. (7.05-8), and from this
graph the guide height, h,, is obtained for each Z‘ of the stepped trans-
former, and also for the optimum filter terminating impedance, all as
previously calculated. Finally, new values of step length are calculated
at the middle of the pass band for each slotted step using the values of
A. computed from the new values of A, by means of the relation
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A e, (7.05-17)

Figure 7.05-8 shows a dimensioned drawing of the filter. The lengths

of the termirating guides at each end of the filter were experimentally
adjusted on a lower-frequency scale model of this filter for best pass-
band match. By this procedure a maximum pass-band VSWR of 1.4, and a
maximum pass-band attenuation of 0.7 db was achieved. The stop-band
attenuation of this filter as determined on the scale model is shown in
Fig. 7.05-9. The circled points within the stop band represent spurious
transmission through the filter when artificially generated higher-order
modes are incident upon it. These higher-order modes were generated by
twisting and displacing the terminating waveguides. The freedom from
spurious responses over most of the stop band in Fig. 7.05-9, even when
higher-order modes were deliberately excited, shows that this waffle-iron
filter does effectively reflect all modes incident upon it in its stop
band.

A Simple Technique for Further Improving the Pass-Band Impedance
Match—1In the preceding examples step transformers were used to match
standard waveguide into waveguide of the proper height needed to give a
reasonably good match into the waffle-iron filter structure. In Waffle-
Iron Filter III, besides a step transformer, additional end sections de-
signed by the methods of Sec. 3.08 were used to further improve the
impedance match. As this material is being prepared for press an ad-
ditional design insight has been obtained, and is described in the
following paragraphs. This insight can improve pass-band performance
even more, when used in conjunction with the previously mentioned
techniques.

Waffle-iron filters starting with half-capacitances (half-teeth) at
either end, as used in the examples so far, are limited in the bandwidth
of their pass band. The reason for this is the change of image impedance
with frequency. This variation is shown in Fig. 3.05-1 for Z,, and Z,,.
The waffle-iron with half-teeth presents an image impedance Z,”, whose
value increases with frequency. (The image admittance then decreases
with frequency, as indicated in Fig. 7.05-7.) However, the characteristic
impedance Z, of rectangular waveguide decreases with frequency as
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FIG. 7.05-9 MEASURED PERFORMANCE OF SCALE MODEL OF
WAFFLE-IRON FILTER |ll SHOWING EFFECT OF
ARTIFICIALLY GENERATED HIGHER MODES
The scale facter was 3.66

indicated by Z; ~ /i--—'(_f-m where f_  is the cutoff frequency of the
waveguide. Thus, while it is possible to match the image impedance Z,
of the filter to the characteristic impedance Z; of the waveguide at one
frequency, Z” and Z, diverge rapidly with frequency, resulting in a

relatively narrow pass band.

By terminating the filter with a half T-section, the image impedance
Z,, (Fig. 3.05-1) runs parallel to the waveguide impedance Z, over a sub-
stantial frequency band; then by matching Z,, to Z, at one frequency,
they stay close together over a relatively wide frequency band. Such a
filter® has been built and is shown in Fig. 7.05-10. This L-band, five-
section filter has circular (instead of square) teeth to improve the
power-handling capacity by an estimated factor® of 1.4. The dimensions
of this filter, using the notation of Fig. 7.05-2, were: b = 1.610 inches,
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SOURCE: Quarterly Progress Report 1, Contract AF 30(602)-2734
(See Ref. 9 by L.eo Young)

FIG. 7.05-10 EXPLODED VIEW OF WAFFLE-IRON FILTER WITH ROUND TEETH
AND HALF-INDUCTANCES AT THE ENDS

b" = 0.210 inch, ¢ = 6.500 inches, center-to-center spacing = 1.300 inches,
tooth diameter = 0.893 inch, edge radius of the rounded teeth is

R = 0.063 inch. This filter is in fact based on the Waffle-Iron Filter I
design, whose stop-band performance is -hown in Fig. 7.05-3.

The new filter (Fig. 7.05-10) had a stop-band performance which almost
duplicates Fig. 7.05-3 (after allowance is made for the fact thest it has
five rather than ten sections), showing that neither the tooth shape

(round, not square), nor the end half-sections (half-T, not half-m) affect
the stop-band performance.

In the pass band, the filter (Fig. 7.05-10) was measured first with
6.500-inch-by-0.375-inch waveguide connected on both sides. The VSWR was
less than 1.15 from 1200 to 1640 megacycles. (It was below 1.08 from
1250 to 1460 megacycles). The same filter was then measured connected to
6.500-inch-by-0.350-inch waveguide, and its VSWR remained below 1.20 from
1100 to 1670 megacycles (as compared to 1225 to 1450 megacycles for 1.2

VSWR or leas with Waffle-Iron Filter I). Thus the VSWR remains low over
almost the whole of L-band.
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The eatimated power-handling capacity of the filter® in Fig. 7.08-10
is over two megawatts in air at stmospheric pressure. This power-handling
capacity was later quadrupled by paralleling four such filters (Chapter 18).

SEC. 7.06, LOW-PASS FILTERS FROM QUARTER-WAVE
TRANSFORMER PROTOTYPES

This section is concerned with the high-impedance, low-impedance
short-line filter, which is the most common type of microwave low-pass
filcer, and which has been treated in Sec. 7.03 in terms of an approxi-
mately lumped-constant structure (Fig. 7.03-1). Such an approximstion
depends on:

(1) The line lengths being short compared to the shortest
pass-band wavelength

(2) The high impedances being very high and the low ones
very low-—i.e., the impedance steps should be large.

There is then a close correspondence between the high-impedance lines
of the actual filter and series inductances of the lumped-constant proto-

type, on the one hand, and the low-impedance lines and shunt capacitances,
on the other.

There is another way of deriving such a transmission-line low-pass
filter, which is exact when:

(1) Al] line lengths are equal (and not necessarily
vanishingly short)

(2) When the step discontinuity capacities are negligible.

When either of these, or both, are not satisfied, approximations have to
be made, as in the design from the lumped-constant prototype. Which one
of the two prototypes is more appropriate depends on which of the two
sets of conditions (1) and (2) above are more nearly satisfied. Whereas
the lumped-constant prototype (Sec. 7.03) is usually the more appropriate
design procedure, the method outlined in this section gives additional
insight, especially into the stop-band behavior, and into the spurious
pass bands beyond.

This second way of deriving the short-line low-pass filter can best
be understood with reference to Fig. 7.06-1. In Fig. 7.06-1(a) is shown
a quarter-wave transformer (Chapter 6) with its response curve. Each
section is a quarter-wave long at a frequency inside the first pass band,
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FIG. 7.06-1 CONNECTION BETWEEN QUARTER-WAVE
TRANSFORMERS (a) AND CORRESPONDING
LOW-PASS FILTERS (b)

called the band center, f;. The “low-pass filter"” is sketched in

Fig. 7.06-1(b). 1Its physical characteristics differ from the quarter-
wave transformer in that the impedance steps are alternately up and down,
instead of forming a monotone sequence; it is essentially the same
structure as the “half-wave filter’ of Chapter 9. Each section is a
half-wave long at a frequency f, at the center of the first band-pass
pass band. However, note that there is also a low-pass pass band from

f = 0to f,, and that the stop band above f, is a number of times as wide
ar tne low-pass pass band. The fractional bandwidth of the spurious pass
band at f, for the low-pass filter has half the fractional pass-band
boadwidth, w, of the quarter-wave transformer. The VSWRs V‘ of the
corresponding steps in the step-transformer and in the low-pass filter
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are the same for both structures, the VSWRs here being defined as equal

to the ratio (taken so as to be greater than one) of the impedances of
adjacent lines.

Low-pass filters are generally made of non-dispersive lines (such
as strip lines or coaxial lines), will be treated as such here. If wave-
guides or other dispersive lines are used, it is only necessary to re-
place normalized frequency f/f, by normalized reciprocal guide wavelength
k.O/X.. Since the low-pass filter sections are a half-wavelength long st
= fo' the over-all length of a low-pass filter of n sections is at most
nw/8 wavelengths at any frequency in the (low-pass) pass band, this being
its length at the low-pass hand-edge, f, = wf;/4. Note that the smaller »
for the step-transformer is chosen to be, the larger the size of the stop
band above f, will be for the low-pass filter, relative to the size of the
low-pass pass band.

Exact solutions for Tchebyscheff quarter-wave transformers and half-
wave filters have been tabulated up to n = 4 (Sec. 6.04); and for maxi-
mally flat filters up ton = 8 (Sec. 6.05); all other cases have as yet
to be solved by approximate methods, such as are given in Secs. 6.06 to
6.09.

The low-pass filter (as designed by this method) yields equal line
lengths for the high- and low-impedance lines. When the impedance steps,
V,, are not too large (as in thewide-band examples of Sec. 6.09), then
the approach described in this section can be quite useful.* Corrections
for the discontinuity capacitances can be made as in Sec. 6.08 If large
impedance steps are used, as is usually desirable, the discontinuity
effects become dominant over the transmission-line effects, and it is
usually more straightforward to use lumped-element prototypes as was done
for the first example in Sec. 7.03.

SEC. 7.07, HIGH-PASS FILTERS USING SEMI-LUMPED ELEMENTS

High-pass filters, having cutoff frequencies up to around 1.5 or
possibly 2.0 Gc can be easily constructed from semi-lumped elements. At
frequencies above 1.5 or 2.0 Gc the dimensions of semi-lumped high-pass

® It should be nesed thes omall inpedence steps iaply s relatively limited amouat of astenuetion. Thus,
sasll steps vill be desired enly in eortain special situsticas.
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filters become so smal]l that it is ususlly easier to use other types of
structures., The wide-band band-pass filters discussed in Chapters 9 and
10 are good candidates for many such applications.

In order to illustrate the design of a semi-lumped-element high-pass
filter we will first describe the general technique for designing a
lumped-element high-pass tfilter from a lumped-element low-pass prototype
circuit. Next we will use this technique to determine the dimensions of
a split-block, coaxial-line high-pass microwave filter using semi-lumped

elements.

Lumped-Element High-Pass Filters from Low-Pass Prototype Filters —The
frequency response of a lumped-element high-pass filter can be related to
that of a corresponding low-pass prototype filter such as that shown in
Fig. 4.04-1(b) by means of the frequency transformation

w e —— (7.07-1)

In this equation ' and w are the angular frequency variables of the low-
and high-pass filters respectively while w; and w, are the corresponding
band-edge frequencies of these filters. It is seen that this transfor-
mation has the effect of interchanging the origin of the frequency axis
with the point at infinity and the positive frequency axis with the nega-
tive frequency axis. Figure 7.07-1 shows a sketch of the response, for
positive frequencies, of a nine-element low-pass prototype filter together
with the response of the analogous lumped-element high-pass filter obtained
by means of the transformation in Eq. (7.07-1).

Equation (7.07-1) also shows that any inductive reactance w'L’ in the
low-pass prototype filter is transformed to a capacitive reactance
~w,wiL'/w = =1/(«C) in the high-pass filter, and any capacitive susceptance
w'C’' in the low-pass prototype filter is transformed into an inductive
susceptance =w,w,C’'/w = =1/(al) in the high-pass filter.

