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• In an ideal linear system, stability can be defined in several ways:
1) A BIBO (bounded input bounded output) system is stable
2) A system, the response of which its (t) decays to 0 is stable
3) A system which delivers only 0 signals in response to 0
excitations is stable 

• Real circuits are bounded by noise floors at their low levels and 
nonlinearities at their high levels. The noise floor insures the presence 
of outputs with no inputs and the nonlinearities may mask instabilities 
generated by the system by attenuating them.

• These considerations should be taken into account when ascertaining 
whether a circuit is stable or not in the laboratory.

• In this talk we focus our attention on instabilities in the design phase of 
the circuits where the detection of instabilities is obvious since it is 
subject to rigorous mathematical analysis.

• After the talk it will be clear that a circuit with any non negative real 
parts of its characteristic zeros is unstable. 

Stability in Electrical Circuits
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Historical Background
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Where do stability factors come from?
• In the early days of electronic circuits 1930-1960, in large part in Bell 

Laboratories, but also elsewhere, amplifier circuits were built in the laboratory, 
and once stabilized, were incorporated in larger circuits, either in cascade or in 
balanced configurations. Sometimes these larger circuits oscillated. Several 
researchers, among them, Llewellyn, Linvill, Nyquist, Bode, Black, Stern, 
Mason, realized that the source of oscillations were circuit poles residing in the 
RHP (Right Half Plane).  Stability factors or criteria, based on laboratory 
characterizations, were devised to insure that this will not happen.
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Where do stability factors come from?
• In the no-additional feedback case, the potential instability of the network was 

arrived at by noticing that under certain passive terminations, the output power 
becomes negative, or alternatively, the real part of either the input or output 
impedance becomes negative. Either approach results in the same criterion.

• In the early 60’s first Venkateswaran and then Rollet noticed that the instability 
criterion now written as the inverse of C ( Venkateswaran’s , Rollett’s K) is 
invariant in the Z,Y,H and G matrix parameters and attributed great significance 
to this fact.

• Almost in passing, Rollett also introduced a proviso in his paper that warned 
that the analysis may not be valid in circuits with characteristic frequencies in 
the RHP.

• This proviso, essentially ignored by modern day designers, effectively says that 
the stability criteria are invalid in all cases were the stability of the “unloaded” 
circuits is not assured (i.e. when they are unstable).

• These stability criteria can be applied only to known stable circuits!!
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Where do stability factors come from?
• Rollett’s proviso is automatically fulfilled in all circuits where the parameters 

(Y,Z etc) are measured, not calculated. If properly done, the measurement 
assures the stability of a circuit since an unstable circuit cannot be measured 
and characterized with the application of external steady state signals.

• In the late 60’s, a S-parameter formulation was introduced by Kurokawa, 
Brodway and Hauri which states that: for absolute stability, two conditions must 
apply: 

• The 2nd condition can be expressed in many different ways, the above is just 
one of them.

• No new insight or information is gained by the more recent introduction of single 
stability parameter “” in place of the two conditions stated before. In practice 
K>1 is taken by the vast microwave community as the condition for absolute 
stability since |S11S22-S12S21| is almost always less than 1.
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Where do stability factors come from?
• In the case of K<1, oscillation is not assured unless the proper 

reactance is introduced. Nature is mischievous, is the current attitude, 
so stay away from this region.  However, perfectly stable circuits with 
K<1 can be designed.

• The above discussion explains why control engineers, oscillator, and 
feedback amplifier designers do not use the stability criterion K!

• Circuit designers should not use it also as their only criterion since it 
does not insure against instabilities not introduced by varying the 
external terminations (i.e. instabilities inherent in the circuit).
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Rigorous Linear Network
Stability Theory
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Rigorous Linear Network Stability Theory

• First, forget everything you learned about the popular stability factor k.
• Second, re-read the previous sentence!!
• OK, now that that has sunk in…

• A separate test is required (like the Normalized Determinant Function) 
to assure the stability of a network before the Linvill or Rollett stability 
criteria can be applied.

• The NDF technique [5] looks for zeroes in the right half plane (RHP) of 
the full network determinant by plotting the trajectory versus frequency 
of the properly normalized linear network determinant.

• Once network stability is assured (including all feedback paths), then 
the C or K factor can be used to determine under which port 
impedances network stability is maintained. 

• Next, we will show how network stability is fundamentally determined 
from the dynamic response of a network (and that relationship to the full 
network determinant).
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Rigorous Linear Network Stability Theory

• The dynamic response of a linear network can be derived from a set of 
vector equations whose transform is represented by a matrix equation.  
For example, the Y (admittance) network representation is:

• The general solution [I] of the network subject to any particular steady 
excitation [V], is composed of a linear superposition of the transient 
and the steady state responses.

• The transient response is determined by the roots (poles) of the 
network which are the zeroes of its network determinant |Y(s)|. 

• The transient response takes the form:

• where,

is the kth root of the network (zero of its determinant) with multiplicity mk
and p is the total number of roots.
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Rigorous Linear Network Stability Theory

• Notice that the roots always appear in complex conjugate pairs since 
the network response is a real function of time.

