

W!!!em T. Slajton
Bitcrowave Antennes ard Components Branch Electronles D!vision

November 0, 1954

Naval resenvin magotatory Wン:hizgten. D.c.
r

$$
\begin{gathered}
\text { Best } \\
\text { Available } \\
\text { Copy }
\end{gathered}
$$

comravis

 il
 !
\therefore anctaray il
 A :
 $:$
 \because

- 2
$\because \quad \therefore \%$ \therefore
- "i... 3 $:$
: ;
; 3i

Abstract

ARSTRACT A set of antenna gain-standard horns covering the milcrowave range from 0.77 cm to 31.5 cm has been designed aud carefully call- be dupifcated accu:ately from the drawings supplied. A stople method of extending and improving the aecuracy of Scheicunoft's gatn curves is also described.

PROBLEM STATUS
This is a final report on this piaase of the problem; work on the problem is coctinuing.

AUTHORIZATION

NRL Problem R09-03
Project NiR 888-03C

Manuseript submitt:d September 2, 1954

Best
 vailable Copy

DESIGN AND CALIBRATION

OP ? Mitiowaye antenna gain standards

INTRODUCTION

Tha need fox accurate and practlcal microwave antenna gain standards has led to the design and calibration of a series of pyramidal horns covering the microwave bands
 Eanging from 24.7 db to 13.7 db . There is 2 horn for each wavegulde size in the rante. The l:orns can be easily and accurately duplleated from cirawings supplied in tils report.

DESign

Titree requiremants were considered of prime importance in the design: a useful gain fizare, simplicity of construction, and accuracy of callbration. The fabricated type of hora (rig. 1), with flat metal shppis forming the sides, was resided upon as the best means of satisfying the construction reguirements. For simplicity, the horns werdesigned so that the E - and H -plane flares meet the wivegulde is a common plane.

Another consideration was the over-all size and welgit. It was impractical to scale the horns from ona band to another ihroughout the range, since the horns at the loriger wavelengths would be too large and those at the shurte= wavelengths too small. Accordingly, there are five difierent designs; each of the other six horns was' scaled from one of these.

The $8-\mathrm{mm}$ and $1.8-\mathrm{cm}$ horns were scaled from the $1.25-\mathrm{cm}$ horn; the $4.75-\mathrm{cm}$ horn from the $3.2-\mathrm{cm}$ horn; the $3.95-\mathrm{cm}$ and $6-\mathrm{cm}$ horns from the $10-\mathrm{cm}$ horn; and the $15-\mathrm{cm}$ horn fiom the $23-\mathrm{cm}$ horn. In scaling, the values of ℓ_{H} had to bealtered slightly in order to make a sicmple junction at the wavegutde. This was necessary because, Whith one or two exceptiens, the inside dimensions of the waveguldes ave not ecaled from ne band to another. Tho 2c.justment made only a very sllght changs in. the calcuiated gatin (aiourt 0.02 to 0.03 db).

Fig. 1 - Physical dimensions, for calculating the ga'n

The $3.95-\mathrm{em}$ horn reprosents an ceverlapning of the $3.2-\mathrm{cm}$ band and the $4.75-\mathrm{cox}$ band. Eorruyer, it was deeided to taclude tris horn in the serles because it fits a standard
 chaciss on the $10-\mathrm{cm}$ horn frow which it is scaled.

The basic design data Inclucing the dimensions, operating range, and tesign-point gain for all the horns are summarized In Table A-2.*

Readers who are interested in a detailed design procedure are 5 -uferred to the Appendix, where a simple means of extending the range of Schelkunoft's gain curves and Improving the accuracy of the gain flgure ottainable from them ts described. This methed eliminates the necessity for long compatations involving Fresnel Integrals, and yields very close agreement with the detailed calculations.

CONSARUCTION

As mentioned previously, the fabricated type of horn using flat metal si :ets was decided upon as most suitajle. The one exception is the 8 -mm design, where electroforming was considered necessary because of the small size and close tolerances. Horns for the hands from 1.25 cm to 10 cill were mad= of bases sheets. At the $15-, 23-$, and 3 n-rm bands, hornc wore fabringten from sheet aluminum using hellum gas to facllitate welding the Joints (heliarc process). This construction reduced üe weigit soaidicrably and was icund to be satisfactory for proulucing accurate, vaiform, and augged horns.

Dimensiens for each set of horns are given in Figs. A-6 through A-17.

CAlibration

Experimental primary gain measurements (Fig. 2) were maje In order to check the accuracy of the calculated gain.t rreat care was taken in maklou fiese measuremenis. Both the horns and the bolometer detectors were carefully matched and the bolometer amplificr and guigut seier (VTVM) were calibrated accurately. The bolometer amplifier was found to be tinear throughout the range used. The use of $r-f$ coaxial cables was avolied because of instaillity, wavegulde being used inctead. Microwave absorbent material (1) nas used to minimize reflections. Even so, duficulties vere encountered at the longer wavelengths because of reflections and the large separation distances required. As Braun has shown (2), true Fraunhoter fleld conditions do not exist untll a separation distance between horns of many times $2 \mathrm{~d}^{2} / \lambda$ is attained, d being the larger aperture dimension. Because of these dificuli:eg, axpeimential galn measurements at 10 cm and above wore abandoned. It was decided to scale the $3.95-\mathrm{cm}=8 \mathrm{~d} 8 \mathrm{~cm}$ herns from the $10-\mathrm{cm}$ horn in order to obtain rellable measurements at the shorter wavelengths. Figure 3 shows the anechole test site. An example of the method used in ovaluating the experimental data is given in the Appendix.

