W. J. wit

DESIGN AND CALIBRATION OF MICROWAVE ANTENNA GAIN STANDARDS

William T. Slayton

Microwave Antennas and Components Branch Electronics Division

November 9, 1954

NAVAL RESEARCH LABORATORY Washington, D.C.

CONTENTS

Abstract	
Problem Status	
Authorization	
INTRODUCTION	
DESIGN	
CONSTRUCTION	
CALIBRATION	
REMARKS	
ACCURACY	
ACKNOWLEDGMENTS	
REFERENCES	
APPENDIX - Methods for	Determining Horn Dimensions and Gain

ABSTRACT

A set of antenna gain-standard horns covering the microwave range from 0.77 cm to 31.5 cm has been designed and carefully calibrated. The horn fabrication is simple and can be duplicated accurately from the drawings supplied. A simple method of extending and improving the accuracy of Schelkunoff's gain curves is also described.

PROBLEM STATUS

This is a final report on this phase of the problem; work on the problem is continuing.

AUTHORIZATION

NRL Problem R09-03 Project NR 689-030

Manuscript submitted September 2, 1954

DESIGN AND CALIBRATION OF MICROWAVE ANTENNA GAIN STANDARDS

INTRODUCTION

guide in a common plane.

The need for accurate and practical microwave antenna gain standards has led to the design and calibration of a series of pyramidal horns covering the microwave bands from 0.77 cm to 31.5 cm. The series consists of eleven broadband horns having gains ranging from 24.7 db to 13.7 db. There is a horn for each waveguide size in the range. The horns can be easily and accurately duplicated from drawings supplied in this report.

DESIGN

Three requirements were considered of prime importance in the design: a useful gain figure, simplicity of construction, and accuracy of calibration. The fabricated type of horn (Fig. 1), with flat metal sheets forming the sides, was decided upon as the best means of satisfying the construction requirements. For simplicity, the horns were designed so that the E- and H-plane flares meet the wave-

Another consideration was the over-all size and weight. It was impractical to scale the horns from one band to another throughout the range, since the horns at the longer wavelengths would be too large and those at the shorter wavelengths too small. Accordingly, there are five different designs; each of the other six horns was scaled from one of these.

The 8-mm and 1.8-cm horns were scaled from the 1.25-cm horn; the 4.75-cm horn from the 3.2-cm horn; the 3.95-cm and 6-cm horns from the 10-cm horn; and the 15-cm horn from the 23-cm horn. In scaling, the values of $\ell_{\rm H}$ had to be altered slightly in order to make a simple junction at the waveguide. This was necessary because, with one or two exceptions, the inside dimensions of the waveguides are not scaled from one band to another. The adjustment made only a very slight change in the calculated gain (about 0.02 to 0.03 db).

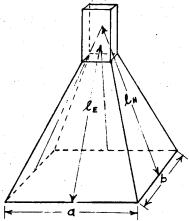


Fig. 1 - Physical dimensions for calculating the gain

The 3.95-cm horn represents an overlapping of the 3.2-cm band and the 4.75-cm band. However, it was decided to include this horn in the series because it fits a standard waveguide size (1.250 x 0.625 in. O.D.) and it provided an opportunity to make experimental checks on the 10-cm horn from which it is scaled.

The basic design data including the dimensions, operating range, and design-point gain for all the horns are summarized in Table A-2.*

Readers who are interested in a detailed design procedure are referred to the Appendix, where a simple means of extending the range of Schelkunoff's gain curves and improving the accuracy of the gain figure obtainable from them is described. This method eliminates the necessity for long computations involving Fresnel integrals, and yields very close agreement with the detailed calculations.

CONSTRUCTION

As mentioned previously, the fabricated type of horn using flat metal sheets was decided upon as most suitable. The one exception is the 8-mm design, where electroforming was considered necessary because of the small size and close tolerances. Horns for the bands from 1.25 cm to 10 cm were made of brass sheets. At the 15-, 23-, and 30-cm bands, horns were fabricated from sheet aluminum using helium gas to facilitate welding the joints (heliarc process). This construction reduced the weight considerably and was found to be satisfactory for producing accurate, uniform, and rugged horns.

Dimensions for each set of horns are given in Figs. A-6 through A-17.

CALIBRATION

Experimental primary gain measurements (Fig. 2) were made in order to check the accuracy of the calculated gain. † Great care was taken in making these measurements. Both the horns and the bolometer detectors were carefully matched and the bolometer amplifier and output meter (VTVM) were calibrated accurately. The bolometer amplifier was found to be linear throughout the range used. The use of r-f coaxial cables was avoided because of instability, waveguide being used instead. Microwave absorbent material (1) was used to minimize reflections. Even so, difficulties were encountered at the longer wavelengths because of reflections and the large separation distances required. As Braun has shown (2), true Fraunhofer field conditions do not exist until a separation distance between horns of many times $2d^2/\lambda$ is attained, d being the larger aperture dimension. Because of these difficulties, experimental gain measurements at 10 cm and above were abandoned. It was decided to scale the 3.95-cm and 6-cm horns from the 10-cm horn in order to obtain reliable measurements at the shorter wavelengths. Figure 3 shows the anechoic test site. An example of the method used in evaluating the experimental data is given in the Appendix.