Thus, any inductance L’ in the low-pass prototype filter is replaced

in the high-pass filter by a capacitance

1
wwl’

C » . (7.07-2)
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FIG. 7.07-1 FREQUENCY RESPONSE OF A LOW-PASS
PROTOTYPE AND OF A CORRESPONDING
HIGH-PASS FILTER

Likewise any capacitance C' in the low-pass prototype is replaced in the
high-pass filter by an inductance

L = L1 . (7.07-3)

[ [
wlwlC

Figure 7.07-2 illustrates the generalized equivalent circuit of a
high-pass filter obtained from the low-pass prototype in Fig. 4.04-1(b)
by these methods. A dual filter with an identical response can be ob-
tained by applying Eqs. (7.07-2) and (7.07-3) to the dual low-pass proto-
type in Fig. 4.04-1(a). The impedance level of the high-pass filter may
be scaled as discussed in Sec. 4.04.

Design of a Semi-Lumped-Element High-Pass Filter —In order to illus-
trate the technique for designing a semi-lumped-element high-pass filter
we will consider the design of a nine-element high-pass filter with a
pass-band ripple L, of 0.1 db, a cutoff frequencyofl Gec (w; =27 X 10%),
that will operate between 50-ohm terminations. The first step in the
design is to determine the appropriate values of the low-pass prototype
elements from Table 4.05-2(a). It should be noted that elements in this
table are normalized so that the band-edge frequency w; = 1 and the termi-
nation element g, = 1. The values of the inductances and capacitances for
the high-pass filter operating between l-ohm terminations are then

409



o—ii— - - - {0
. L  Gnei L.
:: i iLa " !;'.M' ¢ ‘ T
" o - e e e - o e
6 s~
w W e
!
b W, w9,

A-3527-260

FiG. 7.07-2 HIGH-PASS FILTER CORRESPONDING TO THE LOW-PASS
PROTOTYPE IN FIG. 4.04-1(b)
Frequencies | and w, are defined in Fig. 7.07-1. A dual
form of this filter corresponding to the low-pass filter in
Fig. 4.04-1(a) is also possible
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A-3527-209
FIG. 7.07-3 DRAWING OF COAXIAL LINE HIGH-PASS FILTER CONSTRUCTED

FROM SEMI-LUMPED ELEMENTS USING SPLIT-BLOCK
CONSTRUCTION
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determined using the formulas in Fig. 7.07-2, upon setting w; -1,

w, = 2m X 10°, and using the g, velues selected from Table 4.05-2(a).

In order to convert the above design to one that will operate at a
50-ohm impedance level it is necessary to divide all the capacitance

and conductance values obtained by 50 and to multiply all the inductance
values obtained by 50. When this procedure is carried through we find
that €, = Cy = 2.60 puf, L, = L, = 5.51 muh, Cy = C; = 1.49 puf,

L, =L, = 4.92 nuh, and Co = 1.44 puf.

A sketch showing a possihle realization of such a filter in coaxial
line,“using split-block construction, is shown in Fig. 7.07-3. Here it
is seen that the series capacitors are realized by means of small metal
disks utilizing Teflon (¢, = 2.1) as dielectric spacers. The shunt in-
ductances are realized by short lengths of Z, = 100-ohm line short-
circuited at the far end. In determining the radius r of the metal
disks, and the separation s between them, it is assumed that the parallel-
plate capacitance is much greater than the fringing capacitance, so that
the capacitance C of any capacitor is approximately

1""
Cwe, 0.225— pf (7.07-4)
s

where all dimensions are measured in inches. The lengths | of the short-

circuited lines were determined by means of the formula

L = 0.0847 Z,0  muh (7.07-5)

where Z, is measured in ohms and | is measured in inches. Equation (7.07-4)
is adapted from one in Fig. 7.02-2(b), while Eq. (7.07-5) is adapted from
one in Fig. 7.02-1(a).

The dimensions presented in Fig. 7.07-3 must be regarded as tentative,
because a filter having these particular dimensions has not been built and
tested. However, the electrical length of each of the lines in the filter
is very short-—even the longest short-circuited lines forming the shunt
inductors have an electrical length of only 19.2 degrees at 1 Gc. There-
fore, it is expected that this semi-lumped-constant filter will have very
close to the predicted performance from low frequencies up to at least
2,35 Gec, where two of the short-circuited lines are an eighth-wavelength
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long and have about 11 percent higher reactance than the idealized
lumped-constant design., Above this frequencv some increase in pass-
band attenuation will probably be noticed (perhaps one or two db) but
not a really large increase. At about 5 Gc when the short-circuited
lines behave as open circuits, the remaining filter structure formed
from the series capacitors and the short lengths of series lines has a
pass band, so that the attenuation should be low even at this frequency.
However, somewhere between 5 Gc and 9 Gc (where the sho‘t-circuited
lines are about 180 degrees long) the attenuation will begin to rise

very rapidly.

SEC. 7.08, LOW-PASS AND HIGIi-PASS
TMPEDANCE -MATCHING NETWORKS

Some microwave loads which can be approximated by an inductance and
a resistance in series, or by a capacitance and a conductance in para '=l,
can be given a satisfactory broadband impedance match by use of low-pass
matching networks. Having L and R, or C and G to represent the load, the

decrement
R G
$§ = or —— (7.08-1)
w‘L wlC

is computed, where w, is the pass-band cutoff frequency above which a
good impedance match is no longer required. Though the prototype filter
to be used in designing the matching network may have a considerably
different impedance level and cutoff frequency w;, it must have the same
decrement 8. Thus, having computed & from the given microwave load ele-
ments and required cutoff frequency w;, an appropriate impedance-
matching-network prototype filter can be selected from the computed value
of & and the charts of prototype element values in Sec. 4.09. Having
selected a satisfactory prototype filter, the impedance-matching network
can be designed by scaling the prototype in frequency and impedance level
and by using the semi-lumped-element realization techniques discussed in
Sec. 7.03. As was illustrated in Fig. 4.09-1, the microwave load to be
matched provides the microwave circuit elements corresponding to the
prototype elements g, and g,, the microwave impedance-matching network
corresponds to the prototype elements g, through g , and the microwave
driving-source resistance or conductance corresponds to 801

412



Though low-pass microwave impedance-matching structures are quite
practical for some applications, they do, nevertheless, have some inherent
dizadvantages compared to the band-pass impedance-matching networks dis-
cussed in Secs. 11.08 to 11.10. One of these disadvantages is that a good
impedance match all the way from dc up to microwave frequencies is rarely
really necessary. As was discussed in Sec. 1.03, allowing energy to be
transmitted in frequency bands where energy transmission is not needed
will detract from the efficiency of transmission in the band where good
transmission is really needed. Thus if the decrement computed using
Fq. (7.08-1) is found to be =0 small that Fig. 4.09-3 indicates an un-
acceptable amount of pacs-band attenuation, the possibility of using a
band.pass matching network instead should be considered. If a band-pass

transmission characteristic is usable, better performance can be obtained.

Anotler disadvantage of low-pass impedance-matching networks is that
the designer is not free to choose the driving source resistance. For a
given R-1. or G-C load circuit and a given cutoff frequency w;, the charts
in Sec. 4.09 will lead to matching networks which must use the driving
source resistances (or conductances) specified by the charts, if the pre-
dicted performance is to be obtained. In many microwave applications,
adjustments of the driving-source impedance level will not be convenient.
In such cases the use of bhand-pass impedance-matching networks is again
recommended since in the case of hand-pass filtera, impedance-level trans-
formations are easily achieved in the design of the filter, without

affecting the transmission characteristic.

High-pass impedance-matching networks have basically the same dis-
advantages as low-pass impedance-matching networks. Nevertheless they
are of practical importance for some applications. Loads which can be
approximated by a capacitance and resistance in series, or by an inductance
and conductance in paralle] can be given a high-pass impedance match by
using the methods of this book. In this case the decrement is computed by

use of the formula

8 = wCR or wlG (7.08-2)

where in this case w; is the cutoff frequency for the desired high-pass

matching characteristic. Knowing &, the (L,) values for various numbers

ass
of matching elements are checked and a prototype is then selected, as dis-

cussed in Sec. 4.09. [Again, if the values of (L,)
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value of & are too large, the possibility of band-pass matching should
be considered.] The low-pass prototype is then transformed to a high-
pass filter as discussed in Sec. 7.07, and its frequency scale and
impedance level are adjusted so as to conform to the required w, value
and the specified microwave load. If the cutoff frequency w; is not
too high, it should be practical to realize the microwave impedance-
matching structure by use of the semi-lumped-ealement high-pass filter
techniques discussed in Sec. 7.07.

SEC. 7.09, LOW-PASS TIMF-DFLAY NETWORKS

Most of the primary conciderations in the design of low-pass time-
delay networks have been previously discussed in Secs. 1.05, 4.07, and
4.08. The maximally flat time-delay networks tabulated in Sec. 4.07
were seen to give extremely flat time-delay* characteristics, but at the
expense of having an attenuation characteristic which varies considerably
in the operating band. Maximally flat time-delay networks also are un-
symmetrical, which makes their fabrication more difficult. In Sec. 4.08
it was noted that Tchebyscheff filters with small pass-band ripple should
make excellent time-delay networks for many practical applications. As
was discussed in Sec. 1.05, the amount of time delay can be increased
considerably for a given circuit complexity by using, where possible, a
band-pass rather than a low-pass structure for the delay network (see
Secs. 1.05 and 11.11). High-pass delay networks are also conceivable,
but they would not give much delav, except, possibly, near cutoff.

Example —As an example of the initial steps in the design of a low-
pass time-delay network, let us suppose that a time delay of about
7.2 nanoseconds is required from frequencies of a few megacycles up to
200 Mc. From considerations such as those discussed in Sec. 4.08, let us
further suppose that it has been decided to use a 0.1-db ripple Tchebyscheff
filter with a cutoff of f, = 250 Mc, as the delay network. From
Fq. (4.08-3), the low-frequency time delay of a corresponding normalized
prototype filter with a cutoff of w) = 1 radian/sec is

w) 7.2(10°%)27(0.25)10°
t". - t“-;i— . l" = 11.3 seconds

* Nere tine delay is sssumed to inply grouwp time deley (Sec. 1.05),
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By Eq. (4.08-2) and Fig. 4.13-2, this rominal time delay will be achieved
by a 0.10-db ripple filter having n = 13 reactive elements. Hence, an

n =13, L, = 0.10 db prototype should be selected from Table 4.05-2(b).
The actual microwave filter is then designed from the prototype as dis-
cussed in Sec. 7.03. If desired, this filter could be designed to be a
few inches long, while it would take approximately 7 feet of air-filled
coaxial line to give the same time delay.
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CHAPTER 8

BAND-PASS FILTERS
(A GENERAL SUMMARY OF BAND-PASS FILTERS, AND A VERSATILE
DESIGN TECHNIQUE FOR FILTERS WITH NARROW OR MODERATE BANDWIDTS)

SEC. 8.01, A SUMMARY OF THE PROPERTIES OF THE BAND-PASS OR PSEUDO
HIGH-PASS FILTERS TREATED IN CHAPTERS 8, 9, AND 10

This chapter is the first of « sequence of four chapters concerning
band-pass filter desiygn. Chapters 8, 9, and 10 deal with the design theory
and specific types of microwave filters, while Chapter 11 discusses various
experimental and theoretical technijues which are ygenerally helpful in the
practical development of many kinds of hand-pass filters and impedance-
matching networks. This present chapter (Chapter 8) utilizes a design point
of view which is very versatile but involves narrow-band approximations whici
limit its vsefulness to designs having fractional bandwidths typically around
0.20 or less. The desiygn procedure utilized in Chapter 9 makes use of step
transformers as prototypes for tilters, and the procedures given therc are
useful for either narrow or wide bandwidths. Chapter 10 uses yet another
viewpoint for design, and the method described there is also useful for
either narrow or wide bandwidths. ‘lhe procedures in Chapter 9 are most ad-
vantageous for filters consisting of transmission lines with lumped discon-
tinuities placed at intervals, while the methods in Chapter 10 are most
advantageous when used for filters consisting of lines and stubs or of

parallel-coupled resonators.