• By direct inspection of the transient response, we can see that it will die 
out in time, allowing the system to reach its steady state, if and only if, 
all k < 0. 

• Therefore, a linear network is stable, if and only if, all the zeroes of its 
determinant lie in the left half plane (LHP) provided none of the 
individual elements have any poles in the RHP. (THIS IS RIGOROUS!)

• This will be the case for all networks composed of elementary elements 
(L’s, C’s, R’s, Transmission Lines, Dependent Sources such as VCCS, 
VCVS, CCCS, CCVS, etc.).

• So, how do we determine if the network determinant has any RHP 
zeroes?
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• We make use of “The Principle of the Argument Theorem” 
of complex theory which states that:

• The total change of the argument (phase) of a function F(s) 
along a closed contour C on which the function has no 
zeroes and inside which it is analytic except for poles, is 
equal to:

• Where Np is the number of RHP poles and Nz is the 
number of RHP zeroes of the function F(s) inside C.

Determination of the Number of RHP Zeroes
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Note that the contour is clockwise in our nomenclature.

Counterclockwise (std mathematical nomenclature)
would give 2(Nz-Np).
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• To make use of this theorem, we must first normalize the network 
determinant |Y()| (to force the function to be finite along the real 
frequency axis i.e. semicircular contour from  = - to +).

• We do this by dividing |Y()| by a second determinant |Y0()| which is 
of the same rank as |Y()| and contains no RHP zeroes (i.e. is known 
stable).  Therefore, |Y()|/|Y0()| will not have any RHP poles by 
construction (Np=0).

• We call this function the Normalized Determinant Function or NDF [5] 
(NDF() = |Y()|/|Y0()| or /0).

• The Normalized Determinant Function will always be finite at infinity, 
and only contain RHP zeroes from |Y(s)|, so we can use The Principle 
of the Argument Theorem on NDF to determine if |Y(s)| contains any 
RHP zeroes Nz (if so, the network is unstable).

• Next, we will describe how to use The Principle of the Argument 
Theorem on NDF to find RHP zeroes.

Determination of the Number of RHP Zeroes
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Determination of the Number of RHP Zeroes
• To find RHP zeroes, we plot the complex function NDF() over real 

frequencies  (from -∞ to +∞) and look for clockwise encirclements (Nz) 
of the origin (0,0) on a polar plot.

• Remember, Np=0 by construction of the NDF, so counter-clockwise 
encirclements are not possible.

• Every clockwise encirclement of the origin equates to one network 
determinant zero (of |Y(s)|) in the right half plane RHP. (Total clockwise 
encirclements = Nz)

• If any RHP zeroes are found in NDF, the linear network [Y(s)] is 
unstable!  (THIS IS RIGOROUS)

• The converse is also true; If no RHP zeroes are found in NDF, the 
linear network [Y(s)] is stable!

• Zeroes of |Y(s)| come in complex conjugate +/-j pairs (because the 
network response is a real function of time), so we can plot the 
trajectory of NDF over positive frequencies only ( from 0 to +∞) and 
still capture all stability information.
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Determination of the Number of RHP Zeroes
• The polar plot of NDF can be very “messy” and it may be hard to tell if 

there are clockwise encirclements of the origin.
• The shape of the NDF plot is unimportant, only whether there are 

clockwise encirclements of the origin.
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Determination of the Number of RHP Zeroes
• To count the number of clockwise encirclements Nz of the origin (0,0), 

we use a plot of the unraveled phase versus frequency ( from 0 to +∞) 
normalized to -360o (-2 radians).

• The resulting phase as one approaches +∞ frequency determines 
whether RHP zeroes have been detected and the network is unstable.
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How High in Frequency Do I Need to Calculate NDF?

• How High in Frequency Do I Need to Calculate NDF?
• The NDF function will always approach a constant real value (with zero 

phase) as frequency goes to +∞, so this gives an indication if you have 
calculated to sufficiently high enough frequencies.

• This depends on the network, but in general one should calculate 
beyond the highest Fmax of the transistors contained in the network.

• Be careful of  [S]-parameter or EM blocks in your network when 
calculating NDF because the circuit design software can extrapolate 
beyond the highest/lowest frequencies in the [S]-parameter file or EM 
block (and you will get incorrect results).

• If we normalize |Y()| using the same network with all dependent 
sources set to zero (as in [5]), then the NDF function will approach (1,0) 
as frequency goes to +∞. (We will show that there are many other ways 
to normalize |Y()| however).

• It is important to calculate the NDF at sufficiently fine frequency steps to 
generate a smooth contour so that encirclements are not missed.

• We recommend using a logarithmic frequency sweep with many 
frequency points (100-200) per decade to start your analysis.
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OK, how do I calculate NDF for Linear Networks?

• We will show two ways to calculate the NDF function using a ring 
oscillator example.  We will calculate NDF from:

– 1) Network Determinants directly (preferred closed loop technique)
– 2) Network Admittances (another closed loop technique)

• There are other options for calculating the NDF such as using Return 
Ratios (open loop technique [6]).  However, we no longer prefer to use 
these techniques, so I will not discuss them here.