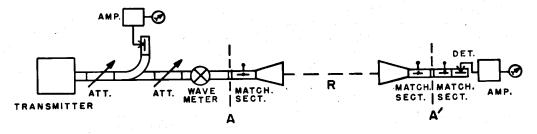


Fig. 2 - Experimental setup for gain measurements

^{*}With the exception of Fig. A-1, all figures and tables bearing the letter A are grouped at the end of the Appendix, and are listed on page 6.

[†]For a general description of the methods used in making such measurements see Footnote 2, p. 7 of the Appendix, ref. pp. 582-585. The remarks in this reference about the minimum separation distance for the horns should be re-evaluated in the light of Ref. 2.

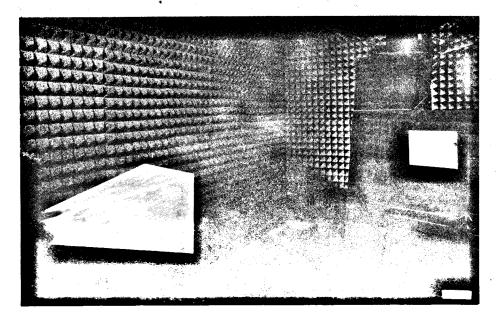


Fig. 3 - Anechoic test site

Measurements were made at several separation distances in each case, and were repeated many times, changing such variables as the power level and the peaking of the horns. See Figs. 3 and 4.

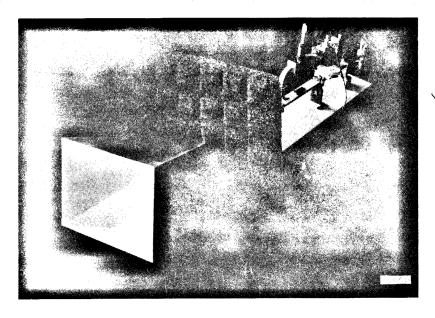


Fig. 4 - Horn and transmitter on adjustable mount

Gain curves for each band are shown in Fig. A-5 (a,b,c). Figures A-4 (a-f) show the field patterns for three basic horn designs.

REMARKS

Horns representing four basic designs were measured for mismatch over their bands. The greatest VSWR's encountered in the various bands are as follows:

Ba	and	Max	VSWE
1.8	3 cm	1	.10
3.2	2 cm	1	.20
6	cm	1	.25
23	cm	1	.20

The horns for the other bands should have a VSWR close to that of the horns from which they were scaled.

In any event, when the horns are used in gain measurements, the VSWR should be measured at the wavelength used, and for accurate measurements the horns should be carefully matched, or allowance should be made for any mismatch. In either case the bolometer must be well-matched. The use of flange-to-flange connections rather than chokes, is recommended whenever operating at a wavelength differing from that for which the chokes were designed, since at some wavelengths choke-to-flange joints may introduce considerable mismatch.

ACCURACY

At any one wavelength the measured points showed a dispersion of less than 0.1 db. As a function of wavelength, the gain curve is not monotonic, as would be predicted from the theory, but shows small, though definite, periodic wiggles (see Fig. A-5 (b)). After exhaustive checking it is felt that these wiggles are actually present, and not due to experimental difficulties. This effect can probably be attributed to higher modes in the aperture and currents on the outside of the horn, both of which are neglected in the theory. However, since the wiggles are small, and since a tremendous amount of additional data would have to be taken to reproduce the wiggles accurately, a curve drawn through the average of the measured points was used. Taking into account all possible deviations from the true gain over each band, it was decided that the maximum possible error would be less than ±0.3 db up to and including the 10-cm horns.

At wavelengths longer than 10 cm, where no direct experimental checks have been feasible, the gain has been calculated by means of Schelkunoff's formula. To arrive at a reasonable tolerance at these wavelengths, it was noted that below 10 cm the greatest discrepancy between the average measured gain (using Braun's correction curves 2 for near field effects) and the calculated gain at the same wavelength was of the order of 0.2 db. In general the difference was much less than this figure. Therefore it is felt that a tolerance of ± 0.5 db is reasonable for all horns above the 10-cm band. In all probability, the actual errors are considerably less than the maximum possible tolerances quoted.

ACKNOWLEDGMENTS

The author wishes to express his appreciation to E. H. Braun for his advice and cooperation and to F. W. Lashway for his suggestions in connection with the construction of the horns.