In this chapter the general design point of view is first described in
8 yualitative way, then design equations and other data for specific types
of filters are presented, and finally the background details of how the
design equations for specific filters were derived are presented.

Chapters 9 and 10 also follow this pattern as far as is possible.

It is recognized that some designers may have little intereat in filter
design theory, and that they may only wish to pick out one design for one
given job. To help meet this need, Table 8.01-1 has been prepared. It sum-
marizes the more significant properties of the various types of filters
discussed in Chapters 8, 9, and 10, and tells the reader in which sections
design data for a given type of filter can be found.
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Table 8.01-1

SUMMARY OF BAND-PASS AND PSEUDO HIGH-PASS FILTERS IN CHAPTERS 8, 9, AND 10

Syabols
w, = pass-band center frequency i\u = wavelength at wy
wypg * center frequency of second pass band .K‘ = guide wavelength
@, = peak attenuation (in db) in upper A AW A guide wavelengths at
A’UsB gtop band (between o and w”: 80" gl" g2 and at lower =nd nmuu'o
pass-band-edge frequencies
L = peak attenuation (in db) in pass band
Ar P . Ay =A, guide-
» = fractional bandwidth » " 0 = ::::é::::‘ll
bandwidth

STRIP-LINE (OR COAXIAL) AND SEMI-LUMPED-ELEMENT FILTEKS

Typical Resonater or Section

Filter Properties

S

Dk_lé.:j. —'=

STRIP LINE

wypp = 2. ("A)uss decreases with increasing v. ("A)USB is usually
sizseable for » = 0.20 or less, but it is usually only S or 10 db for
v = 0,70. Has first-order pole of sttenuation st w = 0. Dielectric
support required for resonators. Coupling gaps may become quite
small for w much larger than 0.10, which presents tolerance consider-
ations, See Sec. §.05 for designs with » about 0.20 or less. See
Chapter 9 for designs having larger v, or for designs with very small
L‘, (0.01 db, for example), or for designs for high-pass applications.
Coaxial filters of this type are widely used as pseudo high-pass
filters.

iC!
~p—]

Yepg ™ 300. (L‘) sB decresses with increasing w, but for given v and
Wy, (L‘)us’ will be larger than for Filter 1 above. Has multiple-

order pole of attenuation at @ = 0. Inductive stubs can provide me-
chanical support for resonator structure so that dielectric is not re-
quired. For given » and w, capacitive coupling gaps sre l_lrgcr than
for Filter 1 above. See Sec. 8.08 for designs with w ~ 0,30. See

Chepter 9 for designs having larger v, or for designs with very small

P
STRIP LiNE !." (0.01 db, for example), or for designs for high-pass applicetions.
3 %
wypg * oy Has first-order pole of attenuation st w * Q and at w =
I"——"?—‘i 2. However, is prone to have narrow spurious pass bands near 2y
 m— due to slightest mistuning. Dielactric support material required.
— Very attractive structure for printed circuit fabricati vh
— ry i ure for p cu ication, when
STRIP UE »= 0.15. Ses Sec. 8.09-} for »~ 0.15. See Sec. 10.02 for designs

having larger », or for designs for high-pass applications.

a8



Table 8,.01-1 Continued

STRIP-LINE (OR COAXIAL) AND SEMI-LUMPED ELEMENT FILTERS

Typical Resonator or Section

Filter Proparties

4
Ag
e ~—§~ -
ﬁ “spp * Jepr Has first-order pole of attenuation at @ = 0 and at
q— weE 2:»0. llowever, is prone to narrow spurious puss bands near 200
b due to slightest mistuning., Short-circuit hiocks provide mechanical
SMORT-CIRCUIT BLOCKS support for resonators. Suitable for values of w from around 0,01
STRIP LINE to 0,70 or more. NHee Nec. 10.02.
S , .
' wgpp = 3y Has first-order pole of attenuation at « = 0 and at w =
‘_5‘9 24. However, is prone to narrow spurious pass bands near 2wy due
to slightest mistuning, Short-circuits at ends of stubs provide me-
L — 1 . .
Ao chanical support for structure. Suituble for values of w from around
] 0.40 to 0.70 or more. see Sec. 10.03. Also see Sec. 10.05 for case
' where series stubs are added at ends to give poles of attenuastion at
*'? - sdditional frequencies.
STRIP LINE
6
Structure in coaxial form with series stubs fabricated within center
L €3¢

1 ME TaL
COAXIAL

conductor of main line. “wpp * 3wg. Has first-order pole of attenu-
ation at @ = 0 and 4t w = 2w°. However, is prone to narrow spurious
pass bands near 2wo due to slighteat mistuning. Structure requires
dielectric support msterial. Suitable for values of » around 0.60

or more. See Nec. 10.03.

1B

J U

STRIP LINE

wgpg * 2w;, and also has a pass band around w = 0. Has poles of at-
tenuation sbove and below wy 8t frequencies wy, and (2wy = wy), where
wp may be specified. llequires dielectric material for support. Can
conveniently be fabricated by printed circuit means. Little restric-
tion on v if w, can be chosen appropriately. See Sec. 10.04.
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Table 8.01 Continued

STRIP-LINE

(OR COAXIAL) AND SEMI-LUMPED-ELEMENT FILTERS

Typicel Resometor or Section

Filter Properties

8

. X

STRIP LINE

wgpg can be made to be as high as Swo or meve. Has multiple-order
poles of attenuation at w = 0. Short-circuited ends of resonators
provide mechanical support so that dielectric msterial is not re-
quired. Structure is quite compact. See Sec. 8.12 for design
data suitable for designs with » = 0,10.

Interdigital Filter, wypy ® 34,. Has multiple-order poles of at-
tenuation at w = 0 and w * 2w,. Cen be fabricated without using
dielectric support material. Spacings between resonator elements
are relatively large which relaxes mechanical tolerances. Structure
is very compact. See Secs. 10.06 snd 10,07 for equations for de-
signs with v ranging from small values up to large values around
0.70 or more.

gTRIP I.IINE
10 * asac Comb-line filter. Relonagor length ! depends on smount of capaci-
: - ATy

,t.°‘57"°vz tive loading used. cwgpp = @y Ag/(21) so filter can be designed for

very broad upper stop band. Poles of attenuation at w = 0 and w =
@y l\o/(u). Extremely compact structure which can be fabricated
without dielectric support material. Unloaded Q’'s of resonators
somewhat less than those for Filter 9 for some strip-line cross-
section. See Sec. 8,13 for designs having » up to about 0.15.

-

RESONATORS
LUMPED ELEMENTS

Filter with quarter-wave-coupled resonators. Resonators may be
cavities, resonant irises, or lumped-element resonators. See
Sec. 8.08 for design data useful when » is around 0,05 or less.




Table 8.01-1 Concluded

STRIP-LINE (OR COAXIAL) AND SENMI-LUMPED-ELEMENT FILTERS

Typical Resomator or Section|

Filter Properties

12

-y b=

LUMPED ELEMENTS

Lumped-element circuit for use as s guide for design of aemi-lumped-
element microwave {ilters., See Sec. 8.11 for designs with w = 0, 20.

C3EEE

LUMPED ELEMENTS

Lumped-element circuit for use as a guide for design of semi-lumped-
element microwave filters. See Sec. 8.11 for designs with v < 0.20.

WAVEGUIDE AND CAVITY FILTERS

WAVEGUIDE

wgpp occurs when A_ is about A'oﬁ2; however, when higher-order modes
cun propagate, the upper stop band end second pass band may be dis-
rupted. ("A)USB decreases with increasing LY Vaveguide resonators
give relatively lowdissipation loss for givenw, . Nee Secs. 8.06 and 8,07
for designs with " about 0.20 or less. >ee Chapter 9 for designs
having larger wy. or for designs with very small L, (0.01 db, for

example), or for designs for high-pass applicstions.

A\
- i%o_
WAVEGUIDE

Use of A.°/4 couplings gives irises which are all nearly the same.

If a disassembly joint is placed in the middle of each A‘o/l coupling
region, resonators may be easily tested individually. wgpp OCCUTS
when A_ is about A.°/2; however, when higher-order modes can propa-
gate the upper stop band and second pass band may be disrupted.

(L‘ Jyse decreases with increasing " Waveguide resonators give
relatively low dissipation loss for given ”. Satisfactory for de-
signs having " about 0,05 or less. See Sec. 8.08.
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The filters whose properties are summarized in Table 8.01-1 are
suitable for a wide range of applications. Some are suitable for either
narrow- or wide-band band-pass filter applications. Also, since it is
difficult, if not impossible, tc build a microwave high-pass filter with
good pass-band performance up to many times the cutoff frequency, pseudo
high-pass filters, which are simply wideband band-pass filters, provide
some of the most practical means for fabricating filters for microwave
high-paass applications. ‘Thus, many of the filters in Table 8.01-1 should

also be considered as potential microwave high-pass filters.

Although most of the filters in Table 8.01-1are -:ztured instrip-line
form, many of them could be fabricated equally well incoaxial form or in
split-block coaxial form (Fig. 10.05-3). Oneof the filter properties which
is of interest in selecting a particular typeofband-pass filter structure
is the frequency at which the second pass band will be centered. InTable8.01-1,
this frequency is designated as wg,,, and it is typically two or three times
w,, the center frequency of the first pass band. However, in the case of
Filter 8 in Table 8.01-1, wg,, can be made to be as much as five or more

times w,. Filter 10 is also capable of very broad stop bands.

All of the filtersin Table 8.01-1 have at least one frequency, w, where
they have infinite attenuation (or where they would have infinite attenuation
if it were not for the effects of dissipation loss). These infinite attenuation
points, known as poles of attenuation (see Sec. 2.04), may beof first order or of
multiple order; the higher the order of the pole of attenuation, the more rapidly
the attenuationwiil rise as w approaches the frequency of the pole. Thus, the
presence of first-order ormultiple-order poles of attenuation at frequencies w
are noted inTable 8.01-1 as a guide towards indicating what the relative strength
of thestop bandwill be in various fregjuency ranges. Four of the filters in
Table 8.01-1 (Filters 1, 2, 14, and 15) havenopoles of attenuation in the stop-
band region above the pass-band center w,, and theattenuation between the first
and second pass-bands levelsoff at a valueof (L,) 4, decibels. Asis mentioned
in Table 8.01-1, thevalues of (LA)USB will in such casesbe influenced by the
fractional bandwidth wof the filter. Also, it should be noted that the filters
which have a first-order pole of attenuationin the stop band above w, may be
liable to spurious responses close to thispole if there is any mistuning.