• The first technique is the simplest and only requires two frequency 
sweeps to calculate the NDF() function to ascertain stability.

• The second technique requires separate calculations at each suspect 
element node in the linear network (with subsequent circuit 
modification), so for a network with N suspect element nodes, one 
needs to perform a minimum of 2*N frequency sweeps to calculate the 
NDF() function. (more details to follow…)

• Let’s start with NDF from network determinants…
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NDF of Linear Networks from Network Determinants

• Every network can be separated into a parallel connection of known 
passive elements and “suspect” elements.
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NDF of Linear Networks from Network Determinants

• So what are “suspect” elements?
• Suspect elements are those elements which can cause RHP zeroes to 

appear in the full network determinant.
• In other words, if all suspect elements are removed from the network, 

the network is by definition stable (because all remaining elements are 
passive).

• Suspect elements consist of transistors (including s-parameter files of 
transistors), dependent sources (VCVS, VCCS, CCVS, CCCS), and 
negative valued resistors, inductors, and capacitors (i.e. non-foster 
elements).

• Suspect elements DO NOT consist of positive valued resistors, 
inductors, capacitors, transmission lines, or any other passive network 
element (such as transformers, EM blocks, passive s-parameter blocks, 
etc.).
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Practical Techniques for Stability Analysis
(NDF using Network Determinants)

• The procedure to calculate the NDF() using network determinants is 
as follows:

– 1) First, identify all nodes in the network that are connected to a 
suspect element.  The network matrix cannot be reduced in size 
beyond these nodes (or we will lose rigorous stability information).

– 2) Then, calculate the determinant of the matrix reduced to these 
nodes |Y()|.  The network matrix can be in either admittance, 
impedance, or hybrid representation (NOT S-matrices).

– 3) Next, render all suspect elements contained in the network 
passive and calculate the determinant of this (now) passive 
network matrix |Y0()|.  To render suspect elements passive, set all 
dependent sources to zero, multiply the value of any negative R’s, 
L’s & C’s by -1, and set all transistors (including s-parameter files 
of transistors) to a known passive state (more on how to do that 
later).

– 4) Now,  NDF = |Y()|/|Y0()| 
where: Y() is the network matrix at frequency  and Y0() is the
network matrix with all suspect elements rendered passive.
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Determinants)

suspect
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Determinants)

• To calculate the NDF function, we perform two frequency sweeps (that 
output Y-parameters) using ADS.

• During the first sweep, we calculate |Y0()| by setting the VCCS 
transconductances “G” to zero (i.e. known passive state).

• During the second sweep, we calculate |Y()| by setting the VCCS 
transconductances “G” to their desired (as designed) values.

• Then we simply divide |Y()| by |Y0()| to get NDF().
• We then plot the NDF() contour (on a polar plot), and the argument 

(unraveled phase plot) to see if the contour encircles the origin (0,0) in 
a clockwise manner.

• If it does, the circuit is unstable!  If it does not, the circuit is stable.
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Determinants)

ADS NDF Implementation
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Determinants)

Clockwise encirclement of the origin
shows that the circuit is unstable
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Determinants)

ADS AEL code
of ws_det(x) function
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Admittances)

• Next we will show a second closed-loop technique to calculate the NDF 
function using network admittances.

• We use this technique when we do not have access (in the simulator) to 
a function that calculates the determinant of the network matrix directly 
(like the ws_det() function I showed for ADS).

• This technique gives exactly the same result as the network 
determinant approach, it is simply a different way to calculate the 
network determinants of the NDF function. 

• Let’s start with our separated network.
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NDF from Network Admittances

• If we calculate the admittance looking into node 1 (A1).  The result is 
equal to:   A1 = |Y()|/|Y()|node1 shorted to gnd (math in appendix 4)
where: Y() is the network admittance matrix at frequency .
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NDF from Network Admittances

• Now if we calculate the admittance looking into node 2 (A2) with node 1 
shorted to ground.  The result is equal to:

A2 = |Y()|node1 shorted/|Y()|node1 & node2 shorted

therefore:  A1*A2 = |Y()|/|Y()|node1 & node2 shorted
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NDF from Network Admittances

• If we continue this process, the admittance looking into node N (AN)
with all prior nodes shorted to ground is equal to:

AN = |Y()|node1 through node N-1 shorted/|Y()|node1 through node N shorted

and therefore: A1*A2*…AN = |Y()|/|Y()|node1 through node N shorted
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NDF from Network Admittances

• Now we repeat this process with all suspect elements rendered passive 
(shown with 0 subscripts).  The result is equal to:

A01*A02*…A0N = |Y0()|/|Y0()|node1 through node N-1 shorted

and therefore: (A1*A2*…AN) / (A01*A02*…A0N) = |Y()|/|Y0()| = NDF()
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Practical Techniques for Stability Analysis
(NDF from Network Admittances Summary)

• The procedure to calculate NDF using network admittances is as 
follows:

– 1) Calculate the admittance A1() looking into the network at a first 
suspect element node.