REFERENCES

- 1. Simmons, A. J., and Emerson, W. H., "An Anechoic Chamber Making Use of a New Broadband Absorbing Material," NRL Report 4193, 7 July 1953
- 2. Braun, E. H., "Gain of Electromagnetic Horns," Proc. I.R.E., Vol. 41, No. 1, pp. 109-115, Jan. 1953

_

LIST OF APPENDIX ILLUSTRATIONS

Number	<u>Title</u>	Page
Fig. A-1 (a, b)	Braun's E- and H-Plane Correction Curves	11
Fig. A-2 (a, b)	Expanded E-Plane Theoretical Gain Curve	14
Fig. A-3 (a, b)	Expanded H-Plane Theoretical Gain Curve	16
Fig. A-4 (a-f)	E- and H-Plane Field Patterns	19
Fig. A-5 (a-c)	Gain Curves and Conversion Chart	23
Fig. A-6 to A-17	Construction Drawings for the Gain-Standard Horns	26
Table A-1	Data for E- and H-Plane Theoretical Gain Curves	18
Table A-2	Summary of Gain-Standard Horn Data	22

APPENDIX Methods for Determining Horn Dimensions and Gain

BACKGROUND

Schelkunoff's gain curves in various forms 1,2,3 were used for determining the tentative dimensions of the horns and for obtaining a first approximation to the gain. After the aperture dimensions had been chosen and a reasonable value for ℓ_E (the E-plane slant height) had been set, the H-plane slant height, ℓ_H , was uniquely determined by the requirement that the flared sides of the horn meet the waveguide in the same plane (Fig. 1, p. 1). For the purpose of calculating the expected gain, this value of ℓ_H was approximated by the relation

$$L_{\text{Happrox.}} = \frac{1 - \frac{w_{\text{E}}}{b}}{1 - \frac{w_{\text{H}}}{a}} L_{\text{E}}$$
 (1)

where a = H-plane aperture dimension

b = E-plane aperture dimension

 $w_E = E$ -plane inside dimension of the waveguide

 $\mathbf{w}_{\mathbf{u}} = \mathbf{H}$ -plane inside dimension of the waveguide.

After the tentative gain had been determined, the exact value of \mathcal{L}_{H} was obtained from the formula

$$\ell_{\rm H} = \frac{a}{a - w_{\rm H}} \sqrt{\left[\left(\ell_{\rm E}\right)^2 - \left(\frac{b}{2}\right)^2\right] \left[\left(1 - \frac{w_{\rm E}}{b}\right)^2\right] + \left[\frac{a - w_{\rm H}}{2}\right]^2} . \tag{2}$$

¹Schelkunoff, S. A., "Electromagnetic Waves," D. Van Nostrand, Inc., New York, pp. 363-365, 1943

²Silver, S., "Microwave Antenna Theory & Design," McGraw-Hill Book Co., Inc., New York, pp. 588-589, 1949

³Schelkunoff, S. A., and Friis, H. T., "Antennas - Theory and Practice," John Wiley and Sons, Inc., New York, pp. 528-529, 1952

In using Schelkunoff's gain curves, it was found that no one family of curves in the references mentioned covered a range great enough to include all the desired sizes of horns. Furthermore, certain parts of the curves were found to be less accurate than others. To overcome these difficulties a new procedure has been devised.⁴ A brief review of the relationship of the curves to the gain formula will help to clarify the procedure. The notation is substantially that used in the recent book by Schelkunoff and Friis,³ and by Silver.²

The Schelkunoff curves give the directive gain for horns flared in either of the two principal planes; g_E is the directive gain of a sectoral horn flared in the E-plane, and g_H is the directive gain of a sectoral horn flared in the H-plane. The two sectoral gain curves are obtained from the following formulas, expressed in terms of the tabulated Fresnel integrals C(X) and S(X):

$$\frac{\lambda}{b} g_{H} = \frac{4\pi \ell_{H}}{a} \left[\left\{ C(u) - C(v) \right\}^{2} + \left\{ S(u) - S(v) \right\}^{2} \right]$$
 (3)

$$\frac{\lambda}{a} g_E = \frac{64 \ell_E}{\pi b} \left[C^2(w) + S^2(w) \right], \qquad (4)$$

where

$$u = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{\lambda \ell_H}}{a} + \frac{a}{\sqrt{\lambda \ell_H}} \right)$$

$$v = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{\lambda \ell_H}}{a} - \frac{a}{\sqrt{\lambda \ell_H}} \right)$$

$$w = \frac{b}{\sqrt{2 \lambda \ell_E}}$$

 $\lambda = wavelengtine$

The gain of a pyramidal horn is

$$g = \frac{8\pi \ell_E \ell_H}{ab} \left[C^2(w) + c^2(w) \right] \left[\left\{ C(u) - C(v) \right\}^2 + \left\{ S(u) - S(v) \right\}^2 \right]$$

This result can easily be obtained from the two sectoral curves by multiplying together $(\lambda/a)g_E$ and $(\lambda/b)g_H$, and dividing the result by $32/\pi=10.1859$, yielding the convenient formula

$$g = \frac{\left(\frac{\lambda}{a} g_{E}\right) \left(\frac{\lambda}{b} g_{H}\right)}{\frac{32}{\pi}}$$
 (5)

where $\frac{\lambda}{a} g_E$ and $\frac{\lambda}{b} g_H$ are read directly from the curves.