Annther consideration in choosing a type of filter for a given job is the
unloaded Q's obtainable with the resonator structures under consideration.
Waveguide or cavity resonatorswill, of course, give the best unloadedQ's, and
hence vill result in filters withminimum insertion loss for a given fractional

. ,i d
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bandwidth. However, waveguide resonators have the disadvantages of being
relatively bulky and of being useful overonly a limited frequency range because
of the possibility of higher-order modes. Thus, where wide pass bands or wide

stop bands are required, strip-line, coaxial, or semi-lumped-element filters
are usually preferable. Ifstrip-line orcoaxial constructuions are used, the
presence of dielectric material, whicl may be required for mechanical support of
the structure, will tend to further decrease the resonator Q’s obtainable. For
this reason, it is inmany cases noted inlable 8.01-1 whether or not the specific

structure can be fabricated withcut the use of dielectric support material.

the filter structures marked with starsin Table 8.01-1are filter types
which represent attractive compromise choices for many applications. However,
they are by no means necessarily the best choices inall respects, and special con-

siderations may dictate the use of some of the unstarred types of filters listed in the table.

Filterl in Table 8.0]1-] was starred because, in coaxial form, it provides a
very rugged and convenient way for wmanufacturing pseudo high-pass filters.

Commercial coaxial high-pass filters aremost commonly of this form.

Filter 3 in ‘lable 8.01-1 has been starred because it is extremely easy
to design and fabricate in printed-circuit construction when the fractional
bandwidth is around 0.15 or less. lowever, its stop-band characteristics
and its resonator ('s are inferior to those that can he obtained with some

of the other types of strip-line or coaxial filters in the table.

Filter 9 was starred bhecause it is easy todesign for anywhere from small to

large fractional bandwidths, it is compact, and it has strong stop bands on both sides of .

Filter 10 was starred because of its compactness and ease of design,

and because it 18 capable of a very broad upper stop band.

Filter 14 was starred because it is the simplest and most commonly used
type of waveguide filter. Within the single-mode frequency range of the

waveguide, such filters generally give excellent performance.

SEC. 8.02, GENERAL PRINCIPLES OF COUPLED-RESONATOR FILTERS®*

In this section we will discuss the operation of coupled-resonator fil-

ters in qualitative terms. For the benefit of those readers who are concerned

.
The point of view used herein is that due to S. B. Cohu.l However, herein his poiat of viev has been restated
in more genera) terms, and it has been applied to additioms] types of filter structures not treated by Cohn.
Some other points of view and earlier contributions are listed in Refereaces 2 to 8.
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primarily with practical design, rather than with theory, this qualita-
tive discussion will be followed by design dats for specific types of
filters. Details of the derivation of the design equations will be found
in Sec. 8.14.

In the design procedures of this chapter, the lumped-element proto-
type filter designs discussed and tabulated in Chapter 4 will be used to
achieve band-pass filter designs having approximately the same Tchebyscheff
or maximally flat response properties. 'Thus, using a lumped-element proto-
type having a response such as the Tchebyscheff response shown in Fig. 8.02-1(a),
the corresponding band-pass {ilter response will also be Tchebyscheff as
shown in Fig. 8.02-1(b). As suggested in Fig. 8.02-1(b), the multiple
resonances inherent in transmission-line or cavity resonators generally

give band-pass microwave filters additional pass bands at higher frequencies.

Figure 8.02-2(a) shows a typical low-pass prototype design, and
Fig. 8.02-2(b) shows a corresponding band-pass filter design, which can
be obtained directly from the prototype by a low-pass to band-pass trans-
formation to be discussed in Sec. 8.04. In the equations for the band-
pass filter element values, the g; are the prototype filter element values,
w' and w; are for the prototyye filter response as indicated inFig. 8.02-1(a)
for a typical Tchebyscheff case, and w, w,, w,, and w, apply to the corre-
sponding band-pass filter response as indicated in Fig. 8.02-1(b). Of
course, the filter in Fig. 8.02-2(b) would not have the higher frequency
pass bands suggested in Fig. 8.02-1(b) because it is composed of lumped

elements.
Lag ;Llo
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FIG. 8.02.1 LOW-PASS PROTOTYPE RESPONSE AND CORRESPONDING
BAND-PASS FILTER RESPONSE
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FIG. 8.02-2(b) BAND-PASS FILTERS AND THEIR RELATION TO LOW-PASS PROTOTYPES
Frequencies |, .|, and ., are defined in Fig. 8.02-1, ang g(, 9y, --.s G4
are defined in Fig. 8.02-2(a)
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NOTF.: Adapted from Final Report, Contract NA-36-039 SC-64625, SRI;
reprinted in Proc. IRE (see Ref. 1 by S. B. Cohn).

FIG. 8.02-2(c) THE BAND-PASS FILTER [N FIG, 8.02-2(b) CONVERTED TO USE
ONLY SERIES RESONATORS AND IMPEDANCE INVERTERS
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The filter structure in Fig. 8.02-2(b) consists of series resonators
alternating with shunt resonators, an arrangement which is difficult to
achieve in a practical microwave structure. In a microwave filter, it is
much more practical to use a structure which approximates the circuit in
Fig. 8.02-2(c), or its dual. In this structure all of the resonators are
of the same type, and an effect like alternating series and shunt resona-
tors is achieved by the introduction of “impedance inverters,' which were
defined in Sec. 4.12, and are indicated by the boxes in Fig. 8.02-2(c).
The band-pass filter in Fig. 8.02-2(c) can be designed from a low-pass
prototype as in Fig. 8.02-2(a) by first converting the prototype to the
equivalent low-pass prototype form in Fig. 4.12-2(a) which uses only
series inductances and impedance inverters in the filter structure. Then
a low-pass to band-pass transformation can be applied to the circuit in
Fig. 4.12-2(a) to yield the band-pass circuit in Fig. 8,02-2(c). Practical
means for approximate realization of impedance inverters will be discussed
in Sec. 8.03 following.

Since lumped-circuit elements are difficult to construct at microwave
frequencies, it is usually desirable to realize the resonators in
distributed-element forms rather than the lumped-element forms in
Figs. 8.02-2(b), (c). As a basis for establishing the resonance proper-
ties of resonators regardless of their form it is convenient to specify
their resonant frequency w, and their slope parameter. For any resonator
exhibiting a series-type resonance (case of zero reactance at wy) the
reactance slope parameter

w
d
x = —; I-{ . ohms (8.02-1)

applies, where X is the reactance of the resonator. For a simple series
L-C resonator, Eq. (8.02-1) reduces to « = wyl = l/(wQC). For any reso-
nator exhibiting a shunt-type resonator (case of zero susceptance at w,)
the susceptance slope parameter

)

4 = < mhos (8.02-2)
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applies where B is the susceptance of the resonator. For a shunt L-C
resonstor, Eq. (8.02-2) reduces to 4 = wa':llf(wOL). Note that in

Fig. 8.02-2(b) the properties of the lumped resonators have been defined
in terms of susceptance and reactance slope parameters. The slope param-
eters of certain transmission-line resonators were discussed in Sec. 5.08
and are summarized in Fig. 5.08-1. Any resonator having a series-type
resonance with a reactance slope parameter « and series resistance R has

a Q of

=z (8.02-3)
0 - — .

Likewise, any resonator having a shunt-type resonance with a susceptance
slope parameter & and & shunt conductance G has a Q of

Q & — . (8-02'4)

Figure 8.02-3(a) shows a generalized circuit for a band-pass filter
having impedance inverters and series-type resonator characteristics as
indicated by the resonator-reactance curve in Fig. 8.02-3(b). Let us
suppose that a band-pass filter characteristic is desired like that in
Fig. 8.02-1(b), and the filter is to be designed from a low-pass proto-
type having a response like that in Fig. 8.02-1(a) and having prototype
parameters go, g;, --., g,,;» and ;. The resonator slope parameters
Ty Rgy ee, T for the band-pass filter may he selected arbitrarily to
be of any size corresponding to convenient resonator designs. Likewise,
the terminations R‘, R.. and the fractional bandwidth w may be specified
as desired. The desired shape of response is then insured by specifying
the impedance-inverter parameters Ky, Kygo oo Kn.n+l as required by
Eqs. (2) to (4) in Fig. 8.02-3. If the resonators of the filter in
Fig. 8.02-3(a) were each comprised of a lumped L and C, and if the im-
pedance inverters were not frequency sensitive, the equations in
Fig. 8.02-3 would be exact regardless of the fractional bandwidth w of
the filter. However, since the inverters used in practical cases are
frequency sensitive (see Sec. 8.03), and since the resonators used will
generally not be lumped, in practical cases the equations in Fig. 8,02-3
represent approximations which are best for narrow bandwidths. However,
in some cases good results can be obtained for bandwidths as great as
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where m", uvo, r:l, and ulz are defined in FiR- 8-02‘lr and ‘0' ‘]' e su*l are
as defined in Sec. 4,04 and Fig. 8.02-2(a).

For Experimental Determination of Couplings (As Discussed in Chapter 11)

External 's are:

’ ’
€81 € W,
©,), ,“’ « B )| w,, r o2 . Aafant ()
(Ko1/Ry) (K3, ae1/Ry)
Coupling coefficients are:
LI = -'f'—_'.-i_-ﬁ - -,—_é—-—..._ (8)
a 1%l to n~! l,tjm’ +l wlv ‘f‘l 4

FIG. 8.02-3 GENERALIZED EQUATIONS FOR DESIGN OF BAND-PASS FILTERS
FROM LOW-PASS PROTOTYPES
Case of filters with resonators having series-type resonances. The
K-inverters represent the couplings
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vhere o, wy, w and y are defined in Fig. 8.02-1, and gy, 6, ..., G4y OF@
as defined in Sec. 4.04 and Fig. 8.02-2(s).

For Experimental Deternination of Couplings (As Discussed in Chepter 11)

External Q's are:

4 80815 4 w68
), = . S8 © | @) 7_1_._.!._!’_‘ o
Q‘ 4 ( 01/04) ’ . { n,nﬂ/cl) °
Coupling coefficient are:
- /. @
XY} j=l ton=-l Vlillij"l "1"}'}0]

FIG. 8.02-4 GENERALIZED EQUATIONS FOR DESIGN OF BAND-PASS FILTERS
FROM LOW-PASS PROTOTYPES
Case of filters having resonators with enly shunt-type resonances. The
J-inverters represent the couplings
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20 percent when half-wavelength resonators are used, and when quarter-
wavelenyth resonators are used, good results cen he obtained in some

cases for bandwidths approaching 40 percent.

Equations (6) to (8) in Fig. 8.02-3 are forms which are particularly
convenient when the resonator couplings are to be adjusted by experimental
procedures discussed in Chapter 11. The external ¢, (¢,),., is the Q of
Resonator i coupled by the Inverter K, to the termination R,. The ex-
ternal §, (9, ), is the corresponding ) of resonator n coupled by K,

to Ry the expression for the coupling coefficients k} )+l is a pgeneral-

itzation of the usual definition of coupling coefficient. For lumped-
el T ”,,;«l””L1L1+l where

L, and L;’l are self inductances and "’ Y is the mutual inductance. By

specifying the coupling coefficients between resonators and the external

element resonators with inductive couplings k

)'s of the end resonators as indicated in Fys. (6} to (8) in Fig. 8.02-3,
the response of the tilter is fixed. LKjuations (2) to (1) and Eqs. (6)

to (8) are equivalent.

the band-pass filter in Fig. 8.02-4(a) uses admittance inverters and
shunt-type resonator characteristics as indicated by the resonator-
susceptance curve in Fig. 8.02-4(b). Admittance inverters are in principle
the same as impedance inverters, but for convenience they are here character-
ized bv an admittance parameter, J
A

Fig. 8.02-3, and the same general principles discussed in the preceding

ST instead of an impedance parameter,

;. +1 (see Sec. 1.12). The equations in Fig. 8.02-4 are duals of those in

paragraphs apply.