– 2) Calculate the admittance A2() looking into the network at 
second suspect element node (with the first suspect element node 
shorted).

– 3) Calculate the admittance A3() looking into the network at third 
suspect element node (with the first and second suspect element 
nodes shorted).

– 4) Repeat this procedure up to admittance AN() where N is the 
number of suspect element nodes in the network (with all prior 
suspect element nodes shorted).

– 5) Repeat steps 1-4 (A01()-A0N()) with all of the suspect elements 
rendered passive.

– 6) Now,  NDF() = (A1*A2*A3*…AN)/(A01*A02*A03*…A0N)
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator NDF using Network Admittances)

ADS NDF Implementation
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Admittances)

Clockwise encirclement of the origin
shows that the circuit is unstable
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator NDF using Network Admittances)

R1 R2

1
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4

VCCS
ID=U1
M=Gm1 S
A=0 Deg
R1=1000000000 Ohm
R2=1000000000 Ohm
F=0 GHz
T=0 ns

RES
ID=R1
R=10 Ohm

CAP
ID=C2
C=0.1 pF

CAP
ID=C5
C=16 pF

CAP
ID=C6
C=0.1 pF

RES
ID=R3
R=10 Ohm

R1R2
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VCCS
ID=U3
M=Gm2 S
A=0 Deg
R1=1000000000 Ohm
R2=1000000000 Ohm
F=0 GHz
T=0 ns

RES
ID=R5
R=100 Ohm

RES
ID=R6
R=100 Ohm

Xo Xn. . .

SWPVAR
ID=SWP1
VarName="N"
Values={1,2,3,4}
UnitType=None

Fo Fn. . .

SWPFRQ
ID=FSWP1
Values=swpdec(0.01e9,100e9,500)

Xo Xn. . .

SWPVAR
ID=SWP2
VarName="Dead"
Values={0,1}
UnitType=None

IND
ID=L1
L=0.56 nH

IND
ID=L3
L=0.56 nH

CAP
ID=C1
C=16 pF

ACCS
ID=I1
Mag=I_1 mA
Ang=0 Deg
Offset=0 mA
DCVal=0 mA

RES
ID=R7
R=R_1 Ohm

ACCS
ID=I2
Mag=I_2 mA
Ang=0 Deg
Offset=0 mA
DCVal=0 mA

RES
ID=R8
R=R_2 Ohm

ACCS
ID=I3
Mag=I_3 mA
Ang=0 Deg
Offset=0 mA
DCVal=0 mA

ACCS
ID=I4
Mag=I_4 mA
Ang=0 Deg
Offset=0 mA
DCVal=0 mA

RES
ID=R9
R=R_3 Ohm

RES
ID=R10
R=R_4 Ohm

N2

N4

N1

N3

N1 N2

N4N3

R_1=if(N>1,1e-9,1e9)
N=1

Dead=0.0
Gm1=if(Dead>0.1,0.0,0.5)
Gm2=if(Dead>0.1,0.0,0.4)

R_2=if(N>2,1e-9,1e9)
R_3=if(N>3,1e-9,1e9)
R_4=if(N>4,1e-9,1e9)
I_1=if(N==1,1,0)
I_2=if(N==2,1,0)

I_4=if(N==4,1,0)
I_3=if(N==3,1,0)

AWR NDF Implementation

suspect
element
nodes



37

Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Admittances)

AWR NDF Implementation

Z1_0 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I1)[X,1,2]
Z2_0 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I2)[X,2,2]

NDF=(Z1_0*Z2_0*Z3_0*Z4_0)/(Z1*Z2*Z3*Z4)
Z4_0 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I4)[X,4,2]
Z3_0 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I3)[X,3,2]

NDF_phase = Output Equations:AngU(Eqn(NDF))
Encirclements=NDF_phase/(-2*_PI)

Z1 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I1)[X,1,1]
Z2 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I2)[X,2,1]

Z4 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I4)[X,4,1]
Z3 = ring_oscillator_example.AP.$FSWP1:Vac(ACCS.I3)[X,3,1]
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Practical Techniques for Linear Stability Analysis
(Example1 ring oscillator: NDF using Network Admittances)
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Practical Techniques for Stability Analysis

• OK, so it doesn’t matter if you use Network Determinants directly or 
Network Admittances to calculate the NDF (we get the same answer).

• Let’s look at some another examples using non-foster components (i.e. 
negative L’s & C’s).

• We will use Network Determinants to calculate the NDF.
• The first example uses the original ring oscillator example where we 

replaced the 10 resistors with their non-foster equivalents.
• This should introduce 2 more encirclements in the NDF plot.
• Then we will reduce the Gm’s of the VCCS elements and show that we 

get one less encirclement (one less frequency of oscillation) but still 
maintain two from the non-foster elements.

• Next, we will replace one of the non-foster circuits back with the original 
10 resistor and see that we now only have one encirclement 
remaining.

• Finally, we will show that the NDF used at any single node can be used 
to “probe” the network and find out which suspect elements (and 
feedback loops) within the circuit are the source of the instabilities.

