Power Divider/Combiners: Small Size, Big Specs

A new class of stepped impedance power divider/combiners gives performance comparable to Wilkinson devices at one-third the size. Shorter line length is the secret.

HE Wilkinson family of in-phase, n-way power divider/combiners has been dependable since its introduction in 1960¹. Now, a new topology has been developed which can match the Wilkinson spec-for-spec, while occupying about onethird the substrate real estate.

Wilkinson devices are strong performers, approaching the ideal in certain respects² when realized in microstrip or stripline. If perfect, they would have:

• equal in-phase power division

n

(1.9) 39.95

39.95

49.95

39.95

79 95

79.95

ITS

9-0200 620156

- one-to-one VSWR at all three ports, and
- infinite isolation between in-phase ports."

A major disadvantage of the Wilkinson design, however, is the requirement for quarter-wave lines, which are undesirably long below S band. The new alternative to the Wilkinson divider/combiner uses lines of reduced length. The size of the device is drastically reduced, which is especially attractive for L-band operation.

A two-way Wilkinson device is compared with the new configuration in Fig. 1, while the new circuits are shown in parallel and series forms in Fig. 2. The older design uses two parallel impedance transformers, each having a quarter-wavelength transmission line with a characteristic impedance of $\sqrt{2}$ times that of the system's characteristic impedance. When the high-impedance ends are connected in parallel, a power divider/combiner with a system impedance of Z₀ results. The resistance between the two in-phase ports necessary for perfect performance is equal to 2Z₀.

The new device uses stepped impedance transformers with a total line length of less than one-quarter wavelength. As a result, the isolation network requires the addition of a capacitive element (see Fig. 2). The new topology can be fabricated using printed artwork with the addition of only one resistive element per stage. This use of steppedimpedance transmission lines is not new;⁴ an even number of alternating high- and low-impedance lines, when cascaded, may be used to transform any real impedance to any other value (see Fig. 1(b)).

The first step in using a two-step transformer as part of a two-way power divider is to make sure that the characteristic impedance R_0 is transformed to $2R_0$. For a given line length θ , impedances Z_{01} and Z_{02} are given by:

$$Z_{01} = \frac{R_0}{\tan\theta} \left[\left(1 + 8 \tan^4\theta \right)^{\frac{1}{2}} - 1 \right]^{\frac{1}{2}}$$
(1)

Richard C. Webb, Senior Engineer, Magnavox Government and Industrial Electronics Co., Fort Wayne, IN 46808.

2. Infinite isolation and perfect output VSWR are the result when the isolation network in Fig. 1(b) is realized in parallel (a). The series form (b) is also shown.

$$Z_{02} = \frac{2R_0^2}{Z_{01}}$$
(2)

Equations 1 and 2 generate exact values for Z_{01} and Z_{02} at the design frequency. Over any given bandwidth, a very small band-edge VSWR improvement will result (at the expense of band-center performance) from perturbing Z_{01} and Z_{02} slightly. The enhancement is negligible for bandwidths of less than an octave; still, corrected values are shown in Ref. 4. For practical applications, the use of Fig. 3 with Eqs. 1 and 2 is recommended.

The quantity θ may range anywhere from 0 to 45 degrees for the two-step device; when θ is 45 degrees, the Wilkinson device is created. When $\theta = 0$ degrees, a degenerate solution such as the one shown in Fig. 1(c) is the result.

As the line lengths are reduced below 45 degrees, the following characteristics and limitations apply:

• As θ decreases, Z_{01} decreases and Z_{02} increases. For practical 50-ohm systems using standard substrate materials, line lengths shorter than 15 degrees are generally impractical.

3. Transformation of the characteristic impedance Ro follows these curves, in conjunc-tion with Eqs. 1

These prototype parallel (left) and series divider/ combiner units operate at 200 MHz.

Table 1: Allocation of storage registers									
Register	Allocation	Register	Allocation						
R01	Wo	R08	Z ₀₂						
R02	R	R09	$(Z_{01} + Z_{02})$						
R03	θ	R10	$(1+Z_{02}/Z_{01})$						
R04	$\sin \theta$	R11	Zop						
R05	$\cos \theta$	R12	θ_{p}						
R06	$\tan \theta$	R13	X						
R07	Z ₀₁		3						

• For θ between 20 and 25 degrees, Z_{02} reaches an impedance level satisfactory for extensive meandering on most substrates, while there is only moderate reduction in the impedance of Z₀₁.

• The input VSWR is slightly higher than the Wilkinson over bandwidths of 50 percent or less.