⁴Braun, E. H., "Calculation of the Gain of Small Horns," Proc. I.R.E., Vol. 41, No. 12, pp. 1785-6, Dec. 1953

EXTENSION AND APPLICATION

Braun's method 4 provides a convenient means of extending the range of the gain curves and eliminating the inaccuracy arising from interpolations between curves. He introduces the arbitrary factors $\mathbf{k_E}$ and $\mathbf{k_H}$ to create a fictitious horn having these dimensions:

$$a = k_H A$$
, $\ell_H = k_H^2 L_H$
 $b = k_E B$, $\ell_E = k_E^2 L_E$

where A, B, L_E , and L_H are the actual horn dimensions. By choosing the proper value for k_E and k_H , one can make ℓ_E and ℓ_H fall exactly on one of the respective gain curves for each plane. After the gain of the fictitious horn $(g_{fict.})$ is read from the curves, the gain of the actual horn $(g_{act.})$ is obtained from the relation

$$g_{act.} = \frac{g_{fict.}}{k_E k_H}$$

Since both k_E and k_H are arbitrary, one gain curve for each plane is all that is necessary. The Schelkunoff curves for $L_E = 50$ and $L_H = 50$ are convenient for this purpose and have been accurately recomputed and plotted on an expanded scale in Figs. A-2 (a,b) and A-3 (a,b) so that they may be read with such accuracy that it is no longer necessary to make the detailed calculations involved in using the gain formula. The curves were plotted from formulas (3) and (4). The values obtained from these formulas are tabulated in Table A-1. For maximum accuracy these values may be preferable to those obtained from the curves. Linear interpolation between points will yield good accuracy. The table makes it possible to plot any desired portions of the curves on whatever scale is preferred.

An example will demonstrate the simplicity of the method.

Actual horn:
$$A = 8.13\lambda$$
, $L_H = 19.72\lambda$ $B = 6.67\lambda$, $L_E = 18.52\lambda$

If it is desired to make use of the 50- λ curves referred to above, the k's are chosen as follows:

$$k_E^2 = \frac{50\lambda}{18.52\lambda} = 2.6998, \quad k_E = 1.643,$$

$$k_{\rm H}^2 = \frac{50\lambda}{19.72\lambda} = 2.5355, \quad k_{\rm H} = 1.592.$$

Fictitious horn:
$$b = k_E$$
 B = 10.96 λ , ℓ_E = 50 λ ,
 $a = k_H$ A = 12.94 λ , ℓ_H = 50 λ .

From the 50- λ gain curves

$$\frac{\lambda}{a} g_E = 80.77$$

$$\frac{\lambda}{b} g_H = 98.92 \cdot$$

From formula (5),

$$g_{\text{fict.}} = \frac{\left(\frac{\lambda}{a}g_{\text{E}}\right)\left(\frac{\lambda}{b}g_{\text{H}}\right)}{\frac{32}{\pi}} = 784.40$$

$$g_{act.} = \frac{g_{fict.}}{k_E k_H} = 299.88$$
, or 24.77 db.

Detailed calculations using the Fresnel integrals in the gain formula resulted in the same gain figure, 24.77 db. Similar comparisons at each of the other bands showed agreement within 0.01 db.

USE OF CORRECTION CURVES

The procedure for determining the true Fraunhofer gain from the primary gain test data, using Braun's near field correction curves, Fig. A-1 (a,b), is shown in the following example taken from actual measurements:

X-band horn dimensions: a = 7.654 in., $\ell_{\text{H}} = 13.484 \text{ in.}$ b = 5.669 in., $\ell_{\text{E}} = 12.598 \text{ in.}$

 $\lambda = 3.20 \text{ cm} = 1.2598 \text{ in}.$

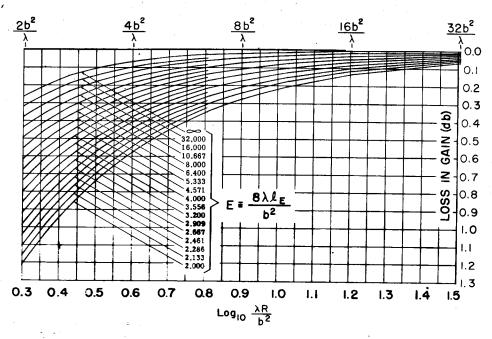
R (distance between horns) = 140.25 in.

$$\frac{4\pi R}{\lambda} = \frac{(12.566)(140.25)}{1.2598} = 1398.9.$$

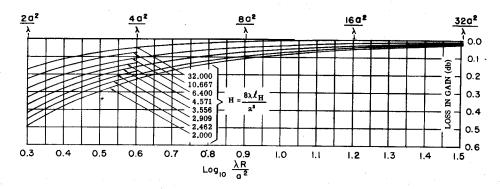
From test data
$$\frac{P_T}{P_R} = \frac{11.3}{0.123} = 91.87;$$
 $\sqrt{\frac{P_T}{P_R}} = 9.585$

where P_T represents power transmitted and P_R power received.