• This also works for non-linear networks (more on those later)…
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Replaced 10 resistors with non-foster -L -C equivalents

suspect
element
nodes
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Clockwise encirclement of the origin
shows that the circuit is unstable

Number of clockwise encirclements
of NDF (frequency from 0 to +∞)

increasing
frequency

F=1000GHz

F=1MHz

three encirclements
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Reduce Gm’s by a factor of 10
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Clockwise encirclement of the origin
shows that the circuit is unstable

Number of clockwise encirclements
of NDF (frequency from 0 to +∞)

increasing
frequency

Now only two encirclements
(from non-foster elements)
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Reduce Gm’s by a factor of 10

Back to10
resistor



45

Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Clockwise encirclement of the origin
shows that the circuit is unstable

Number of clockwise encirclements
of NDF (frequency from 0 to +∞)

increasing
frequency

Now only one encirclement
(from non-foster elements)
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)
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1

8

6
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Results probing at Node 7 only
(circuit is unstable, yet no encirclement?)

Node 7 is not in the unstable circuit loop
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Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Results probing at Node 1 only
(circuit is unstable, yet no encirclement?)

Node 1 is also not in the unstable circuit loop



49

Practical Techniques for Linear Stability Analysis
(Example2  NDF of ring oscillator with non-foster components)

Results probing at Nodes 2,5,6 & 8 only
(circuit is unstable, and shows encirclement)

Nodes 2,5,6 & 8 are in the unstable circuit loop
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Practical Techniques for Stability Analysis

• OK, now let’s get back to the question on how do we render transistors 
(and [S]-parameter files of transistors) passive in order to calculate 
|Y0()| in NDF = |Y()| / |Y0()|?

• In other words, how do we get a “passive” device model if we only have 
“black box” transistor models (or [S]-parameter files)?

• Is there a way to find RHP zeroes of the network determinant using 
“black box” active device models only?  The answer is YES!

• Remember, we can use any determinant |Y(s) |stable to normalize the 
network determinant |Y(s)|

NDF = |Y(s)|/|Y(s)|stable
where |Y(s)|stable is the determinant of the same (or same rank) network 
from a known stable state (i.e. contains no RHP zeroes).

• This is the general case of the NDF where |Y(s)|stable = |Y0(s)| is a 
specific case.

• For example, we can use a known stable bias point…
(gate bias below pinchoff, or zero drain bias as examples)

• We can also use “dead” device models to render transistors (or [S]-
parameter files of transistors) passive.

• Let’s consider the following examples…
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D2

D1

B

A

VAR
VAR1

Vgg=0.6
Vdd=3.0

Eqn
Var

EFET_SSNDF
X4

Dead=Dead
Ng=10
W=100 um

EFET_SSNDF
X3

Dead=Dead
Ng=10
W=100 um

R
R13
R=Ra Ohm

DC_Block
DC_Block1

B

R
R11
R=1 kOhm

A

R
R10
R=1 kOhm

C
C7
C=1000 pF

C
C6
C=1000 pF

R
R5
R=10 Ohm

C
C5
C=16 pF

C
C3
C=16 pF

R
R4
R=10 Ohm

R
R8
R=100 Ohm

V_DC
SRC12
Vdc=Vdd V

C
C1
C=0.1 pF

C
C4
C=0.1 pF

R
R12
R=100 Ohm

L
L2

R=
L=560 pH

L
L1

R=
L=560 pH

V_DC
SRC11
Vdc=Vdd V

V_DC
SRC13
Vdc=Vgg V

Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)

Requires “dead device” model
and 2N frequency sweeps

Case 1: “dead” device from a
“black box” transistor model

to normalize |Y(s)|stable = |Y(s)|(gm=0)

suspect
element
nodes
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Dead Device “black box” Model,  Dead = 0 for Active Mode
Dead = 1 same as gm = 0 (see Appendix 2)

Vg

Vs

Vd

VAR
VAR1

G1=if (Dead > 0.5) then 1.0 else 0.0 endif
W1=if (W < 5e-6) then 5e-6 else W endif

Eqn
Var

Port
P3
Num=3

Port
P1
Num=1

Port
P2
Num=2

tqped_ehss
Q1

Ng=Ng
W=W1

Vd

Vs
NonlinVCVS
CSRC2
Coeff=list(0,1)

Vg

Vs
NonlinVCVS
CSRC1
Coeff=list(0,1)

DC_Block
DC_Block8

Vs

Vd

NonlinCCCS
CSRC4
Coeff=list(0,-G1)

Vs

Vd

NonlinCCCS
CSRC3
Coeff=list(0,G1)

DC_Feed
DC_Feed6

DC_Block
DC_Block6

tqped_ehss
Q2

Ng=Ng
W=W1

tqped_ehss
Q3

Ng=Ng
W=W1

Vg

Vs
NonlinVCVS
CSRC6
Coeff=list(0,1)

DC_Feed
DC_Feed8

DC_Block
DC_Block7

DC_Feed
DC_Feed7

Vd

Vs
NonlinVCVS
CSRC5
Coeff=list(0,1)