The all-important isolation networks

An acceptable, if not perfect, in-phase power divider/ combiner must display high isolation between in-phase, low-VSWR ports. In the Wilkinson device, high-isolation, low-VSWR characteristics are achieved via the 2R₀-ohm resistor. In general, a dissipative element is necessary for proper isolation as well as output matching. Since the electrical length of each 1:2 impedance transformer is less than 90 degrees in the two-step configuration, a capacitive isolation network is needed. The realization of this network is shown in parallel and series forms in Fig. 4.

In the parallel RC network, the solutions for R_p and X_p are given by:

$$R_{\rm p} = 2R_0 \tag{3}$$

and $X_p = (Z_{01} + Z_{02})^2 \sin\theta \cos\theta$

$$\times \left[Z_{02} \left(1 + \frac{Z_{02}}{Z_{01}} \right) \sin^2 \theta - (Z_{01} + Z_{02}) \cos^2 \theta \right]^{-1}$$
(4)

It's interesting to note that R_p does not change in this configuration compared to the Wilkinson device. The solutions for \mathbf{R}_s and \mathbf{X}_s in the series circuit are given by:

$$R_{s} = \frac{(Z_{01} + Z_{02})^{2}}{R_{0}} \sin^{2}\theta \cos^{2}\theta$$
(5)

5. In

anɗ

netv

The

$$X_{s} - 2 \Big[Z_{02} \left(1 + \frac{Z_{02}}{Z_{01}} \right) \sin^{3} \theta \cos \theta \\ - (Z_{01} + Z_{02}) \sin \theta \cos^{3} \theta \Big]$$
(6)

The series arrangement can be altered to include a pad to link the two elements. Modeling the pad as a section of transmission line with a characteristic impedance \mathbf{Z}_{op} and electrical length θ_{p} , the values of R_{s} and X_{s} become:

$$R_{s} = (Z_{01} + Z_{02})^{2} \sin^{2}\theta \cos^{2}\theta$$

$$\times \left[R_{o} \left(\cos\theta_{p} + \frac{X_{s}\sin\theta_{p}}{Z_{op}} \right) \right]^{-1}$$

$$X_{s} = Z_{op} \sin\theta_{p} + 2 Z_{op} \left(1 + \frac{Z_{02}}{2} \right)$$
(7)

$$X_{s} = Z_{op} \sin\theta_{p} + 2 Z_{02} \left(1 + \frac{Z_{02}}{Z_{01}} \right)$$

 $-\sin^3\theta\cos\theta - 2(Z_{01} + Z_{02})\sin\theta\cos^3\theta(\cos\theta)$

$$_{\rm p})^{-1}$$
 (8)

Naura 1001

For these two equations, X_s must be calculated before R_s. Interesting isolation characteristics

The performance levels of the two-step devices are, on the whole, very similar to those of the Wilkinson devices. (text continued on p. 72)

6. In curv oret

and

er/

5)

6)

to

of

d

7)

5. Input and output VSWR are compared for the two 200-MHz units. The input VSWR curves (left) represent @ theoretical and @ measured data for both two-way devices. The output curves show @ measured and @ theoretical data for the parallel network, and @ theoretical and @ measured data for the series configuration. For all of these curves, $\theta = 22.5$ degrees. Theoretical curves ① for the Wilkinson device are shown as a reference.

6. Insertion loss and isolation ($\theta = 22.5$ degrees) are shown in relation to theoretical curves **3** for the Wilkinson device. The curves at left represent **1** measured and **2** theoretical insertion loss data; the curves at right are **1** measured and **2** theoretical isolation data for the series network compared with the **3** measured and **3** theoretical data for the parallel circuit.

POWER DIVIDER/COMBINER (continued from p. 69)

9

a lé

a o a p

o w F

0

đ

p t

t

ľ

£

F

t

s

с

Ŀ

t

L

ľ

r.

l

Ċ

8. The four-way divider of Fig. 7 was fabricated on 0.002-in. Duroid 5880.

Since the input VSWR is slightly higher than that of the Wilkinson, the reflective insertion loss will be slightly higher. The dissipative insertion loss will be about the same since the loss reduction due to the shorter lengths of line is virtually canceled out by the increase in dissipation due to the high-impedance line sections.

It should be mentioned that, in the series RC isolation network using an interconnecting line, a very slight degradation in forward response will result due to the effective shunt-pad reactance. The effect is negligible for pads of less than a few degrees in length.