Fig. 2 - Experimental setup for gain measurements

[^0]

Fig. 3 - Anechoic test site

Measurtiduts were mafe at several scparation distances in each case, and were repeated many times, changians such rar'zhles as the power level and the peaking of the hurns. See figs. 3 and 4.

$r:=$ - Horn and tearsmitter on adjuztable mount $\therefore \therefore$:
cain curves for eaen band are shown in Flg. A-5 (a,b, c). Figares A-4 (a-f) ehotw the field patterns for three basic horn designs.

REMARKS

Horms representing icur iasic designs were measured for mismatch over their bands. The greatest VSWR's enccuntered in the varlous bands are as follows:

Band	Max VSWR
1.8 cm	1.10
3.2 cm	1.20
6 cm	1.25
23 cm	1.20

The horns for the other bands should have a VSWR ciose to that of the horns irom which they were scaled.

In any event, when the horns are used in gain measurements, the VSWR shnuld he ㅍëēsurei ui une waveiength used, and for accurate measurements the horns ahould be =arefully matched, or aliowance shouid be made for any teismatch. In either case the bolometer must be well-matched. The use of flange-to-flange connections rather than chokes, is recommended whenever operating at a wavelength dufering from that for Which the shokes were designed, since at some wavelengthe choke-to-flange joln's may introduce considerable m!smatch.

Accuracy

At any one wavelength the measured polnts showed a dispersion of less than 0.1 db. As a function of wavelength, the gain curve is not monotonic, as qould be predicted from the theory, but shows small, though definite, periodic wiegles (see Fig. A-5 (b)j. After exhaustive checking it is ife!t that these wiggies are actually present, and not due to experimental difilculties. Thiss efiact can probably be attributed to higher modes in the aperture and curients on the outside of the horn, both of risish are sigiected In the theory. However, since the wiggles are small, and since a tremendess amount of additional data would have to be taken to reprodicen the wiggles accurately, a curve drawn through the average of the measured yoints was uscd. Taking Into account all posslive deviat!ons from the true gain over each band, it was decided that the marimum possiblo error would te less thun ± 0.3 th up to and including $:^{3}-710$-cm horns.

At wavelengths longer than 10 cm , where no direct experimental checks have been feasible, the gain has been calculated by means of Schelkunot!'s formula. To arrivo at u reasonatle tolerance at these iavelength, it was note: that below 10 cra the groatest
 near fleid elfects) and the calcilated gain at the same wavelength was of that order of 0.2 db . In general the difference wis unch less than dis lifure. Therefore it is folt that a tolorance of $\pm 0.5 \mathrm{db}$ is reasonable for all horns above the $10-\mathrm{cm}$ band. In all probahillty, the actual errors are consicierably less than the maximum possible toleraness quoted.

ACKNOWLEDGMENTS

The author vishes to express his apprecfation to E. H. Braun for his advice and cooperation and to F. W. Lashuay for his suggestions in connectlon with the cunstruction of the horns.

REFERENCES

1. Simmons, A. J., and Emerson, W. H., "An Arechoie Chamber Making Use of a New Broadband Absorbing Materlai," NRL Report 4193, 7 July 1953
2. Braun, E. H., "Gain of Electromagaetic Horns," Fros. I.R.E., Vol. 41, Ko. 1, pp. 109-115, Jan. 1853

LIST CF APPENDDX ILLUETRATIC.!3

Title Page
Flg. A-1 (a, b) Braun's E- and H-Plane Correction Curves 11
Fig. A-2 (a, b) Expanded E-Plane Theoretical Gain Curve 14
Fig. A-3 (a, b) Expanded H-Plane Theoretlcal Gain Curve 16
Fig. A-4 ($2-1$) E- and H-Plane Field Patterns 19
Fig. A-5 (a-c) Gain Curves and Conversion Chart 23
Fig. A-6 to A-17 Consiruction Drawtigs for the Gain-Standard Horns 26
Table A-1 Data for E- and H-Plane Theoretical Gain Curves 18
Table A-2 Summary of Gain-Standard Horn Data 22