Vd

Vg
Vs

Vg

Vg

Vs

Vs

Vs

Vs

Vs

Vd

Vd

Vd

Vd
Vs

Insert your “black box”
(or [S]-parameter file)

transistor model in the circles
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B
D2

D1
A

VAR
VAR1

Vgg=0.6*(1-Dead*0.999)
Vdd=3.0

Eqn
Var

tqped_ehss
Q2

Ng=10
W=100 um

tqped_ehss
Q1

Ng=10
W=100 um

R
R13
R=Ra Ohm

DC_Block
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B

R
R11
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A

R
R10
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R
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V_DC
SRC12
Vdc=Vdd V
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C=0.1 pF
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C=0.1 pF

R
R12
R=100 Ohm

L
L2

R=
L=560 pH

L
L1

R=
L=560 pH

V_DC
SRC11
Vdc=Vdd V

V_DC
SRC13
Vdc=Vgg V

Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)

No “special” models required
2N frequency sweeps

Case 2: Vgg below pinchoff
(known stable state)

to normalize |Y(s)|stable = |Y(s)|(Vgg=0)

suspect
element
nodes



54

B
D2

D1
A

tqped_ehss
Q4

Ng=10
W=100 um

tqped_ehss
Q3

Ng=10
W=100 um

VAR
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Vgg=0.6
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L
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L=560 pH

L
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R=
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V_DC
SRC11
Vdc=Vdd V

V_DC
SRC13
Vdc=Vgg V

Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)

No “special” models required
2N frequency sweeps

Case 3: Drain Bias Vdd = 0
(known stable state)

to normalize |Y(s)|stable = |Y(s)|(Vdd=0)

suspect
element
nodes
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Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)
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frequency

(1,0)
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Practical Techniques for Stability Analysis

• The three plots look different, but all encircle the origin.
• The shape of the NDF plot is unimportant, what matters is if there are 

clockwise encirclements of the origin.
• So what happens if the circuit is barely stable/unstable?
• Are we still able to detect stability correctly?
• The answer is yes.  It doesn’t matter how you normalize the NDF (as 

long as the rank of |Y(s)|stable is the same as |Y(s)| and |Y(s)|stable
contains no RHP zeroes, i.e. is stable).

• We can tell that |Y(s)|stable is of the same rank as |Y(s)| by observing 
that NDF approaches (1,0) at  = +.

• The following examples versus gate bias demonstrate this fact…
– Vgg=0.504v (barely unstable case)
– Vgg=0.505v (barely stable case)
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Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)

Gm=0 “dead”
model technique

Passive Vgg bias
model technique

Passive Vdd bias
model technique

All show unstable

Vgg=0.504v
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Practical Techniques for Linear Stability Analysis
(Example3 ring oscillator NDF using Network Admittances)

Gm=0 “dead”
model technique

Passive Vgg bias
model technique

Passive Vdd bias
model technique

All show stable

Vgg=0.505v
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Zoom in of NDF Plot

All show stable
(do not encircle the origin)

Vgg=0.505v
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Rigorous Nonlinear Network
Stability Theory
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Non-linear NDF Stability Analysis
• The NDF stability analysis techniques used in linear networks are easily 

extended to non-linear networks using a Harmonic Balance swept 
perturbation technique (in place of [S]-parameter or AC sweeps).

• Just as the NDF of a linear network is used to determine the stability of 
a particular “DC” operating condition, the NDF of a nonlinear network is 
used to determine the stability of a particular nonlinear “steady-state” 
operating condition (i.e. input power, frequency, etc.).

• The nonlinear NDF determinant calculations are performed by 
introducing a small perturbing current (or voltage) source to calculate 
admittances at each suspect element node (just as for linear networks). 

• The perturbation frequency must be non-harmonically related to any 
driving source frequencies and swept from  = 0 to + just as in the 
linear case to capture all stability information.

• In the nonlinear case (using the admittance technique), the prior 
suspect nodes are shorted to ground but only at the perturbing 
frequency.

• Also, for the nonlinear case, we must include dependent charge 
sources (as well as dependent current and voltage sources) as suspect 
elements.  We will show an example to demonstrate this fact…
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NDF of Nonlinear Ring Oscillator Example
HB Frequency Map for Nonlinear NDF Analysis

• By introducing a small perturbing source (to a correct HB “steady-state” 
solution), and allowing for possible mixing frequencies, we can use 
NDF to detect if that solution is stable (i.e. whether other frequencies 
“oscillations” need to be included to achieve a correct “steady-state” 
solution).

• This means that the HB solution including the perturbation must lie 
within the local neighborhood of the nonlinear operating point of the 
network. (i.e. the perturbing source cannot be too large in magnitude) 

Perturbation
Source (Swept Freq)

Main HB Source
+ Harmonics

… … ………

Possible Mixing Frequencies
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Non-linear NDF Stability Analysis
(NDF from Network Admittances Summary)

• The procedure to calculate nonlinear NDF using network admittances is 
as follows:

– 1) Calculate the admittance at the perturbing frequency A1() 
looking into the network at a first suspect element node.

– 2) Calculate the admittance at the perturbing frequency A2()
looking into the network at second suspect element node (with the 
first suspect element node shorted at the perturbing frequency).