The isolation characteristics of the two-step devices are comparable to the Wilkinson devices. The in-phase port VSWR of the new configuration is higher than that of the Wilkinson, but still acceptable over bandwidths of 50 percent or less. Isolation of the series RC configuration is better than that of the Wilkinson circuit, even when an interconnecting line several degrees in length is used.

Based on the design equations, two prototype units were designed on 0.031-in. woven Teflon fiberglass material with

READER SERVICE NUMBER 88

be

n

۱e

y

le

of

n

n

<u>.</u>

.

s

e

٠t.

e

s

n

9. Performance curves for the four-way divider show input and output VSWR (top), insertion loss (middle), and isolation (bottom).

a dielectric constant of 2.55 (Fig. 4). The line lengths were one-sixteenth-wavelength long, and the devices operated at a 200-MHz center frequency. Calculated parameters for the parallel RC network were: $R_p = 100$ ohms; $X_p = -144.19$ ohms; $C_p = 5.52$ pF. For the series network, the values were: $R_s = 67.88$ ohms; $X_s = -46.31$ ohms, $C_s = 17.18$ pF. For both networks, $Z_{01} = 40.31$ ohms and $Z_{02} = 124.03$ ohms.

The parallel device was fabricated using a 100-ohm, 50-mil-square chip resistor along with a 5.6-pF, 55-mil-square chip capacitor. The series device uses a 68-ohm chip resistor with a 4- to-18-pF trimmer capacitor set for maximum isolation at 200 MHz. Figures 5 and 6 demonstrate just how well the devices operate, by comparing theoretical performance and measured data with the theoretical performance of a Wilkinson device.

A four-way divider/combiner was fabricated using one two-way circuit to drive two additional two-way circuits. The device, shown in Figs. 7 and 8 in schematic and real-life forms, operates at 2 GHz using the parallel RC topology. Instead of improving isolation by using lumped capacitance, the circuit employs coupled lines.

Gaps and line widths were limited to 10 mils so that standard printed-circuit techniques could be used to fabricate the network. As a result, to achieve the needed interline capacitance, the coupled lines were made long enough to create significant shunt capacitance. Figure 9 shows the performance curves of the component for input and output VSWR, insertion loss, and isolation.

The final geometry of this four-way circuit results from using Tables 1 and 2, in conjunction with the program listing (see "Program listing: Two-step divider/combiner design," p. 74). By allowing the COMPACT program* to

*The program will calculate the parallel RC solution (D, R/S, R/S), the series solution (E, R/S, R/S), or the series R-pad-C solution independently, in any order. For the R-pad-C case, Z_{OP} and θ_{P} must be entered into D', respectively.

READER SERVICE NUMBER 56

POWER DIVIDER/COMBINERS (continued from p. 73)