Gain_{uncorrected} =
$$\frac{\frac{4\pi R}{\lambda}}{\sqrt{\frac{P_T}{P_R}}}$$
 = $\frac{1398.9}{9.585}$ = 145.95, or 21.64 db.


Parameters for using the correction curves:

E-plane:


$$\frac{8\ell_{\rm E}}{\rm b^2} = \frac{(8)(12.598)}{32.13} = 3.1360$$

$$E = \left(\frac{8\ell_{\rm E}}{\rm b^2}\right) \quad \lambda = (3.1360)(1.2598) = 3.951$$

$$\log \frac{\lambda R}{\rm b^2} = \log \frac{(1.2598)(140.25)}{32.13} = \log 5.498 = 0.740$$

(a) E-plane

(b) H-plane

Fig. A-1 - Braun's E- and H-plane correction curves

H-plane:

$$\frac{8 \, \ell_{\rm H}}{a^2} = \frac{(8)(13.484)}{58.584} = 1.8413$$

$$H = \left(\frac{8 \, \ell_{\rm H}}{a^2}\right) \quad \lambda = (1.8413)(1.2598) = 2.320$$

$$\log \frac{\lambda R}{a^2} = \log \frac{(1.2598)(140.25)}{58.584} = \log 3.016 = 0.479$$

Reading from the correction curves:

	E-plane correction	••••••	0.22 db
43°	H-plane correction	***************************************	0.28 db
	Total correction	***************************************	0.50 db
Unc	orrected gain (above)		21.64 db
Cor	rected gain	***************************************	22.14 db

The calculated gain, using Schelkunoff's formula, in this case was the same: 22.14 db.

DETERMINATION OF AN OPTIMUM HORN WITH SPECIFIED GAIN AND EQUAL BEAMWIDTHS

A simple means has been devised for finding the dimensions of a horn which satisfies the following requirements:

- (1) Specified gain
- (2) Cptimum horn*
- (3) Equal beamwidths at the half-power points.

Although this can be done empirically, a set of factors was determined from Schelkunoff's gain formula, which yield the required horn parameters as a function of the absolute gain, g, alone.† These are as follows:

^{*}An optimum horn is one for which the aperture dimensions have been chosen to give maximum gain when the slant heights are held fixed. This is the case when $a^2 \cong 3.18 \lambda$ ℓ_H and $b^2 \cong 2.08 \lambda$ ℓ_F

This has been worked out by E. H. Braun in an unpublished report.

$$\frac{\mathbf{a}}{\lambda} = 0.4675 \quad \sqrt{\mathbf{g}}$$

$$\frac{\mathbf{b}}{\lambda} = 0.3463 \quad \sqrt{\mathbf{g}}$$

$$\frac{\mathbf{\ell_E}}{\lambda} = 0.05764 \quad \mathbf{g}$$

$$\frac{\mathbf{\ell_H}}{\lambda} = 0.06885 \quad \mathbf{g}$$

where a, b, ℓ_E , and ℓ_H are the usual parameters as defined (p.7).

A horn having these dimensions will have exactly the desired theoretical gain, and will be exactly an optimum horn. However, it should be pointed out that where a simple joint between the flared horn and the waveguide is desired, the value of ℓ_H must be modified to make the horn fit the guide. This will change the gain by a small amount, usually a few tenths of a db, since the horn will no longer be exactly optimum. If a discrepancy of this magnitude is not important, ℓ_H can be calculated to fit the waveguide exactly, using formula (2), ρ , 7,

When a closer approach to the specified gain is desired, a slight change in the procedure is necessary. This is accomplished by the following steps:

- (1) Compute tentative parameters a', b', and ℓ_E in the same way as a, b, and ℓ_E were computed above.
- (2) Obtain the approximate value, $\ell_{\rm H}$, to fit the waveguide, using formula (1), p. 7.
- '(3) Calculate the tentative gain, g', by the method outlined on p. 9 using the primed parameters.
- (4) Recompute a, b, and ℓ_E , substituting g^2/g' for g
- (5) Obtain the exact value of ℓ_H from formula (2), ρ . 7
- (6) Recalculate the gain for the new parameters.