– 3) Calculate the admittance at the perturbing frequency A3()
looking into the network at third suspect element node (with the first 
and second suspect element nodes shorted at the perturbing 
frequency).

– 4) Repeat this procedure up to admittance AN() where N is the 
number of suspect element nodes in the network (with all prior 
suspect element nodes shorted at the perturbing frequency).

– 5) Repeat steps 1-4 (A01()-A0N()) with all of the suspect elements 
rendered passive.

– 6) Now,  NDF() = (A1*A2*A3*…AN)/(A01*A02*A03*…A0N)
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Non-linear NDF Stability Analysis
• The following example will demonstrate this technique using a non-

linear ring oscillator (with a single nonlinear VCCS element).
• NDF is calculated using the admittance technique using two separate 

two-tone analyses (there is only one nonlinear element in this circuit).
• The first tone (F1 – 1GHz) drives the ring oscillator circuit into the non-

linear operating regime.
• The second tone is a small perturbation current at F2 that is swept from 

10MHz to 100GHz using a log frequency sweep.
• Pin = -50dBm at 1GHz is used for the normalization (i.e. known stable 

state) of the NDF in this analysis.
• Network determinant calculations at this power level can be used for 

normalization because we have verified that the network is stable with 
zero input power using the NDF technique for linear networks first (NDF 
for the linear case has two dependent source calculations).

• Using low power for normalization also allows for accurate oscillation 
frequency identification. (as we will demonstrate)

• This ring oscillator example was chosen to demonstrate the detection of 
parametric oscillations (oscillations that happen at large-signal 
operation over some finite driven power range).
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NDF of Nonlinear Ring Oscillator Example
(Pin=-50dBm for NDF normalization)

Nonlinear
VCCS

Large-signal
drive tone F1 (1GHz)

Small perturbation
current tone F2 (swept freq)

Max mixing order
set to 10

Circuit is known to be stable with
zero input drive (from linear NDF analysis)

Suspect
element

node (red)
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I_Probe
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NonlinVCCS
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Nonlinear VCCS in Ring Oscillator Example
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Nonlinear Ring Oscillator Example
• From the following plots, it is seen that the circuit will oscillate only 

when driven (at 1GHz) from 27.5 to 33dBm.  Outside of this regime, the 
circuit is stable.

• We verified this by also performing transient simulations of the circuit 
under various drive powers to confirm this behavior.
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Eqn STAB_VS_PWR=unwrap(phase(NDF))/-360
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Eqn STAB_VS_PWR=unwrap(phase(NDF))/-360
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Non-linear NDF Stability Analysis
• Our final example demonstrates that (in the general case) we must 

include nodes at dependent nonlinear charge sources (as well as 
dependent nonlinear current and voltage sources) to obtain the 
nonlinear NDF. 

• The example nonlinear network is a parametric f/2 frequency divider.
• This circuit uses a single active FET transistor to divide the input 

frequency over a range of input power and frequency.
• We will use the admittance technique to calculate the nonlinear NDF for 

Fin=2GHz and power levels from -5dBm to 20dBm.
• This involves four 2-tone HB sweeps (two each across Vds and Vgs).
• Again, we will use the same network operating at low power level

(known stable at -8dBm) for the NDF normalization.
• At each power level, we will calculate the admittance at Vds first, then 

short Vds (at the perturbing frequency) to calculate the admittance at 
Vgs. (the order is unimportant, we could do Vgs first, as long as Vgs
nodes are shorted for the subsequent admittance calculations at Vds
we will get the same NDF function)
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Eqn STAB_VS_PWR=unwrap(phase(NDF))/-360

-5 0 5 10 15-10 20

0.0

0.5

1.0

1.5

-0.5

2.0

Pin

ST
AB

_V
S_

PW
R

[::
,1

80
3]

NDF Stability Versus Pin Encirclement Plot
(plot last frequency point of un-raveled phase  = +)

Stable Unstable HB Solution Stable



76

-1.0 -0.5 0.0 0.5 1.0-1.5 1.5

F2 (0.001 to 99.990)

N
D

F[
1,

::]

-3 -2 -1 0 1 2 3-4 4

F2 (0.001 to 99.990)

N
D

F[
2,

::]

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.5 2.5

F2 (0.001 to 99.990)

N
D

F[
3,

::]

Pin=-4dBm Pin=-3dBm Pin=10dBm

Pin=16dBm Pin=16.5dBm Pin=17dBm

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.5 2.5

F2 (0.001 to 99.990)

N
D

F[
4,

::]

-2 -1 0 1 2-3 3

F2 (0.001 to 99.990)

N
D

F[
5,

::]

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.5 2.5

F2 (0.001 to 99.990)

N
D

F[
6,

::]

NDF Versus Input Power (Fin=2GHz)
Perturbation Frequency Sweep (Pin=-8dBm for normalization)

Stable Unstable
HB Solution

Unstable
HB Solution

Unstable
HB Solution

Stable Stable



77

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[1
,::

]

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[2
,::

]

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[3
,::

]

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[4
,::

]

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[5
,::

]