APPENDIX

Methods for Determintig Horn Dimeasions and Galn

BACKGROUND

Schelkunoif's gain curves in various forms $1,2,3$ were used for determining the tentative dimensions of the horns and for obtaining a first approximation to the galn. After the aperture dinensions had been chosen and a zeasonable value for ℓ_{E} (the E-piane slant height) had been set, the \mathcal{F}-plane slant helght, \mathcal{I}_{H}, was uniquely deterinined by the requirement that the flared sides of the horn meet the waveguife in the same plane (Fig. 1, p. 1). For the purpose of calculating tie expected gain, this value of ℓ_{H} was approximated by the relation:
where $=$ H-plane aperture dimession
$\mathbf{b}=\mathbf{E}$-plane aperture citmension
$\nabla_{c}=$ E-plane taside ilmension of the wavegulde
$\sigma_{B}=H$-plane instue dimension of the maveguide.
After the tentative gain had ceen determined, the exact value of ℓ_{h} was obtalned from the formula

$$
\begin{equation*}
t_{H}=\frac{a}{-v_{2}} \sqrt{\left[\left(L_{c}\right)^{2}-\left(\frac{b}{2}\right)^{2}\right]\left[\left(1-\frac{v_{s}}{b}\right)^{2}\right] \div\left[\frac{-m_{n}}{2}\right]^{2}} \tag{2}
\end{equation*}
$$

[^1]In uslag Schelrunoif's gain curves, it was found that no one family of curves in the zefer .es nuentloncd covered 2 range great enough to include all the desircd sizes of horno. Errthermore, certain parts of the curves were found to be less accurate than othe:s. To overcome these difficu:ties a new procedure has been devised. 4 A briel revict - . relationship of the curves to the gain formula will help to clarify the procedurt. in ar notation is substant'plly that used in the recent book by Schelkunoff and Frils, ${ }^{3}$ a: - : y Sllver.2

The Schelkunoff curves give the directive gain for horns flared in either of the two principai piarcs; g_{g} is ti:e directive gain of a sectoral horn flared in the $\overline{\mathrm{E}}$-plane, and g_{n} is the dircctive gain of a sectoral norn ilared in the H-pianc. The two secto:al gain curves are obtained irom the following formulas, expressed in terms of the tabulated Fresnel integrals $C(X)$ and $S(X)$:

$$
\begin{align*}
& \frac{\lambda}{\delta} g_{H}=\frac{4 \pi l_{H}}{v}\left[\{c(u)-c(v)\}^{2}+\{s(u)-s(v)\}^{2}\right] \tag{3}\\
& \frac{\lambda}{d} z_{z}=\frac{s 4 l_{2}}{\pi}\left[c^{2}(v)+s^{2}(v)\right], \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& u=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{\lambda \ell_{G}}}{a}+\frac{a}{\sqrt{\lambda \ell_{B}}}\right) \\
& v=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{\lambda \ell_{R}}}{a}-\frac{a}{\sqrt{\lambda \ell_{B}}}\right) \\
& z=\frac{b}{\sqrt{2 \lambda \ell}} \\
& \lambda=\text { wavelsngth. }
\end{aligned}
$$

The gain of a pyramidai horn is

$$
E=\frac{8 \pi \ell_{E} \ell_{i 1}}{b b}\left[c^{2}(w)+r^{2}(w)\right]\left[\{c(u)-\alpha(v)\}^{2}+\{S(u)-S(v)\}^{2}\right]
$$

This resuit can easily be obtalned from the tro sectoral curves by multiplying togethor
 formula

$$
\begin{equation*}
g=\frac{\left(\frac{\lambda}{4} \varepsilon_{E}\right)\left(\frac{\lambda}{h} \varepsilon_{1 H}\right)}{\frac{32}{-\pi}} \tag{5}
\end{equation*}
$$

where $\frac{\lambda}{a} x_{z}$ and $\frac{\lambda}{b} g_{n}$ are read ulrectly from the curves.

[^2]
FXTENSION AND APPLICATION

Braun's methof ${ }^{4}$ provides a conyenlent means of extending the range of the gain curves and eliminating the Inaccuracy arlaing from interpolatlons between curves. He intruduces the arbitrary factors k_{E} and k_{H} to create a fictitious horn having these ditmensions:

$$
\begin{array}{ll}
t=k_{H} A, & \ell_{H}=k_{H}^{2} L_{H} \\
b=k_{E} B, & \ell_{E}=k_{E}^{2} L_{E}
\end{array}
$$

where A, B, L_{E}, and I_{H} are the actual horn dimar.sions. By choosing the proper value for k_{z} and k_{k}, one can make l_{E} and ℓ_{H} fall exactly on one of the respective galn curves for each plane. Aftor the galin of the 'Ietitous hern lifict, 1 is read from the curves, the gain of the actual horn (ract.) is obtained from the relation

$$
g_{\text {act }}=\frac{E_{\text {fict }}}{k_{z} k_{R}}
$$

 The Schelkunolf corves for $\ell_{z}=50 \lambda$ and $\mathcal{L}_{4}=50 \lambda$ are convenient for this purpose and have been accurately recomputed and plotted on an expanded scale in Figs. A-2 (a,b) and A-3 (a,b) so that they may be read with such accuracy that it is no longer necessary to make the dciatled calculat!ons invelyed in using the ailn formula. The curves wero ploted from formulas (3) and (4). The values obtatned frcm these formulas are tabulated in rabia i-1. For maxiaum accuracy these values may be preferable to those obtatnod from the curpes. Linear Interpolation between points will yicld good ircuiacy. The table makes it possible to plot any desired portions of the curves on whatever scale is preferred.