Since the theoretical gain is obtained very accurately in step 6, it is easy to determine the discrepancy between the desired gain and that now resulting from the adjustment to fit the waveguide.

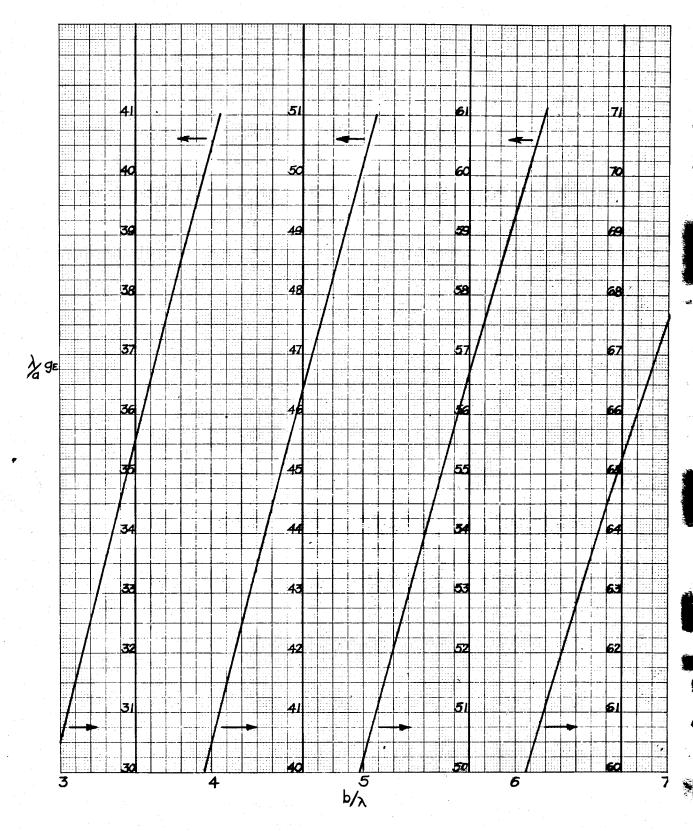


Fig. A-2 (a). Expanded E-plane theoretical gain curve