1 2 3 4 5 6 7 8 90 10

0

1

2

3

4

-1

5

F2

S
TA

B
_V

S
_P

W
R

[6
,::

]

Pin=-4dBm Pin=-3dBm Pin=10dBm

Pin=16dBm Pin=16.5dBm Pin=17dBm

NDF Versus Input Power (Fin=2GHz)
Perturbation Frequency Sweep (Pin=-8dBm for normalization)

Stable Unstable
HB Solution

Unstable
HB Solution

Unstable
HB Solution

Stable Stable



78

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3-0.4 0.4

F2 (0.001 to 99.990)

LS
N

D
F m2m3m4m5

m2
F2=
LSNDF=0.002 / -1.117

1.000

m3
F2=
LSNDF=0.003 / 84.805

3.000

m4
F2=
LSNDF=0.048 / 24.431

5.000

m5
F2=
LSNDF=0.085 / 4.336

7.000

All curves are clockwise
as frequency increases

Fin=2GHz Pin=-3.295dBm (frequency division confirmed)
(1,3,5,7GHz go through (0,0) at the same input power level)



79

1 2 3 4 5 6 70 8

-80

-60

-40

-20

0

-100

20

freq, GHz

db
(y

[0
,::

])

1 2 3 4 5 6 70 8

-80

-60

-40

-20

0

-100

20

freq, GHz

db
(y

[1
,::

])

1 2 3 4 5 6 70 8

-80

-60

-40

-20

0

-100

20

freq, GHz

db
(y

[2
,::

])

1 2 3 4 5 6 70 8

-80

-60

-40

-20

0

-100

20

freq, GHz

db
(y

[3
,::

])

Pin= -8dBm Pin= -3.2dBm

Pin=16dBm Pin=16.4dBm

Vload Versus Input Power (Fin=2GHz)
Transient Analysis (0-10s)

Stable F/2

F/2 Stable



80

Summary
• A “fairly simple” NDF technique for detecting oscillations in both linear 

and non-linear networks has been shown.
• Examples using ADS (Advanced Design System) and AWR were 

shown, however, any linear/non-linear simulator will work just as well.
• This technique is pretty powerful and can detect all types of oscillations 

including traditional linear circuit oscillations as well as non-linear, 
power dependent parametric (as well as sub-harmonic) oscillations.

• Keep in mind however, that this technique is only as good as your 
circuit models.  In other words, it won’t accurately predict oscillatory 
behavior if your circuit model isn’t accurate or incomplete (see the last 
reference paper [9] on the next page for a real world example…).

• The technique is however, mathematically rigorous.
• I hope this helps resolve (and prevents) any future non-desired circuit 

behavior.  Good luck and have fun! (you can blame me later…)
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Dead “black box” Transistor Models

• How do we make a “black box” transistor in a linear network passive 
(no RHP zeroes).

• Consider the simplified network representation of an active transistor 
(at any single given frequency) (D.J.H. Maclean [1]).  This is valid for 
any transistor type (FET or Bipolar).  (can also be a [S]-parameter file)
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Dead “black box” Transistor Models

• We want to set gm = 0 at all frequencies (other than DC) to 
make the transistor passive.
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Dead “black box” Transistor Models

• We need to subtract gmv1 from i2 in the simplified model to 
achieve this.  This is done using two additional (identical) 
transistors that use the following AC terminal conditions 
(DC are the same as original):

• First, in identical transistor 1, set the input voltage equal to 
v1 (sampled from the original transistor terminals), short v2
and find the short circuit current i2.

• The short circuit current is (gm-Yb)v1.
• Next we need to get Ybv1.
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Dead “black box” Transistor Models

• Next, in identical transistor 2, set the output voltage equal 
to v1 (sampled from the original transistor terminals) and 
find the short circuit input current i1.

• The short circuit current is -Ybv1.
• Next we simply subtract i2’ and add i1’’ back to original 

transistor model as shown on the next slide.
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Dead “black box” Transistor Models

• Subtract i’2 and add i’’1 to the original model like so…
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Relationship Between Network Determinants and Admittance

• First redefine the node voltages in terms of Vs

where V4 = V3-Vs

• So, column 3 in the matrix becomes the sum of 
columns 3 and 4, and column 4 changes sign as 
shown below.
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Relationship Between Network Determinants and Admittance

• Next, we replace row 3 in the matrix with the sum of rows 3 
and 4 to eliminate Is on the right side.

• And multiplying row 4 by -1, 
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Relationship Between Network Determinants and Admittance

• Now using Cramer’s rule.

• Next, we recognize that the determinant in the 
numerator is equal to the determinant of the 
original network with nodes 3 and 4 shorted (i.e. 
dependent source is shorted)…
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Relationship Between Network Determinants and Admittance

• Original network with nodes 3 & 4 shorted

• Therefore the admittance,

• Note that this shorted network is passive (no RHP zeroes), 
but is not of the same order as the original network.
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Relationship Between Network Determinants and Admittance

• Next, we calculate admittance (at the same nodes) from a 
known stable operating point (gm=0 for example).

• Since,

• Because the dependent source has been shorted.
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