An example will demonstrato the simpliclty of the mothod.

$$
\begin{array}{lll}
\text { Actual horn: } & A=8.13 \lambda, & L_{M}=19.72 \lambda \\
& B=6.67 \lambda_{\mathrm{E}} & \mathrm{~L}_{\mathrm{E}}=18.52 \lambda
\end{array}
$$

If it desired to maks use of the $50-\lambda$ curves referred to above, the k ' are chosen as follows:

$$
\begin{aligned}
& k_{2}^{2}=\frac{50 \lambda}{i 8.52 \lambda}=2.6998, \quad k_{2}=1.643, \\
& k_{H}^{2}=\frac{50 \lambda}{10.72 \lambda}=2.5355, \quad k_{H}=1.592 .
\end{aligned}
$$

Fictitious horn: $b=k_{z} B: 10.96 \lambda_{1} \ell_{z}=50 \lambda_{4}$

$$
==k_{n} A=12.54 \lambda . \ell_{H}=50 \lambda .
$$

From the so- λ galn curvas

$$
\begin{aligned}
& \frac{\lambda}{k} R_{R}=80.77 \\
& \frac{\lambda}{b} R_{n}=98.92 .
\end{aligned}
$$

From formula (5),

$$
\begin{aligned}
& \mathrm{R}_{\text {fict. }}=\frac{\left(\frac{\lambda}{\left.\frac{\lambda}{R_{Z}}\right)}\left(\frac{\lambda}{b} \kappa_{H}\right)\right.}{\frac{32}{\pi}}=784.40 . \\
& \mathrm{g}_{\text {act. }}=\frac{\mathrm{g}_{\text {fict. }}}{k_{Z} k_{H}}=299.38, \text { or } 24.77 \mathrm{db} .
\end{aligned}
$$

Detalled calculations using the Fresnel integrais in the cain formula resulted in the game gain figure, 24.77 db . Similar comparisons at each of the other bands showed agreenent within 0.01 db .

USE OF CORRECTION CURVES

The procedure for determining the true Fraunhoier gain from the primary gain test data, using Braun's near field correction curves, Fig. A-1 (a, b), is shown in the following example taken Irom acius! measuremenis:

X-band horn cimenslons: $\quad=7.654 \mathrm{in} ., \quad \ell_{n}=13.484 \mathrm{in}$.

$$
b=5.669 \mathrm{in} ., \quad \ell_{x}=12.598 \mathrm{in} .
$$

$\lambda=3.20 \mathrm{~cm}=1.2598 \mathrm{in}$.
R Idistance between horn=: = 140.25 in.
$\frac{4 \pi \mathrm{R}}{\lambda}=\frac{i 12.566)(140.25)}{1.2539}=1398.9$.
Frome test data $\frac{P_{T}}{P_{R}}=\frac{11.3}{0.523}=91.87: \quad \sqrt{\frac{P_{T}}{P_{R}}}=9.585$
where P_{T} represents power transmitted and P_{R} power recelved.
$\operatorname{cosin}_{\text {uncorrected }}=\frac{\frac{4 \pi R}{\lambda}}{\sqrt{\frac{P_{I}}{P_{R}}}}=\frac{1398.9}{9.585}=245.95$, or 21.54 dh .
Parameters for using the correction curves:
E-plane:

$$
\left.\begin{array}{l}
\frac{8 l_{z}}{b^{2}}=\frac{(8)(12.598)}{32.17^{2}}=3.1360 \\
E=\left(\frac{9 l_{x}}{b^{2}}\right) \quad \lambda i=(3.1360)(1.2598)=3.951 \\
\log \frac{2 k}{b^{2}}=\log \frac{(1.2598)(140.25)}{32.13}=\log 5.498=0.740
\end{array}\right\}
$$

Fig. A-1 - Brann's E- and Il-plane correction curves

H-plane:

$$
\left.\begin{array}{rl}
\frac{8 \ell_{H}}{R^{2}} & =\frac{(3)(13.434)}{58.584}=1.8413 \\
H & =\left(\frac{3 L_{n}}{a^{2}}\right) \lambda=(1.8413)(1.2598)=2.320 \\
\log \frac{\lambda R}{R^{2}} & =\log \frac{(1.2598)(140.25)}{58.584}=\operatorname{loR} 3.016=0.479
\end{array}\right\}
$$

Reading from the correction curves:

$$
\text { E-piàné curreciion ... } 0.22 \text { db }
$$

H-plans correction ... 0.28 db

Uncurrected gain (above) .. 21 db

The calculated gain, using Schelkunoff's formula, in this case was the same: 22.14 db .