In the discussions to follow A-inverter impedance parameters will be
used whenever the resonators have a series-type resonance, and J-inverter
admittance parameters will be used whenever the resonators have a shunt-
type resonance,

SEC. 8.03, PRACTICAL REALIZATION OF K- AND J-INVERTERS

One of the simplest forms of inverters is a quarter-wavelength of
transmission line. Observe that such a line obeys the basic impedance-
inverter definition in Fig. 4.12-1(a), and that it will have an inverter
parameter of K = Z, ohms where Z, is the characteristic impedance of the
line. Of course, a quarter-wavelength of line will also serve as an
admittance inverter as can be seen from Fig. 4.,12-1(b), and the admittance
inverter parameter will beJ = Y, where Y, is the characteristic admittance
of the line.

430



i

¥

Although its inverter properties are relatively narrow-band in
nature, a quarter-wavelength line can be used satisfactorily as an im-
pedance or admittance inverter in narrow-band filcters. Thus, if we have
six identical cavity resonators, and if we connect them by lines which
are a quarter-wavelength long at frequency w,, then by properly adjusting
the coupling at each cavity it is possible to achieve a six resonator
Tchebyscheff response such as that in Fig. 8.02-1(b). Note that if the
resonators all exhibit, say, series-type resonances, and if they were
connected together directly without the impedance inverters, they would
simply operate like a single series resonator with a slope parameter equal
to the sum of the slope parameters of the individual resonators. Some
sort of inverters between the resonators are essential in order to obtain
a multiple-resonator response if all of the resonators are of the same
type, i.e., if all exhibit a series-type resonance or all exhibit a shunt-
type resonance.

Besides a quarter-wavelength line, there are numerous other circuits
which operate as inverters. All necessarily give an image phase (see
Sec. 3.02) of some odd multiple of 390 degrees, and many have good invert-
ing properties over a much wider bandwidth than does a quarter-wavelength
line. Figure 8.03-1 shows four inverting circuits which are of special
interest for use as K-inverters (i.e., inverters to be used with series-
type resonators). Those shown in Figs. 8.03-(a),(b) are particularly
useful in circuits where the negative L or C can be absorbed into adjacent
positive series elements of the same type so as to give a resulting cir-
cuit having all positive elements. The inverters shown in Figs. 8.03-1(c), (d)
are particularly useful in circuits where the line of positive or negative
electrical length ¢ shown in the figures can be added to or subtracted from
adjacent lines of the same impedance. The circuits shown at (a) and (c)
have an over-all image phase shift of ~90 degrees, while those at (b) and
(d) have an over-all image phase shift of +90 degrees. The impedance-
inverter parameter K indicated in the figure is equal to the image imped-
ance (see Sec. 3.02) of the inverter network and is analogous to the
characteristic impedance of a transmission line. The networks in

Fig. 8.03-1 are much more broadband inverters than is a quarter-wavelength
line.*

* In the cases of Pigs. 8.03:1(c),(d), this statement sssumes that lx/l°| << 1 ghich is usually
the case in the practical application of these circuites.
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FIG. 8.03-1 SOME CIRCUITS WHICH ARE PARTICULARLY
USEFUL AS K-INVERTERS (inverters To Be
Used with Series-Type Resonators)

Figure 8.03-2 shows four inverting circuits which are of special
interest for use as J-inverters (i.e., inverters to be used with shunt-
type resonators). These circuits will be seen to be the duals of those
in Fig. 8.03-1, and the inverter parameters J are the image admittances

of the inverter networks.

Figure 8.03-3 shows two more circuits which operate as inverters.
These circuits are useful for computing the impedance-inverting proper-
ties of certain types of discontinuities in transmission lines. Examples
will be cited in Secs. 8.05 and 8.06. Figure 8,03-4 shows yet another
form of inverter composed of transmission lines of positive and negative
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FIG. 8.03-2 SOME CIRCUITS WHICH ARE PARTICULARLY
USEFUL AS J-INVERTERS (Inverters to be Used
with Shunt-Type Resonotors)

characteristic admittance.

The negative admittances are in practice

absorbed into adjacent lines of positive admittance.

Numerous other circuits will operate as impedance or admittance in-

verters, the requirements being that their image impedance be real in

the frequency band of operation, and that their imcge phase be some odd

multiple of #m/2.
be satisfied if

(XM)OG
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USEFUL FOR REPRESENTING FORMED FROM STUBS OF
THE INVERTER PROPERTIES ELECTRICAL LENGTH 6

OF CERTAIN DISCONTINUITIES
IN TRANSMISSION LINES

where (X,,),. is the input reactance of the circuit when cut in half and

the cut wires are left open-circuited, while (X1n) is the corresponding
se

reactance when the cut wires are shorted together.

SEC. 8.04, USE OF LOW-PASS TO BAND-PASS MAPPINGS

The response of a low-pass prototype circuit such as either of those
in Fig. 4.04-1 can be related exactly to the response of a corresponding

band-pass filter as shown in Fig. 8.02-2(b) by a well known low-pass to
band-pass mapping

[ 1 ) wo
T (8.04-1)
O)l v wo [)
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where » is the fractional bandwidth

w, - wl
¥y = — ' (8.04-2)
@y
w, = Ve (8.04-3)

and @' and w, refer to the low-pass filter response as indicated in

Fig. 8.02-1(a) while w, w), ,, and w, refer to che corresponding band-
pass filter response as shown in Fig. 8.02-1(b). Mappings of this rort
are particularly useful in determining the number of resonators needed
to meet given attenuation rejuirements. For example, suppose that an
audio-frequency filter of the form in Fig. 8.02-2(b) was desired with a
1.0-db Tchebyscheff ripple from f, = 2 ke to f, = 4 kc and with at least
50-db attenuation at 1.5 kc. It is then desired to know how many reso-

nators will be rejuired to do the job. Using the mapping E4. (8.04-1)

@ T * fa = h 4 -2
w = = = T —————
v wyal szfl v(4)(2)
= 0.707
Now
2o Mel )L (L -19_)
wy v \wg w v \f, f '

fo = 'fzfl = 2,825 kc, and we wish, 50-db attenuation or more at f =
1.5 ke. Then the low-pass prototype must have at least 50-db attenua-
tion for

W' 1 ( 1.5 _ 2.825

P 2.825 1.5 ) = Lo

o] 0.107

The minus sign in the above result occurs because, mathematically,
the portion of the band-pass filter response below w, in Fig. 8.02-1(b)
maps to negative values of the low-pass filter frequency variable o',
while, mathematically, the low-pass filter response in Fig. 8.02-1(a) for
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negative values of o' is a mirror image of its response for positive
values of w. For our present purposes we may ignore the minus sign.

The chart shown in Fig. 4.03-8 shows the cutoff characteristics of
filters with 1.0-db Tchebyscheff ripple. Using this chart we see that

an n = 6 reactive element prototype will give 54.5 db attenuation for
|w'ﬂw{| = 1,914 (i.e., Iw’/w{l -1=0.914) as required, and n = 5
elements will give only 43 db attenuation. Thus, the corresponding band-
pass filter with f, = 2 kc and f, = 4 kc will require n = 6 resonators in
order to meet the attenuation requirement at f = 1.5 kec.

The various microwave filter structures about to be discussed approxi-
mate the performance of the filter in Fig. 8,02-2(b) very well for narrow
bandwidths, but their rates of cutoff will differ noticeably from that
for the filter in Fig. 8.02-2(b) when the bandwidth becomes appreciable
(more than five percent or so). However, in most cases in this chapter,
approximate mappings will be suggested which are more accurate than
Eq. (8.04-1) for the given structure. In many cases the suggested mappings
give very accurate results for filters with bandwidths as great as
20 percent or somewhat more. Though the mapping functions will be some-
what different from Eq. (8.04-1), they are used in exactly the same way

for determining the required number of resonators for a given application.

SEC. 8.05, CAPACITIVE-GAP-COUPLED TRANSMISSION
LINE FILTERS

Figure 8.05-1 presents design relations for coupled-resonator filters
consisting of transmission-line rescnators which are approximately a half-
vavelength long at the midband frejuency w,, and which have series-
capacitance coupling between resonators. In this case the inverters are
of the form in Fig. 8.03-2(d). These inverters tend to reflect high
impedance levels to the ends of each of the half-wavelength resonators,
and it can be shown that this causes the resonators to exhibit a shunt-
type resonance (see Sec. 8.14). Thus, the filters under consideration
operate like the shunt-resonator type of filter whose general design
equations were shown in Fig. 8.02-4.

If the capacitive gaps operate like purely series capacitances, then
the susceptance of the capacitive couplings can be computed by use of
Eqs. (1) to (4) in Fig. 8.05-1, and the electrical distance between the
series capacitance discontinuities is obtained by Eq. (5). However, in
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where 8y &+ -4 B, Bre as defined in Fig. 4,04-1, o' is defined in

Fig. 8.02-1(a), and v is the fractional bandwidth defined below. The
JJ SELLL admittance inverter parameters and Yo is the characteristic
admittance of the line,

Assuming the capacitive gaps act as perfect, series-capacitance discon-

tinuities of susceptance Rl RELL in Fig. 8.03-2(d)

—J-VLI=-——J——2 (4)

and

8, = n --&- [un'l (2—fly'-l-'-l) + tan’} (2—817-1-’3)] radians (5

0 0

where the R).J*l and 9) are evaluated at @y

For the construction in Figs. 8.05-3(a),(b); determine the gap spacings &
from the .I, l’l/yo values and Figs. 8.05-3(a), (b); determine the ¢l. i
values from the A's and Fig. 8.05-3(c); then

) = nedls

g td o] (6)
4 1=l ton 1L Ja#l
where the du')’l will usually be negative,

To map low-pass prototype filter response to corresponding band-pass
filter response use the approximation

£ . 2(25) m
where !
.- 2(‘;’: :::) . ® wy (-,3223,%) .o

where &' and e{ are as defined in Fig. 8.02-1(a); and o, Wge @y, and ahy
are defined in Fig. 8,02-1(b).

FIG. 8.05-1 DESIGN EQUATIONS FOR CAPACITIVE-GAP-COUPLED
TRANSMISSION-LINE FILTERS
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(b)

7o cBnfea(3)] W

P Lo [en 3] @

FIG. 8.05-2 GAP EQUIVALENT CIRCUIT, AND
OLINER'S EQUATIONS °'° FOR
CAPACITIVE-GAP SUSCEPTANCES
FOR THIN STRIP LINE
Parameter b is the ground-plane
spacing, and Ais the wavelength in
media of propagation, in same units.
Equations are most accurate for
w/b ~ 1,2 or more and t/b =~ 0,
where t is the strip thickness.

many practical situations the
capacitive gaps between reso-
nators will be so large that
they cannot be treated as
simple series capacitances.
Consider, for example, the
capacitive gap in a strip
transmission line shown in
Fig. 8.05-2(a). If the length
of each resonator is defined
as extending from the center-
line of one capacitive gap to
the centerline of the next gap
(as is done in Fig. 8.05-1),
then an equivalent circuit for
the gap, as referred to the
centerline of the gap, will
include series capacitance and
some negative shunt capaci-
tance to account for the fact
that the gap reduces the shunt
capacitance in the vicinity of
the centerline. Figure 8.05-2(b)
shows such an equivalent cir-
cuit for the gap, and also
shows some equations due to

Oliner®

which give approximate
values for the susceptances,

for the case of strip line of

nearly zero thickness. (Altschuler and Oliner¥ point out that these equa-

tions are reasonably accurate if w/b is fairly large as is the case for a

50-ohm strip line having nearly zero thickness and air dielectric. However,

if w/b is small the error is considerable.)