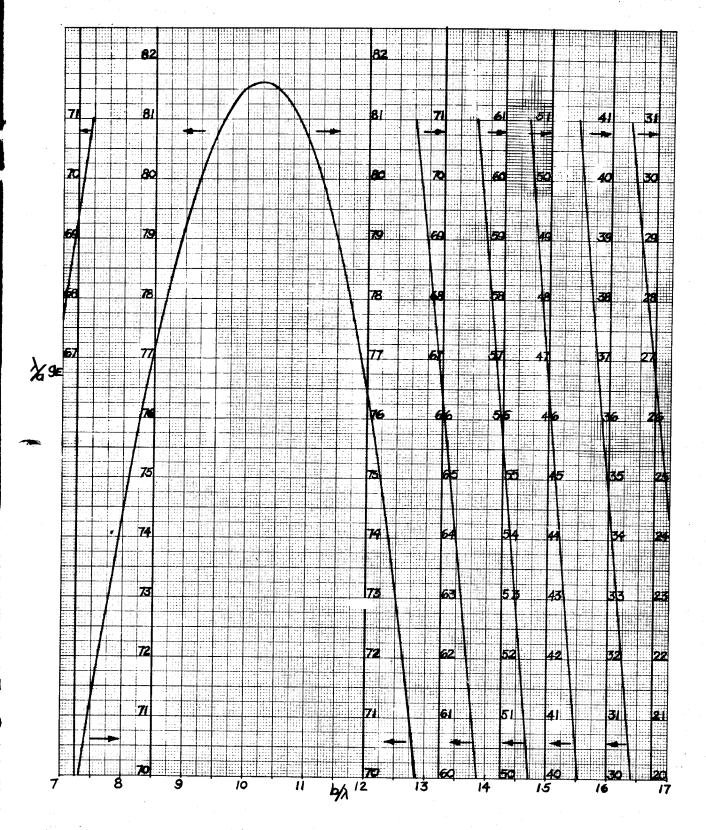


Fig. A-2 (b). Expanded E-plane theoretical gain curve

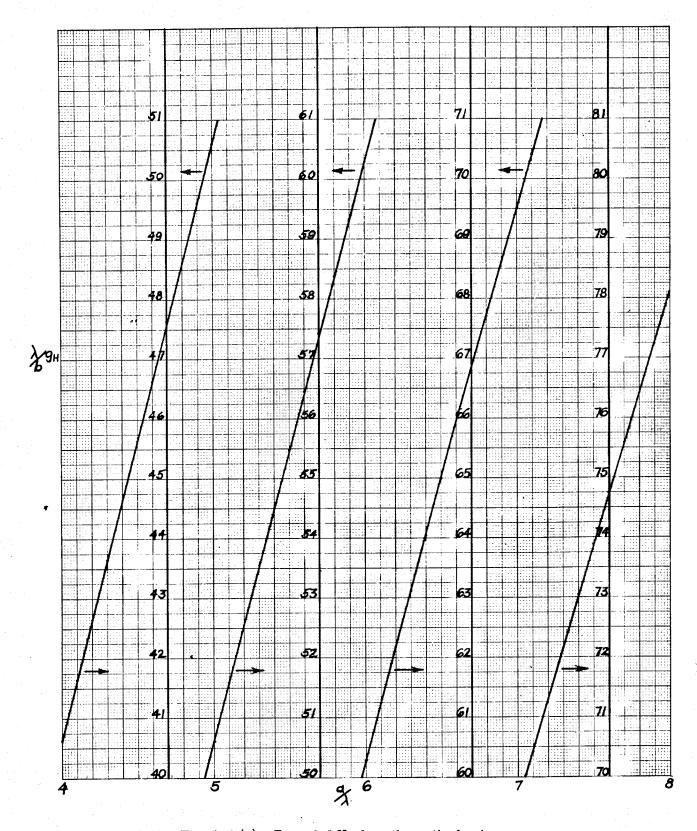


Fig. A-3 (a). Expanded H-plane theoretical gain curve

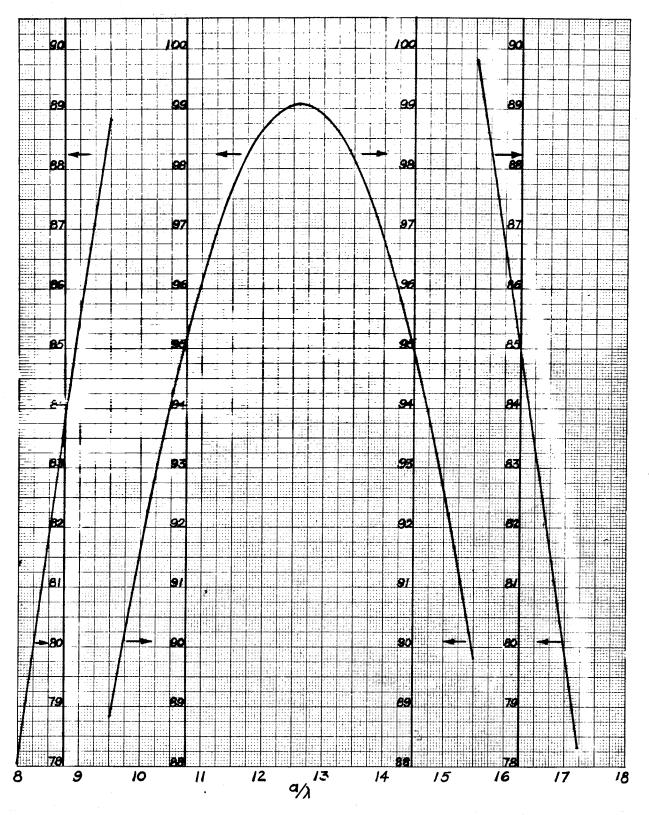
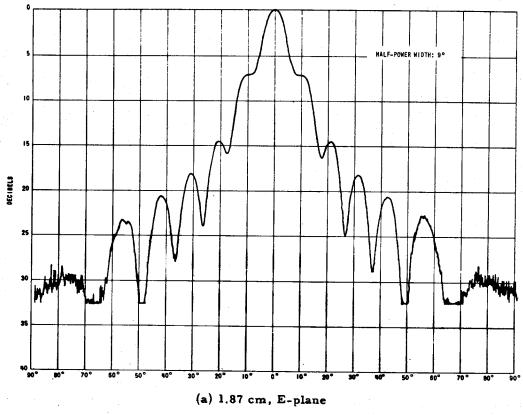