DETERMINATION OF AN OPTLHUA: HCRN WITH
 SPECIFIED GAIN AND EQUAL BEAMWDTHS

A. simule means has been devised for finding the dimensions of a horn which satisfles the following requirements:
(1) Spectlied gain
(2) Critmum horn*
(3) Equal heamwidths at the hall-power points.

Although this can be done mnipirlcally, z sct of factors was determined . 50 m Schelkunof's gain formula, which yield the required horn parameters as a function of the absolute gain, g, alone.t These are as follows:

[^3]$\frac{a}{\lambda}=0.4675 \quad \sqrt{6}$
$\frac{b}{\lambda}=0.3463 \quad \sqrt{8}$
$\frac{f_{5}}{\lambda}=0.05764 \quad \mathrm{E}$
$\frac{\ell_{\pi}}{\lambda}=0.06885$
where t, b, ℓ_{E}, and ℓ_{H} are t.z usual parameters as defined (p.7).
A horn raving these dinensions will have exactly the desired theoretical galn, and will be exactly an optimum hom. Howeyer, it should be pointed out that where a simpie joint between the flared horn azd the wavegulde is desired, the value of $\boldsymbol{d}_{\mathrm{H}}$ must le modtfled to make the horn fit the g:ide. Thls will change the gain by a small amount, usually a few tenths of a db, since the torn will no lorger be exaclly optimus., If a discrepancy
 formuia (2).

When a cioser approach to the specified gain is desired, a slight clange in the procedure is necessary. This is accomplished by the foliowing steps:
(1) Ccmpute tentative parameters a^{\prime}, b^{\prime}, and $\ell_{z}{ }^{\prime}$ in the same way as a, b, and ℓ_{E} were computed above.
(2) Obtain the approximate value, $\ell_{q}{ }^{\prime}$, to fit the wavegulde, using formula (1), p.7.
(3) Calculate the tentative gain, x^{\prime}, by the method outilined on p. 9 using

(4) Recompute a, b, and \mathcal{L}_{2}, substituting $\boldsymbol{\varepsilon}^{2} / g^{0}$ for $:$
(5) Obtaln the exact value of ℓ_{n} from formula (2
(6) Recaiculate the gain for the new pirameters.

Since the theorciscal gin is obiainen fory accurately in step 8 , it is easy to determine the discrepancy between the cesired gain and that now resulting from the adjustment to fit the wavegulde.