Having reasonably accurate

values for the susceptances in Fig. 8.05-2(b), the corresponding admit-

tance inverter parameters for a given gap size can be computed by use of

Fig. 8.03-3(b). The gap sizes must be chosen to give the Jj.j,l/}'o values
called for by Eqs. (1) to (3) in Fig. 8.05-1, and the corresponding values
of ¢ obtained from Fig. 8.03-3(b) are then used with Eq. (6) inFig. 8,05-1
in order to obtain the proper electrical distance between the centerlines



of the coupling gaps. It should be noted that all susceptances and

electrical distances are to be evaluated at the midband frequency wg .

Figures 8.05-3(a) to (c) prisent data for capacitive-gap filters

These
data are for the particular rectangular-bar strip line construction shown
in Fig. 8.05-3(a).
mining the proper gap spacing A in inches to give a specified J/Y,

which were obtained by experimental procedures!! (see Chapter 11).

Figures 8.05-3(a),(b) give data to be used for deter-
value,
while Fig. 8.05-3(c) is for use in determining the proper negative line

length to be associated with the inverter. A simple numerical example

will clarify the use of these charts.

Suppose that a filter is desired with a 0.5-db ripple Tchebyscheff
pass band from f, = 3.0 Gc to f, = 3.20 Gc and that 30-db attenuation
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FIG. 8.05-3(a) J/([Yo(fg)ge] vs. (fo)gc FOR CAPACITIVE-GAP J-INVERTERS IN BAR
TRANSMISSION-L INE CONSTRUCTION
The characteristic impedance of the transmission lines is Zg = 1/¥y = 50 ohms
and (fg)g . is the band center frequency of the filter in Ge
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FIG. 8.05-3(b) CONTINUATION OF FIG. 8.05-3(a)

0.180 [~ y - r
0.140 \r\‘
22.040.,, —
0420 4
A'IO.OCOin. -
. § ]
Q o100 20.080in. —
; | === 20100 i
'! 0.080 -
l A-Mn.[&LM_Q,L
* 00s0 i + }
@ (1015, (0.53234-7) RADIANS
4+ 0AP IN INCHES
1 | ]
0040 FOR A <0.040 in. USE
- ={
$o-2 ten (f.-)
0.020
- A L L r 2 A
o ? 3 . 3 ¢ ? s
FREQUENCY — Ge
A= 3007-170

SOURCE: Refereace 11, by G. L. Matthasi. (By courtesy of the
Ramo-Wooldridge Div. of the Thompson-Ramo-Wooldridge Corp.)

FIG. 8.05-3(c) PARAMETER ¢FOR THE J-INVERTER DISCONTINUITY IN FIG. 8.05-3(e)
IN TERMS OF AN AUXILIARY PARAMETER 7



is iequired at f, = 2,50 Gc and at f, = 3.50 Gc. By Eqs. (7) to (9)
in Fig. 8.05-1

2(«», _ w’) °<f2 _ f’) 0.0645
Y wy * w ) fath . '

; <fafy
* = 3.10 Ge '
° f2 * fl
' 2 ( - fo\
] " A,
which for f = 2.5 Gc gives wm' /oy = =7.45, while for f. = 3,5 Gc 1t gives

:

w'/w = 3.55. Since w'/w{ has the smaller magnitude for f = 3.5 Gc, the
restriction at that frejuency controls the desiyn. Using Fig. 4.03-7 and
the procedure discussed in Sec. 8.04, for L, = 0.5 db we find that for

a three-resonator design, L, should be about 35 db at 3.5 Gc, and it should

be about 55 db at 2.5 Gc. Thus, three resonators will be sufficient.

By Table 4.05-2(a), the element values for an n = 3 reactive element
0.5 db-ripple Tchebyscheff prototype are g, =1, g, = 1.5963, g, = 1.0967,
8y = 1.5963, and g, = 1.000. By kEys. (1) to (3) in Fig. 8.05-1,
Jor /Yo = Jy3,/¥g = 0.252, J /¥y = J,, ¥, = 0.0769.° Since f, = 3.1 Gc,
Jor/Yo(fglge = 0.252/3.1 = 0.0313 and J,,/¥,(fy)g. = 0.0769/3.1 = 0.0248.
Using Fig. 8.05-3(a) a plot of A vs. J/Y (fg)g, for fy = 3.1 Ge is made
for purposes of interpolation, and from this plot the rejuired gaps are
found to be A , = A, = 0.027 inch, and Alz = 4,y = 0.090 inch.

Using Fig. 8.05-3(c) for determining the Piier since 4, < 0.040"
we use

Jol

®o1 * ¢y = ~2tan”! (T°> = -2 can”! (0.252) = -0.494  radian .

For the 4,, = 0.090-inch gap we use the chart to get 7 = 0.090 radian/Gc
for f, = 3.1 Ge. Then

.
Filters designed uwsing Fig. 6.05-1 and any symmetrical or antimetrical prototyps such as those
in Tablas 4.05-1(a),(b), or 4,05-2(a),(b) will alvays be symsstrical.
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B, = Ppy = (fo)ge(0.5323A=7) = =0.130  radian

By Eq. (6) in Fig. 8.05-1

1
6, = 6, = -n+-2-[-o.494-o.1ao] - 2.830 radians

and

1
b, = m+ 170,130 - 0.130] = 3.012 radians

For propagation in air, A = 3,810 inches at 3,10 Gc, and the dis-
tances between the centerlines of the capacitive gaps is [, = [, =
¢,A/2m = 1.715 inches for Resonators 1 and 3, and [, = €,A/27 = 1.825
inches for Resonator 2. The resonator bars may be supported by Polyfoam
or by thin horizontal slabs of dielectric passing through the sides of
the bars. Of course, some correction in resonator bar dimensions will
be required to compensate for the effect of the dielectric supporting
material on the velocity of propagation and line impedance. In order to
tune the filter precisely tuning screws may be used as described in
Sec. 11.05, or alternately the resonant frequency of the various 1 so-
nators may be checked by testing them individually or in pairs as is
also described in Secs. 11.03 to 11.05.

Figure 8.05-4(a) shows a filter constructed using the design charts
in Fig. 8.05-3(a) to (c). This is a four-resonator filter designed for
& 1.0-percent bandwidth maximally flat response centered at f, = 6.120 kMc.
In this filter the resonators are supported by 0.062-inch-thick Rexolite
2200 dielectric slebs which pass through the sides of the resonator bars,
the slabs being held by clamp strips at the sides of the filter. The four
bars in the interior of the filter are resonators while the bar at each
end is s 50-ohm input or output line. The resonant frequencies of the
resonators were checked by testing them in pairs as discussed in Sec. 11,04.
These tests indicated small errors in the lengths of the resonator bars,
and the required corrections were made. Figure 8.05-4(b) shows the re-
sulting measured response obtained after the filter was assembled without
tuning screws !



ap-1827 .88

SOURCE: Reference 11, by G. L. Matthaei. (By courteay of the
Ramo-Wooldridge Div. of the Thompson-Ramo-Wooldridge Corp.)

FIG. 8.05-4(a) A FILTER WITH 0.9% BANDWIDTH CENTERED AT 6.120 Ge AS SHOWN
IN FIG. 8.05-4(b)
As is seen from the photograph, this filter uses four, A;/2 resonators
in bar construction

Figure 8.05-5 shows the measured response of a six-resonator filter
in similar construction.? This filter was designed for 1-db Tchebyscheff
ripple and 20 percent bandwidth. The x's show the measured data while
the circles show points mapped from the low-pass prototype using the
mapping in Eqs. (7) to (9) of Fig. 8.05-1. As can be seen, even for
bandwidths as large as 20 percent the design procedure and the mapping
give good accuracy. However, the bandwidth for which this procedure is
accurate depends somewhat on the pass-band ripple tolerance. For ripples
as small as 0.01 db, this design procedure will not meet the design ob-
jectives for as large bandwidths as it will when the ripples are, say,
0.5 or 1.0 db. For bandwidths of around 15 percent or more and very
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small pass-band ripples, the procedures in Chapter 9 are recommended for
this type of filter.

Observe that, the wider bandwidth filter response in Fig. 8.05-5
shows less dissipation loss than does the narrow-band response in
Fig. 8.05-4(b). The unloaded Q for resonators in this construction has
been found to be typically about 1000 to 1300 at S band.

Other considerations in the practical design and application of
filters of this type are that the second pass band of the filter will be
centered at roughly twice the center frequency of the first pass band,
and that the attenuation in the stop band between the first and second
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FIG. 8.05-4(b) THE ATTENUATION CHARACTERISTIC
OF THE FILTER IN FIG. 8.05-4(a)
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FIG. 8.05.5 THE ATTENUATION CHARACTERISTIC
OF A 6-RESONATOR FILTER
The x's indicated measured attenuation
while the circles are theoretical points

calculated using the mapping in Eqs. (7)
to (9) of Fig. 8.05-1

pass band will level off to some peak finite value of (L,),q, decibels,
which occurs at about w = 3wy/2. The size of this maximum attenuation

in the upper stop bund can be estimated by use of the formula

(L)yss = 20 log,, 3 = (n +1)3.53 - 6.02 db
(8.05-1)
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vhere the Bj'j*l/WSure computed from the J, ., ,/Y; by use of Eq. (4) in
Fig. 8.05-1. The stop band below the pass band has a first-order pole of
sttenuation (Sec. 2.04) at w = 0. Thus, in the case of the lower stop
band the attenuation continues to grow as the frequency goes lower, and
the attenuation approaches an infinite value as w approaches zero.

If sizeable attenuation in the upper stop band is required for a
given application, (L,),q5 should be computed. The attenuation predicted
by Eqs. (7) to (9) in Fig. 8.05-1 fur upper-stop-band frequencies near
the pass band, will be reasonably accurate only so long as the computed

attenuation values are around 20 db or more below (L) yse:

In the case of the three-resonator numerical example discussed above,
Jor /Yo = Jy /Yy = 0.252, and J,, /Y, = J, /Yy = 0.0769. By Eq. (4) in
Fig. 8.05-1, B, /Y, = B,,/Y, = 0.269, and B,,/Y, = B,,/¥, = 0.077. Then
by Eq. (8.05-1), (L,)yqg = 54 db. Thus, the 35-db value computed for
3.5 Gec by use of the mapping should be reasonably accurate since the 35-db
value is about 19 db below (L, ) 4p-

It will be found that (L, ), decreases rapidly as the fractional
bandwidth increases, but at the same time (L, ), p increases rapidly as
the number of resonators is increased. Thus, if (L,),gp is found to be

too small, it can be increased by adding more resonators.

SEC. 8.06, SHUNT-INDUCTANCE-COUPLED, WAVEGUIDE FILTERS

The waveguide filter in Fig. 8.06-1 is in most respects the dual of
the capacitive-gap coupled filter in Fig. 8.05-1. In this case, the in-
verters are of the type in Fig. 8.03-1(c) and the structure operates like
the filter with series resonators shown in Fig. 8.02-3. The low-pass to
band-pass transformation in Egqs. (6) to (8) in Fig. 8.06-1 for the wave-
guide filter is the same as that in Eqs. (7) to (9) for the capacitive-
gap coupled filter if both transformations are expressed in terms of guide
wavelength. However, since the guide wavelength for waveguide varies
with frequency in a different way from the guide wavelength in a TEM-mode
structure, the frequency responses will be somewhat different for the two
types of filters. In particular, for a given range of guide wavelength,
the waveguide-type of filter will have narrower freguency bandwidth be-
cause of the more rapid change in guide wavelength for non-TEM modes of
propagation.