Program Listing: Two-step divider/combiner design																	
STEP	KEY CODE	STEP	KEY CODE	STEP	KEY C	ODE STEP	KEY	CODE	STEP	KEY	CODE	STEP	KEY	CODE	STEP	KEY.	CODE
000	76 LBL	033	06 06	066	85	+ 1099	04	04	132	42	STD	165	65	X	198	12	12
001	11 A	034	45 YX	067	43 R	CL 100	33	_χz 🕺	133	11	11	166	43	RCL	199	39	COS
002	65 X S	8035 8036	U4 4 % 25 v %	068 040	07 54	07 20101	/5 40		134	00 40	етп	167	05	058	200	54	·) • 淵 • · · · · · · · · · · · · · · · · · · ·
2003 2004	65 X 8	MO38 MA37	03 ^ 1	062	42 S	TD 102	09	091	#136	12	1230	§100 ≹169	02		201	୦୦ 55	_⊥ ∕ ∧ (33 ⊥ ∭
8005	89 n	038	85 +	071	09	09 104	65	×	137	61	GTD	170	65	× 3	203	43	RCL
006	54)	039	01 1	072	55	÷ 105	43	RCL	138	10	E •	171	43	RCL	204	02	02日
8007	42 STD		54) (073	43 R	CL 1106	05	053	<u>139</u>	76	LBL	172	09	09)	205	65	_×. 🏽
2008 2009	01 01% 91 070%	2041 2042	34 IA 8 75 -	074 075	07 54	V/ 1010/ V 102		5	140 171	19	U жа	173	65 70	DCI 3	206	43	RUL
	76 L BL	043		076	42 S	то 109	35	1/X	142	11	11	175	04	RUL9 049	207 208	33	V2 2
ØŌĨĨ	12 B	044	54)	077	10	i0 110	65	×	143	9ī	R2S	176	65	Ň	209	65	''× 🗿
8012	42 STD	045	34 FX 🖁	078	43 R	CL 111	43	RCL	144	76	LBL	177 i	43	RCL	210	43	RCL
013	02 02	046	65 X	079	08	08 112	09	090 90	145	10	E B	178	05	05	211 211	04	04 🎆
深U14 漂白15	- 22 INV) - 52 FF	2047	43 KULA 12 12	080 021	- 31 R 42 P		65	X ∦	146 147	42	う!日報 1つ報	1179 190	40	°≙ ∄	#212 1010	33	×≤ ∰ √ ∰
燕010 腰016	91 R/S	8049	55 ÷	082	- 10 K	na 1115	43	RCL	148	38	SIN	181	54	5	214	43	RCI 🖉
2017	76 LBL	050	43 RCL	083	91 R	25 📲 116	04	04 🛛	149	65	X	182	55	÷ 2	215	05	05
纓018	13 C	8051	06 06	084	76 L	BL 117	65	_ × 3	150	43	RCL	183	43	RCL	216	33	X2 🎆
8019 8000	42 STD	052	54) 3 40 crm	085	14	D 118	43	RCL	151	11	11	184	12	12	217	54	
窓UZU 窓口24	- US - US - DO - CTN/	003	42 STU 07 072	086 007	02 25	2 1117 V 11170	UD 54	UD//	8152 8150	85 00	- + 11 - 14	185 102	39	CUS	%218 %210	91 40	K/S@
022	42 STD	055	91 R/S	088	43 R	CL 121	91	RZS	153	65	X	187	42	STR	220	13	
8023	04 04	056	35 1/X	089	02	02 122	94	+/-3	155	43	RCL	188	13	13	221	9ĩ	R/S
024	43 RCL	057	65 X	8090	54) 📓123	35	1/X 🛛	156	08	08	189	65	- × 🕴	222	94	+/->
025		058	02 2	091	91 R	ZS 124	55	÷ 🕺	157	65	_X 🕷	190	43	RCL	223	35	1/X
烈U26 河027	- ЗЭ СЦЗ) Ир стп)	19009 19020	50 X (40 pri	1092 1000	43 K no	OO 0125	43	- KUL (1) - 0 1 (1)	158	43		191 100	12	123 оты	9224 1005	- 55 - 40	÷ 🎆
骤027 骤028	05 05	061		0.93 0.94	65	× 120	54) N	160	65		193	აძ 55	STHA ÷	8223 8226	43	
8029	43 RČĽ	062	33 X2 🖇	095	43 R	CL 1128	- 9i	R/S	161	43	RCL	194	43	RCL	227	54	> 33
030	03 03	063	54)	096	10	10 129	76	LBL	162	04	04	195	11	11	228	91	R∕S∭
₩031 	30 TAN	064	42 STD	097	65	× 🗱130	15	Ę 🗿	163	45	YX 🌆	196	85				
2032	42 STD	優 065	U8 U8	BD98	43 R	UL 131	U1	1	2164	03	3 🗿	197	43	RCL	N. A. A.		

first optimize the coupled lines for isolation and output match, and then re-optimizing the lengths of the transformer sections for optimum input characteristics, a successful design was developed.

The new two-way, in-phase circuit may not be perfect, but it is close enough in performance to the Wilkinson device to stand as a pleasant alternative. The fact that it can be made at about one-third the size, makes it an alternative worth considering. $\bullet \bullet$

References

•

Rig

Rig

Ris

Fine

for .

cha

doʻ

wh

NOV

con am

cov Anc

OUR

Ou eve

pha

ato

pac

Wi

Sys

are

OUT

terr

mo

lin∉

she hig

bar it. ****

cap

E.J. Wilkinson, "An N-Way Hybrid Power Divider," *IRE Transactions on Microwave Theory and Techniques*, Vol. MTT-8, No. 1, pp. 116-118 (January 1960).
 S. Cohn, "A Class of Broadband, Three-Port to TEM Mode Hybrids," *IEEE Trans-*

actions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, pp. 110-118 (February 1968). 3. U.H. Gysel, "A New N-Way Power Divider/Combiner Suitable for High-Power Appli-

3. U.H. Gysel, "A New N-Way Power Divider/Combiner Suitable for High-Power Applications, 1975 MTT Symposium Digest, pp. 116-118 (1975).

G.L. Matthaei, "Short-Step Chebychev Impedance Transformers," *IEEE Transactions on Microwave Theory and Techniques*, Vol. MTT-15, No. 8, pp. 372-383 (August 1966).

MIDISCO 61 MALL DRIVE, COMMACK, NEW YORK 11725