Fig. A-2 (a) Expanded E-plane theoretical gain curve

Fig. A-2 (b). Expanded E-plane theoretical gaincurve
x_{2}

Fig. A-3 (a). Expanded H-plans therretical gain curve

Fig. A-3 (b). Expanded If-plane theorctical gatn curre

TABIE A -1
Datin for Theoretical Gain Curves

(a) E.Plane ($L_{z}=50 \lambda$)													
b	$\frac{\lambda}{4} \mathrm{~F}_{Z}$	b		b	${ }^{\lambda}{ }^{\text {a }} \mathrm{g}_{\mathrm{E}}$	b	${ }^{\boldsymbol{\lambda}} \mathbf{k}_{\mathbf{E}}$	b	寅 8 E	b	${ }^{\lambda}{ }^{\text {E }}$ E	b	$\frac{\lambda}{13} \mathbf{E}_{E}$
2.	20.362	4.6	46.397	7.2	69.123	9.8	83.301	12.4	73.884	15.0	46. 493	7.6	19.910
2.1	21.381	4.7	47.362	7.3	69.847	9.9	81.426	12.5	13.041	15.1	45.268	17.7	19.316
2.2	22.395	4.8	48.326	7.4	70.555	10.c	81.518	12.6	72.265	15.2	44.040	17.8	18.767
2.3	23.410	4.9	49.233	7.5	7: . 248	10.1	81.581	12.7	71.452	15.3	42.813	17.9	18.264
2.4	24.425	5.0	50.233	7.6	71.923	10.2	81.611	12.8	70.621	15.4	41.593	18.0	17.805
2.5	25.440	5.1	51.181	7.7	72.586	10.3	81.609	12.9	69.753	15.5	40.379	18.1	17.395
2.6	26.456	5.2	52.123	7.8	73.219	10.4	81.575	13.9	68.856	15.6	39.1.4	18.2	17.030
2.7	27.472	5.3	53.057	17.9	73.841	10.5	81.510	13.1	67.931	15.7	37.552	18.3	16.714
2.8	28.481	15.	53.985	[8.	74.441	10.6	81.408	13.2	66.980	15.8	36.801	18.4	16.445
2.8	29.490	15.	54.908	18	75.025	10.7	61.277	13.3	65.091	15.3	35.635	18.5	16.223
3.0	30.503	15.6	55.821	S. 2	75.585	10.8	R1. 110	13	04.997	16.0	34.488	18.6	16.048
	31.511	5.?	56.720	0.3	74.127	$: 9.2$	g0. 203		63.9E\%	16.1	33.350	$: 8.7$:5. $22:$
3.2	32.518	5	57.626	2.4	76.645	11.0	80.676	13.6	62.917	16.2	:2.250	18.8	15.839
3.3	33.527	5.9	56.517	18.5	77.142	11.1	80.405	13.7	61.844	16.3	31.164	18.9	15.804
3.4	34.530	6.0	59.401	8.6	77.616	11.2	80.104	13.8	60.748		30.104	19.0	15.812
3.5	35.534	5.1	50.272	10. 7	75.065	11.3	79.765	13	59.635	16.5	29.069	19.1	15.870
3.6	36.534	6.2	61.134	8.8	78.492	11.4	79.393	14.0	58.501	16.6	28.063	19.2	15.967
3.7	37.531	6.3	61.987	8.9	78.892	11.5	78.987	14.1	57.351	16.7	27.086	19.3	16.108
3.8	38.530	6.4	\|62.828	19.0	79.269	11.6	78.545	14.2	56.188	16.8	26.142	19.4	16.289
3.9	39.524	6.5	63.659	10. 1	79.619	11	78.068	14.3	55.008	16.9	25.232	19.5	16.521
4.0	40.515	6.6	64.477	9.2	79.944	11.8	77.559	14.4	53.816	17.0	24.355	19.6	16.769
4.1	41.504	6.7	65.285	9.3	80.240	111.9	77.014	14.5	52.614	17.1	23.515	19.7	17.064
4.2	42.490	6.8	66.089	9.	80.510		76.435	14.6	51.402	17.2	22.713	19.8	17.394
	43.472	6.9	66.862	9.5	80.752		75.822		50.183	17.3	21.951	19.9	17.755
	44.450	7.0	67.630	9.6	80.964	12.2	75.176 74.897		78.959	17.4	21.228	20.0	18.147
	45.425	7.1	68.385]	9.7	81.146	12.3	74.497			17.5	20.548		
(b) H-Plane ($\hat{H}_{H}=50 \lambda$)													
-	${ }_{\frac{1}{6}}^{\mathbf{E}_{2}}$		${ }^{\frac{1}{b}}{ }_{4}$		$\frac{\lambda}{\lambda} \mathrm{E}_{1}$	-	$\frac{1}{6} E_{n}$		$\frac{1}{6} \mathrm{~g}_{4}$		$\frac{1}{k}{ }^{\text {a }}$		$\frac{1}{b} \mathrm{E}_{1}$
2.	20.370	4.6	46.635	7.2	71.291	9.8	90.533	12.4	99.019	15.0	92.591	17.6	75.416
2.1	21.387	4.7	47.628	7.3	72.164	9.9	21.195	12.5	199.052	15.1	92.066	17.7	74.701
2.2	22.402	4.8	48.619	7.4	73.031	10.0	91.740	12.6	:99.062	15.2	91.529	117.8	73.991
2.3	23.422	4.9	49.609	7.5	73.889	10.1	92.270	12.7	199.051	15.3	90.972	17.9	73.282
2.4	24.439	5.0	50.595	7.6	74.739	10.2	92.781	12.3	99.012	15.4	50.4c0	18.0	72.581
2.5	25.452	5.1	51.578	7.7	75.580	10.3	93.274	12.9	98.053	15.5	89.822	18.1	71.886
2.6	26.472	5.2	52.559	7.8	76.413	10.4	93.751	13.0	98.871	15.6	89.214	18.2	71.199
2.7	27.488	5.3	53.536	7.9	77.236	10.5	94.208	13.1	98.763	15.7	88.601	18.3	70.516
2.8	28.508	5.4	54.512	8.0	78.049	10.6	94.646	13.2	98.638	i5.8	87.976	18.4	69.847
2.9	29.518	5.5	55.475	8.1	73.854	$10 \overline{.} 7$	95.067	13.3	98.406	15.9	87.337	18.5	59.183
3.0	30.532	5.6	56.449	8.2	79.644	10.8	95.470	13.	98.309	16.0	86.688	18.6	68.534
3.1	31.545	5.7	57.418	8.3	80.427	10.9	95.848	13.5	95.114	16.1	86.026	18.7	67.891
3.2	32.560	5.8	53.377	8.4	81.196	11.0	96.207	13.6	97.894	16.2	85.355	18.8	67.262
3.3	33.573	5.9	59.334	8.5	81.956	11.1	96.547	$: 3.7$	37.654	16.3	84.677	18.9	56.643
3.4	34.579	5.0	69.265	8.6	82.703	11.2	96.869	13.8	97.387	16.4	83.990	19.0	65.038
3.5	35.355	0.1	61.232	8.7	83.440	11.3	97.168	13.9	97.101	16.5	83.319	19.1	65.447
3.6	3x. xC5	6.2	52.176	B. 3	84.164	11.4	97.445	14.0	95.793	16.6	82.594	19.2	64.871
3.7	37.812	6.3	63.115	8.9	84.875	$: 1.5$	97.702	14.1	76.464	16.\%	81.83S	19.3	64.305
3.8	38.622	6.4	64.046	9.0	85.567	11.6	97.938	14.2	96.113	16.8	81.179	19.4	63.758
3.9	39.629	6.5	64.975	9.1	86.250	11.7	78.149	14.3	95.740	16.9	80.451	19.5	63.222
4.0	40.633	5.6	65.896	9.2	86.323	11.8	98.342		95.348	17.0	79.742	119.6	62.703
4.1	41.637	6.7	46.810	9.3	87.5\%9	12.9	98.510	14.5	94. 236	1:7.1	79.023	. 7	52.201
4.2	42.645	6.3	67.720	7.4	88.221	12.0	98.658	14.6	94.504	17.2	78.301	. 8	61.714
4.3	43.639	6.9	60.623	9.5	83.844	12.1	98.783	14.7	94.054	17.3	77.578	19.9	61.243
4.4	44.641	7.0	69.518	9.5	49.450	12.2	98.882	14.8	23.565	17.4	76.654	20.0	60,788
4.5	45.639	7.1	70.707	9.7	90.053	12.3	98.965	14.9	73.095	17.5	76.134		