T T
PN

Xoi Xi2 Xa3 X3a Xn-in Xnnes

4-3527-192

1)

K L L7
!,loll - EZ%L: | (2)

1] al‘l'l
K ¥
ngnél - _1-‘1_ A ' 1)
o Bpbpel
where go. By, +-ou kpgp #Te as defaned in Fie, 4,04-1, "'l' is defined in

Fig, §.02-1(a), and ¥y is the purde-wavelength fractional bandwidth de-
fined below, The l(‘]

the puide impedance,

R impedance inverter parameters and 7, is

For purely lumped-inductance discontinuities having shunt reactance

A

FRVALY
5.71;1
R} N "0
llu_ = ___A’ — 4)
- ()
‘0
and
o (2, . o 2%
6 = - -%[lan l (_.17;144) + tan’] (—17‘-:-?-1-)] radians , (5a)

For discontinuities with more complicated equivalent circuits use
Fig. 8.03-3 and

) =n¢-§-[¢ .

f -1,y + lul’l] radians (5b)

vhere the ¢'s will usually be negative,

(Continued on p. 448)

FIG. 8.06-1 DESIGN EQUATIONS FOR SHUNT-INDUCTANCE-COUPLED
WAVEGUIDE FILTERS

47



To map low-pass filter response to corresponding band-pass filter
response use

LI 2(-!—-1“')‘) 0
7 "x N
“ 80
where
- 2 -
R S P G W e el ™
A by }\0 we '
80
Ay +A
11 2
A,‘o = _‘_T.l_ . (8)
)\‘o. A 1 )“2' and A_ are the guide wavelengths at frequencies w,, o,

wy, and w as defined in Fig. 8.02-1(h); ' and al' are as defined in
Fig. 8.02-1(a); and )\0 is the wavelangth of a plane wave at frequency
wg in the medium of the guide.

FIG. 8.05-1 Concluded



Assuming that the waveguide propagates the TE, , mode of propagation
and that all higher-order modes are cut off, the procedure for using the
equations in Fig. 8.06-1 is very similar to that for the equations in
Fig. 8.05-1. Figures 8.06-2 and 8.06-3(a),(b) present inductive iris and
inductive post coupling discontinuity data from Marcuvitz.!) The reac-
tances plotted relate to the equivalent circuit in Fig. 8.06-4. Since
for'a very thin iris, X = 0, Eqa. (4) and (5) in Fig. 8.06-1 which assume
a simple, shunt, lumped-inductance discontinuity may be used. For the
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SOURCE: Waveguide Handbook edited by N. Marcuvitz,!3

FIG. 8.06-2 SHUNT REACTANCE OF SYMMETRICAL INDUCTIVE
WINDOW IN RECTANGULAR GUIDE
Fig. 8.06-4 shows the equivalent circuit for this
discontinvity
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FIG. 8.06-3(c) CIRCUIT PARAMETERS OF CENTERED INDUCTIVE POST
IN RECTANGUL AR GUIDE
The guide wavelength ot midband is 7\90 while Ay is the
corresponding free-space wavelength
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FIG. 8.06-4 EQUIVALENT CIRCUIT
FOR THE SHUNT-
INDUCTIVE DISCONTIN-
UITIES IN FIG. 8.06-2
AND 8.06-3(a), (b)
Note that X =~ 0 for case
of Fig. 8.06-2
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FIG. 8.06-3(b) DEFINITION OF THE
DIMENSIONS IN
FIG. 8.06-3(a)
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case of the inductive post (or a thick iris), X is not negligible and
it should be accounted for in the design process. This can be done for
the case of inductive posts by first computing the required normalized
inverter parameter values Kj‘j”/z° by use of Eqs. (1) to (3) in

Fig. 8.06-1. Then, using the data in Fig. 8.06-3(a) along with

Fig. 8.03-3(a), a plot is made of K/Z° and ¢ vs. d/a, for the desired
midband guide wavelength A.o' corresponding plane-wave wavelength A,
and waveguide width a. From this chart the post diameters d which will
give the normalized impedance inverting parameters K).”.”/Zo can be de-
termined, and also the corresponding values of ¢j.j¢l' Then, paralleling
the analogous case for Fig. 8.05-1, the electrical distance between the
centers of the posts at each end of Resonator j is

6. = 7+ %-[¢g_,' + ¢ ) radians . (8.06-1)

J J Jj.itl

Except possibly for the case of large posts, the ¢j'j,1 should be negative.
The distance between post centers for Hesonator j is then

A 6.
§07)
lj P . (8.06-2)

This design procedure should give good accuracy for designs having
guide-vavelength fractional bandwidths w) (see Eq. (7) in Fig. 8.06-1]
of 20 percent,! with diminishing accuracy for larger bandwidths.

Analogously to the strip-line filter in Sec. 8.05, this waveguide
filter will have for TE,,-mode propagation a second pass band centered
spproximately at the frequency for which K. = A‘°/2. This frequency
would be somewhat less than 2w, because of the manner in which A. and
the X; .,
and second pass bands for TE, -mode propagation will level off with a

, vary with frequency. Also, the attenuation between the first
peak value of (L‘)U", which can be estimated by use of the equation

1
(L)yss =~ 20 log,, - (n+1)3.53-6.02  db

B

(8.06-3)



where the XJ..J.”/Zo are computed from the K,.'j,l/z° by use of Eq. (4) in
Fig. 8.06-1. Equation (8.06-1) is the dual of Eq. (8.05-1), and some
further ramifications concerning its use are discussed at the end of
Sec. 8.05.

As for the type of filter in Sec. 8.05, the waveguide filter in
Fig. 8.06-1 will have monotonically increasing attenuatio: for fre-
quencies varying from the pass-band frequency downward. Thus, the at-
tenuation in the lower stop band rises to an infinite value at » = 0,
due to the attenuating effects of the irises, and due to the cutoff of
the waveguide.

It should be noted that the discussion above assumes that only the

TE

happen for frejuencies which are around 1.5 or more times w,), the per-

1o Mmode is present. If other modes are also present (as is likely to

formance can be greatly disrupted. ‘lhis disruption arises hecause
higher-order modes have different guide wavelengths than that for the
TE, , mode. As a result the pass and stop bands for energy in the higher
modes will occur at quite different frequencies than for the TE,, mode.
Thus, the possible effects of higher-order modes should be kept in mind
when this or any other type of waveguide filter is to be used.

In order to clarify the differences between strip-line and waveguide
filter design, a waveguide filter desiygn example will now be considered
which is closely related t v the strip-line filter example in Sec. 8,05.
Let us suppuse taat a pass band with 0.5-db Tchebyscheff ripple is de-
sired from f, = 3.047 to f, = 3.157 Gc, and that at least 30-db attenua-
tion is required at the frequencies f, = 2,786 Gc and f, = 3.326 Gc. Let
us suppose that WH-284 waveguide is to be used. The design calculations
are those outlined in Table 8.06-1.

In Part (a) of Table 8,06-1, guide wavelengths are computed that
correspond to the various frequencies of importance. In Part (b), w,
and v = (f, = f,)/f, are computed, and it should be noted that wy, the
guide-wavelength fractional bandwidth, is nearly twice as large as the
frequency fractional bandwidth w. Also, normalized prototype frequencies
w'/w; are computed corresponding to f, and f, for the waveguide filter,
and the attenuation is predicted by use of the chart in Fig. 4,03-7. It
will be noted that wy, = 0,0645 for this example, which corresponds exactly
to w = 00,0645 for the example in Sec. 8.05. Also, the ratios A‘o/A‘. .
5.130/6.361 = 0.806 and A.O/A‘. = 5.130/4.544 = 1.129 correspond exactly
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Table 8.06-1

OUTLINE OF A WAVEGUIDE FILTER
DESIGN CALCULATION

Part (a)
Assume WR-284 guide. Width = a = 2,840 inches
Height = b = 1,340 inches

1
A = inches (1)

A 0.08472f)2 - (121,;)z

where a is in inches and f is in Ge.
fi = 3.047Ge , A, = 5.29 inches

sl
fo = 3.157 Ge , }‘n = 4.965 inches
A, e
Ao ® 1 2_13 * 5.130 inches (fy = 3.100 Ge)

)\0 = (Plane wavelength st fy) = 3.807 inches

f, = 2.786 Ge , A" = 6,361 inches

fy = 3.326 Ge )\‘. = 4,544 inches

Part (b)
Ay - N fa- 1
1 (1]
" T—. = 0,0645 , » = -L,—l = 0.0355
(1) °
Alternately:
AT\ SR T
')\-()‘o) o = (#H) .05 = 0.0u
@ . e N
w; " >‘¢0 (2)
’
For f = f = 2.786 Gc , )\. = )\" andw—,l - 1.45
2
. o'
For f = f, = 3.326 Ge , )\. = K.. mdq- 3.55

By Fig. 4.03-7, for a 0.5-db ripple n = 3 design:
For f = f, (lofal = 7.8) , , = s5ab.

For f = f, (lw'mi] = 3.55) L, = 35 db.
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Table 8.06-1 Continued

Part (c)

For n = 3, 0.5-db ripple Tchebyacheff prototype,
by Table 4.05-2(a): 8o * 1, gy ® 1.5963,
83 * 1.0967, gy = 1.5963, g, = 1.0000, and cj = 1.

X *A X
U . y7 - 0,
3 -}: 0.252

 J
’
2y 8o81%)
n”e
& . _)f._l._ - fﬂ. s 0.0769
Z, X Y848y 0
. ki in
Jojtl _ 2o (3)
Z, 1_(:(,."”)2
Z,
i - ﬁi = 0.269
ZO Zo
X X
12 . 723 . g.0174
Z, Z,
.X;“i\ﬂ . X—“.ELO . 0.269(5.130) . 6
o o Zo e 2.840

A 0.0774(5.130
12 g0 i’.‘._ﬂ - ___07“ 8o, 0.140

Zo a Zo [ 2.840

By Fig. 8.06-2, with o/)\o = 2.840/3.807 = 0.746:
For XM and X“, d/a = 0.37 and d = 1.050 inches
For Xu and X”, d/a = 0.22 end d = 0.625 inch
Part (d)
oy X, - X
6, = w-%[tml’_"’OtunlM] (4)
! Zy Z,
’l = 8y ® 2,819 radians, 8, = 2.989 redians

the spacing between irises is:

o
ly = 1y = b /LR inches
o

[
l’ L _)_\Q ®  2.44] inches
b4



to the fo/fy = 2.5/3.10 = 0.806 and f./f° = 3,5/3.10 = 1.129 ratios for

the example of Sec. 8.05. The attenuations are seen to be the same for
these corresponding ratios. In fact, using A.o/A‘ as a normalized fre-
quency variable, the response of the waveguide filter would be identical
to that of the strip-line filter example in Sec. 8,05, plotted vs. f/f,.
But note that the waveguide filter response plotted as a function of fre-
quency will be quite different. As is seen from the calculations, an

n = 3 design gives an adequate rate of cutoff, and over 30-db attenuation
at both f_  and f,.