Fig. A-4. E- and H-plane field patterns

(d) 3.20 cm , H-plane

Fig. A-4. E- and H-plane field patterns

(e) 6.67 cm, E-plane

(f) $6.67 \mathrm{~cm}, \mathrm{H}$-plane

Fig. A-4. E- and H-plane field patterns

TABLE A-2
Summary of Gain-Standard Horn Data

Band	Frequency Range	$\begin{gathered} \text { Dimensions (I.D.) } \\ \text { (in.) } \end{gathered}$	DesignPoint Frequency	Gain at Design Point (db)
$\int 8 \mathrm{~mm}$	$\left.\begin{array}{r} 0.77-1.13 \mathrm{~cm} \\ 26,550-38,960 \mathrm{Mc} \end{array} \right\rvert\,$	$\begin{aligned} & a=2.720 b=2.231 \\ & \ell_{H}=6.513 \quad \ell_{E}=6.197 \end{aligned}$	$\begin{array}{r} 0.85 \mathrm{~cm} \\ 35,290 \mathrm{Mc} \end{array}$	24.7
$\{1.25 \mathrm{~cm}$	$\left\|\begin{array}{r} 1.13-1.66 \mathrm{~cm} \\ 18,070-26.550 \mathrm{Mc} \end{array}\right\|$	$\begin{aligned} & a=4.000 \quad b=3.281 \\ & \ell_{\mathrm{H}}=9.706 \quad \ell_{\mathrm{E}}=9.113 \end{aligned}$	$\begin{array}{r} 1.25 \mathrm{~cm} \\ 24,000 \mathrm{Mc} \end{array}$	24.7
(1.8 cm	$\left\|\begin{array}{r} 1.66-2.42 \mathrm{~cm} \\ 12.400-18,070 \mathrm{Mc} \end{array}\right\|$	$\begin{array}{ll} a=5.984 & b=4.908 \\ \ell_{H}=14.333 & \ell_{E}=13.633 \end{array}$	$\begin{array}{r} 1.87 \mathrm{~cm} \\ 16,040 \mathrm{Mc} \end{array}$	24.7
$\int 3.2 \mathrm{~cm}$	$\begin{aligned} & 2.42-3.70 \mathrm{~cm} \\ & 8100-12,400 \mathrm{Mc} \end{aligned}$	$\begin{array}{ll} a=7.654 & b=5.669 \\ \ell_{\mathrm{H}}=13.484 \quad \ell_{\mathrm{E}}=12.598 \end{array}$	$3.20 \mathrm{~cm}$ $9375 \mathrm{Mc}$	22.1
$\{4.75 \mathrm{~cm}$	$\begin{aligned} & 3.60-5.20 \mathrm{~cm} \\ & 5770-8330 \mathrm{Mc} \end{aligned}$	$\begin{array}{ll} a=11.360 & b=8.415 \\ \ell_{H}=20.014 & \ell_{E}=18.700 \end{array}$	4.75 cm 6315 Mc	22.1
$\int 3.95 \mathrm{~cm}$	$\begin{aligned} & 3.00-4.30 \mathrm{~cm} \\ & 6980-10,000 \mathrm{Mc} \end{aligned}$	$\begin{array}{ll} a=5.041 & b=3.733 \\ \ell_{\mathrm{H}}=7.447 & \ell_{\mathrm{E}}=6.555 \end{array}$	$\begin{aligned} & 3.95 \mathrm{~cm} \\ & 7595 \mathrm{Mc} \end{aligned}$	18.0
$\{6 \mathrm{cmi}$	$\begin{aligned} & 5.10-7.60 \mathrm{~cm} \\ & 3950-5880 \mathrm{Mc} \end{aligned}$	$\begin{array}{ll} a=8.507 & b=6.300 \\ l_{H}=12.462 & \ell_{E}=11.062 \end{array}$	$\begin{aligned} & 6.67 \mathrm{~cm} \\ & 4500 \mathrm{Mc} \end{aligned}$	18.0
10 cm	$\begin{aligned} & 7.60-11.5 \mathrm{~cm} \\ & 2600-\quad 3950 \mathrm{Mc} \end{aligned}$	$\left\lvert\, \begin{array}{ll} a=12.760 & b=9.450 \\ \ell_{H}=18.682 & \ell_{E}=16.593 \end{array}\right.$	$\begin{array}{r} 10.00 \mathrm{~cm} \\ 3000 \mathrm{Mc} \end{array}$	18.0
$\int 15 \mathrm{~cm}$	$\begin{aligned} & 11.5-17.6 \mathrm{~cm} \\ & 1700-2600 \mathrm{Mc} \end{aligned}$	$\left\|\begin{array}{ll} a=14.508 & b=10.747 \\ \ell_{\mathrm{H}}=16.508 & \ell_{\mathrm{E}}=14.107 \end{array}\right\|$	$\begin{array}{r} 15.22 \mathrm{~cm} \\ 1970 \mathrm{Mc} \end{array}$	15.5
23 cm	$\begin{aligned} & 17.6-\quad 26.5 \mathrm{~cm} \\ & 1130-\quad 1700 \mathrm{mc} \end{aligned}$	$\left.\begin{array}{ll} a=21.931 & b=16.245 \\ l_{\mathrm{H}}^{\prime}=24.955 & \ell_{\mathrm{E}}=21.325 \end{array} \right\rvert\,$	$\begin{array}{r} 23.00 \mathrm{~cm} \\ 1300 \mathrm{Mc} \end{array}$	15.5
30 cm	$\begin{array}{r} 26.0-31.5 \mathrm{~cm} \\ 950-1150 \mathrm{Mc} \end{array}$	$\begin{array}{ll} a=21.931 & b-16.245 \\ \ell_{\mathrm{H}}=28.730 & \ell_{\mathrm{E}}=24.000 \end{array}$	$\begin{aligned} & 30.00 \mathrm{~cm} \\ & 1000 \mathrm{Mc} \end{aligned}$	13.7