In Part (c) of the table the dimecnsions of the coupling irises are
determined with the aid of the chart in Fig. 8.06-2, and in Part (d) the
spacings between irises are determined. The iris data in Fig. 8.06-2
are for thin irises, and if the iris is, say, 0.020-inch thick, the error
due to thickness should not be serious for most purposes, since the main
effect will be on the resonant frequency of the cavities. There are
presently no deta aveilable which give an accurate thickness correction
for irises of the form in Fig. 8.06-2 with holes as large as are to be
used in this filter. A suggested procedure is to measure the resonator
lengths 1,, l,, and l; from the centerline of one iris to the centerline
of the next. This should make the resonant frequencies of the resonators
a trifle high, so that they can be tuned down to the correct frequency
using tuning screws and the alternating short- and open-circuit method
discussed in Sec. 11.05. If a precision design without tuning screws is
desired, the single- or double-resonator test procedures described in
Secs. 11.03 to 11.05 are recommended for precision determination of the
iris sizes and resonator tunings.

The peak attenuation (L, ) 4y between the first and second pass bands
will be about 54 db just as for the example in Sec. 8.05. However, it
should be recalled that this holds only if the TE,, mode alone is present.

SEC. 8.07, NARROW-BAND CAVITY RESONATOR FILTERS
COUPLED BY SMALL IRISES

The design of cavity resonator filters coupled by small irises can
be carried out in a general fashion by means of Bethe’s small-aperture
theory (see Sec. 5.10). For most of the filters discussed in this chapter,
it will be convenient to carry out the design in terms of the resonator
slope parameters «, or 6, and the inverter parameters Kl.l*l or Jl.l0l'



However, in this section it will be more convenient to use the entirely
equivalent approach which deals in terms of the externel Q'+, (Q,), and
(Q,), of each end resonator loaded by its adjacent termination, and the
coupling coefficients kj,j+1 for the coupling between adjacent resonators.
These matters were introduced in Sec. 8.02, and equations for the external
Q's and coupling coefficients are given in Eqs. (6) to (8) of Figs. 8.02-3
and 8.02-4.

Figure 8.07-1 presents formulas for the external Q's of a rectangular
cavity coupled to a terminated waveguide in any of various ways. In the
equations and in the discussion below A is the free-space wavelength, A‘
and K'l are the guide wavelengths

A
A‘ = ——————  and A = —_— , (8.07-1)

- (5) - ()’

s is the number of half guide-wavelengths in the I, dimension of the
cavity, M, is the magnetic polarizability of the iris, and the quantities
a, b, a;, b, and !, are dimensions defined in the figures. Having com-
puted the required values of (Q,), and (Q,), from Eqs. (6) and (7) of
Figs. 8.02-3 or 8.02-4, the appropriate ejuation in Fig. 8.07-1 car be
used to solve for the required magnetic polarizability M,. Then, by use
of Figs. 5.10-4(a),(b), the dimensions of the coupling iris can be ob-
tained. It should be noted that Ml has dimensions of (length)f which

is consistent with the equations in Fig. 8.07-1, and with the normali-
zation of the ordinates in Figs. 5.10-4(a),(b).

Figure 8.07-2 shows formulas for the coupling coefficient &k for two
rectangular resonators coupled by a small iris in either the end or side
wall. The significance of the other parameters in the equstions is the
same as for Fig. 8.07-1. The required coupling coefficient values for
the couplings between the various adjacent resonators of a filter can be
computed by use of Eq. (8) of Fig. 8.02-3 or Fig. 8.02-4. Then, by use
of the appropriate formula in Fig. 8.07-2, the magnetic polarizability M,
of the various coupling irises can be solved for. As for the end irises,

the dimensions of the internal irises can be determined with the aid of
Fig. 5.10-4(a),(b).
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For narrow-band filters such as those discussed in this section,
the low-pass to band-pass mapping

' 2 (f = fo
- 8 = (8.07-2)
@, b fo
where
@y =
» =
@y
and
W,y + @,
wy * 5

should give satisfactory accuracy.

As an example of the use of this method we consider the design of a
three-cavity direct-coupled filter having a 0.01-db pass-band ripple to
operate at a center frequency of 10 Gc in WR-90 waveguide (a = 0.900 inch,
b = 0.400 inch). We choose the bandwidth to be 50 Mc (w» = 0.005) and
choose [, = K.I/Z = 0.7815 (s = 1). The elements of the low-pass prototype

2.2 2
ks MA® ¢ M.X
o, b, 4 9p,
{e) (d)
A = FREE SPACE WAVELENGTM, Ao = GUIDE WAVELENGTH, {, s o —“{- |
s v AN INTEQGER
S-DORT-100

FIG. 8.07-2 COUPLING COEFFICIENT k FOR RECTANGULAR CAVITIES COUPLED
BY A SMALL IRIS IN THE END WALL OR SIDE WALL
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FiG. 8.07.3 REALIZATION OF NARROW-BAND DIRECT-COUPLED
FILTER USING SMALL IRISES

filter are determined from Table 4.05-2(a) to be g, = g, = 1.000,

g, * 8; = 0.6291, and g, = 0.9702. Figure 8.07-3 illustrates the reali-
zation of this filter. We determine from Fig. 8.02-2 that (Q,), = (Q,),=
806; @j/v = 125.8 and that k , = k3 = w/(w] g g,) = 0.0064. Using

Figs. 8.07-1(a) and 8.07-2(a) we find the polarizalalities M, for the external and in-
ternal apertures to he 6.62 x 10° and 0.79 x 1073 respectively. For the
rectangular end irises we choose d,/d; = 0.5 (see Fig. 8.07-3). Referring
to Fig. 5.10-4(a), we find from the curve for rectangular irises, an
initial value of d, = 0.344 inch. However, d, is an appreciable fraction of
A = 1.18 inches, so that we use ty. (5.10-3) to determine an approximate
correction and find as final values d, = 0.31 inch and d; = 0.155 inch.
For the circular middle irises we find 4 = (6i,)!® = 0.168 inch (see

Sec. 5.10). If the thickness of the irises is 0,005 inch or less, the
thickness correction of Eyg. (5.10-5) is negligible. However, for greater

thickness this correction should be applied.

The presence of the apertures will have the effect of lowering the
resonant frequencies of the resonators slightly from what they were before
the apertures were added. If desired, a small correction in the lengths
of the resonators in Fig. 8.07-3 could be made by applying Eq. (5) of
Fig. 8.06-1. For this example the normalized reactances x,,,,,/zo can be
obtained from Fig. 5.10-5, which for the centered irises in Fig. 8.07-3
gives

X i an(M)) . 4
lél’ = ———;EXLLL—- ' (8.07-3)
 |js0 o3 sl

where X,,/Z, and X, /Z, are for the irises at the ends.
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The design method of this section is based on Bethe's small-aperture
theory and is very versatile. [llowever, it does rely on the assumption
that the coupling irises are relatively small, which also implies that
the fractional bandwidth w of the filter is small (say, of the order of
0.01 or less). Some discussion of the derivation of the equations in
Figs. 8.07-1 and 8,07-2 will be found in Sec. 8,14.

SFEC. 8.08, FILTERS USING TWO-PORT, QUARTER-
WAVELENGTH RESONATORS

The filters discussed in Sec. 8.05 use J-inverters of the type in
Fig. 8.03-2(d) along with half-wavelength resonators, and their design
equations can be derived from Fig. 8.02-1 as will be outlined in
Sec. 8.14. The filters discussed in Sec. 8,06 use K-inverters of the
type in Fig. 8.03-1(c) alonyg with half-wavelength resonators, and their
design equations can be derived from Fig. 8.02-3. [f quarter-wavelength
resonators are used in an analogous way, they themselves have an inverting
effect so that if at one end of each resonator they behave like the series
resonators in Fig. 8.02-3, at their other ends they will operate like the
shunt resonators in Fig. 8.02-4. In this manner it can be shown that
filters can be ronstructed using two-port, quarter-wavelength resonators

if they are coupled alternately by k- and J-inverters.M

Though other types of construction and other types of K- and J-
inverters may also be used, Fig. 8.08-1 gives design data for a TEM-mode
type of filter using quarter-wavelength resonators with capacitive-gap
J-inverters, and shunt inductance K-inverters. LExcept for the use of
two different kinds of inverters and other minor differences which result
from the fact that the resonators are a quarter-wavelength rather than a
half-wavelength long, the design procedure is much the same as for the
preceding cases. Using the st ‘p-line construction shown in Fig. 8.05-3(a),
the J-inverter capacitive-gap spacing and the electrical length ¢ can be
determined by use of the data in Figs. 8.05-3(a),(b), and (c).

Figures 8.08-2(a) to 8.08-4(b) show data for inductive-stub K-inverters.
Note that the ordinates on these graphs are normalized with respect to
frequency in Gec, and that due to the junction effect the ¢ values are not
always negative in this case.

Figure 8.08-5(a) shows a filter with six quarter-wavelength reso-
nators designed using the charts just discussed.® The construction is
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where By B, +++» B, 8TE A8 defined in Fig. 4.04-1, w; isdefined in

Fig. 8.02-1(a), and w is the fractional bandwidth defined below. In
this structure, impedsnce inverters (with parameters K. ) alternate
with admittance inverters (with parameters .I 01) and Zy = 1/, is
the characteristic impedance of the line het\veen inverters.

Using K ) inverters of the form in Fig. 8.03-1(c) and J + in-
verteu of the form in Fig. 8.03-2(d), the A 4 Bl Ry lnd
é Liel values can be computed fromthe equunons in thou figures. Then

gj 2 .2. é- -l ) ¢l-l’1] radians (4)
where the ¢, ... are negative.

Using the construction shown in Figs. 8.08-5(a), the gap spacings A
and the ¢ values for the J . inverters may be determined by
Figs. 8.05-3{a), (b), (c). +he stub lengths and @ values for the
K,.".ﬂ inverters may be determined by Figs. 8.08-2(a) to 8.08-4(b).

To map low-pass prototype filter response to corresponding band-
pass filter response use the approximstion

o . %i(i;—“!) : (5)
where

v = 2(%—;—%) . 6)
and

mo-%—z‘zi"q . M

FIG. 8.08-1 DESIGN EQUATIONS FOR FILTERS WITH TWO-PORT,
QUARTER-WAVEL ENGTH RE SONATORS
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DIMENSIONS OF DISCONTINUITY

T——2:0400,y 0.312-in. GROUND PLANE
18 SPACING CENTER CON=
; — Xe in. o 01281, OUCTOR BAR 18 0128 in.
x 3 04 X in. =
0.08 Xs 0.23in.R.
. in. — AIR DIELECTRIC
o.0s 0184in. SHORTING BLOCKS
0.08 L SAME AS IN
| 2 3 ] [ ¢ [ . Fi0. 8.08-2(s).
('o)“. FREQUENCY — G¢
0-3027-24%

SOURCE: Reference 11, by C. L. Matthaei. (By courtesy of the
Ramo-%ooldridge Div. of the Thompson-Ran.0-Wooldridge Corp.)

FIG. 8.08-3(a) K/[Zy(fg)g.) vs. (fg)g, FOR A SINGLE-STUB, SHUNT INDUCTANCE

K-iINVERTER IN BAR TRANSMISSION-LINE CONSTRUCTION
The characteristic impedance of the resonator transmission line is
Zy =1/, = 50 ohms, and (fy); . is the resonant frequency in Ge
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FIG. 8.08-3(b) @(fg)g, vs. (fy)g. FOR THE SINGLE-STUB
K-INVERTER IN FIG. 8.08-3(o)
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FIG. 8.08-4(b) &/(fy)s . vs. (fg). FOR THE K-INVERTER IN FIG. 8.08-4(a)
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