Horns in brackets are scaled versions of each other, excer for the $\boldsymbol{\ell}_{H}$ dimensions, which are chosen to make a simple butt-joint at the waveguide

Fig. A-5 (a). Gain curves

Fig. A-5 (b). Gain curves

Coulugita contit

Fig. A-5 (c). Gain curves and conversion chart

Whel TMENACSS - oisn - P838:
Fig. A-6. Electroformed horn, 8-mm-band gain-atandard (0.77 -1.13 cm)

Fig. A-z Mandril for electroforming 8-mm-band gain-standard horn

Fig. A-8. 1.23-cm-band gain-standard horn (1.13-1.66 cm)

Fig. A-9. $18-\mathrm{mm}-\mathrm{band}_{\mathrm{g}} \mathrm{galn}-\mathrm{standard}$ horn ($1.66-2.42 \mathrm{~cm}$)

Fig. A-10. $3.2-\mathrm{cm}$-band gain-stindard horn (2.42-3.70 cm)

Fig. A. $11 . \quad 3.95-\mathrm{cm}$-band gain-standard horn (3.0 .4 .30 cm)

Fig. A-12. 4.75-cm-band gain-standard horn (3.60-5.20 cmi)

Bost Avaliacto Copy

Fig. A-14. 10 -cm-band gain-standard horn (7.60.11.5 cm)

N'ATV - 丕"ALUM (GELMARC
15-cm-band gair-standard horn (11.5-17.6cm)

Fig. A-16. 23-cm-band gain-standard horn ($17.6-26.5 \mathrm{~cm}$)

Fig. A-17. 30 -cm-band gain-standard horn ($26,0.31 .5 \mathrm{~cm}$)

кdoう әбcepeny 1 sog

[^0]: *With the exception of Fig. A-1, all figures and tables bearing the letter A nre grouped at tite end af the A.ppendix, and are listed on page 6.
 $\dagger_{F o r}$ a general description of the methods used in making such measurements see Footmo +2 , p. 7 of the Appendix, raf. pp. 582-58f. The remarks in this referonce about the minimum meparation digiance fos the ho: is should be re-evalueted in the llyitt of Ref. 2.

[^1]: ${ }^{1}$ Schelkunoff, S. A., "Electromagnetic Waves," D. Van Nostrand, Inc.. New Mork, po. 363-365. 1943
 Zsilver, S.: "Microwave Antena Thecry \& Design,"MrGravr-Hill Book Co., Iric., New York, pp. 595-589, 1949
 ${ }^{3}$ Schelkanoff, S. A., and Friln, H. T., "Antennas. Theory arid Pracilce," John Wiley and Sons, Inc.. New York, pp. 528-529, 1952

[^2]: 4Braun, E. H. "Calculation of the Gain of Small Horns," Proc. I,R,E., Vol. 41. No. 12. pp. 178S-6, Lec. 1953

[^3]: *An optirrum horn is one for which the aperture dimensions have been chosen to give
 and $\mathrm{t}^{2} \cong 2.08 \lambda \mathrm{E}_{\mathrm{E}}$
 This has becn worked out by E. H. Braun in an uripublished raport.