Fig. A-3 (b). Expanded H-plane theoretical gain curve

TABLE A-1
Data for Theoretical Gain Curves

Data for Theoretical Gain Curves													
(a) E-Plane ($\ell_{\rm E} = 50\lambda$)													
$b \frac{\lambda}{a}$	g _E	ь	$\frac{\lambda}{a} g_{\mathbf{E}}$	b	$\frac{\lambda}{\mathbf{a}} \mathbf{g}_{\mathbf{E}}$	ь	$\frac{\lambda}{\mathbf{a}} \mathbf{g}_{\mathbf{E}}$	ь	$\frac{\lambda}{\mathbf{a}} \mathbf{g}_{\mathbf{E}}$	ъ	$\frac{\lambda}{\hat{\mathbf{a}}} \mathbf{g}_{\mathbf{E}}$	ь	$\frac{\lambda}{a} g_{\mathbf{E}}$
1	1 1		46.397		69.123		81.301		73.784		46.499		19.910
			47.362		69.847 70.555		81.426		73.041	1	45.268 44.040		19.316 18.767
2.2 22	1 1		48.326 49.283		71.248	1	81.581	12.7			42.813		18.264
			50.233		71.923		81.611	1 .	70.621		41.593		17.805
			51.181		72.586		81.609		69.753		40.379		17.395
2.6 26	. 456 5	5.2	52.123		73.219		81.575		68.856		39.174		17.030
			53.057		73.841		81.510		67.931		37.982		16.714
2.8 28			53.985		74.441 75.025	l .	81.408	1	66.980 66.001		36.801 35.636		16.445 16.223
2.9 29 3.0 30			54.908 55.821		75.585		81.110		64.997		34.488		16.048
3.1 31			56.728		76.127		80.909		63.969		33.359		15.921
3.2 32			57.626		76.645		80.676		62.917	16.2	32.250	18.8	15.839
3.3 33	. 527	5.9	58.517		77.142		80.405		61.844	16.3	31.164		15.804
3.4 34			59.401		77.616		80.104		60.748		30.104		15.814
3.5 35			60.272		78.065		79.765		59.635		29.069 28.063		15.870 15.967
3.6 36			61.134		78.492 78.892		79.393 78.987		58.501 57.351	16.7	1 1		16.108
3.7 37 3.8 38			62.828		79.269		78.545		56.188		26.142		16.289
3.9 39			63.659		79.619		78.068		55.008		25.232		16.521
4.0 40			64.477	9.2	79.944	11.8	77.559	14.4	53.816		24.355	1	16.769
4.1 41	4.1		65.285		80.240		77.014		52.614		23.515		17.064
4.2 42	.490		66.080	9.4			76.435		51.402		22.713		17.394
4.3 43			66.862	1 .	80.752		75.822 75.176		50.183 48.959		21.951 21.228		17.755 18.147
4.4 44	1 1		67.630 68.385		80.964 81.146		74.497	1	47.731		20.548	20.0	10.147
1													
				1-17	L			ч		127.5	20.540	<u> </u>	
	·····				(b)		ane (LH	ч)	127.5		<u> </u>	I
a $\frac{\lambda}{b}$	H	а	$\frac{\lambda}{b}$ $g_{\mathbf{H}}$	а	(b) $\frac{\lambda}{b} g_{H}$	H-P1	ane (\boldsymbol{l}_{H}) $\frac{\lambda}{b} g_{H}$	= 50\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{\lambda}{b} g_{H}$	а	$\frac{\lambda}{b} g_{\mathbf{H}}$	a	½ g _H
2.0 20	.370	a 4.6	$\frac{\lambda}{b} g_{H}$ 46.635	a 7.2	(b) \[\frac{\lambda}{b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H-P1	ane (l_H) $\frac{\lambda}{b} g_H$ 90.633	= 50\lambda	$\frac{\frac{\lambda}{b}}{b} g_{H}$ 99.019	a 15.0	$\frac{\lambda}{b}$ g_{H} 92.591	17.6	75.416
2.0 20 2.1 21	.370 .387	a 4.6 4.7	$\frac{\lambda}{b} g_{H}$ 46.635 47.628	7.2 7.3	(b) $\frac{\lambda}{b} g_{H}$ 71.291 72.164	H-P1	ane (l_{H}) $\frac{\lambda}{b} g_{H}$ 90.633 91.195	= 50\lambda	$\frac{\lambda}{b} g_{H}$ 99.019 99.052	a 15.0 15.1	$\frac{\lambda}{b} g_{H}$ 92.591 92.066	17.6 17.7	75.416 74. 70 1
2.0 20 2.1 21 2.2 22	.370 .387 .402	a 4.6 4.7 4.8	$\frac{\lambda}{b} g_{H}$ 46.635 47.628 48.619	7.2 7.3 7.4	(b) $\frac{\lambda}{b} g_{H}$ 71.291 72.164 73.031	H-P1 a 9.8 9.9 10.0	ane (L_{H}) $\frac{\lambda}{b} g_{H}$ 90.633 91.195 91.740	= 50 λ	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \end{array}$	a 15.0 15.1 15.2	$\begin{array}{c} \frac{\lambda}{b} \ \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \end{array}$	17.6 17.7 17.8	75.416 74.701 73.991
2.0 20 2.1 21	.370 .387 .402 .422	a 4.6 4.7 4.8 4.9	$\frac{\lambda}{b} g_{H}$ 46.635 47.628	7.2 7.3 7.4 7.5	(b) $\frac{\lambda}{b} g_{H}$ 71.291 72.164	H-P1 a 9.8 9.9 10.0 10.1	ane (l_{H}) $\frac{\lambda}{b} g_{H}$ 90.633 91.195	= 50 λ ; a 12.4 12.5 12.6 12.7	$\frac{\lambda}{b} g_{H}$ 99.019 99.052	15.0 15.1 15.2 15.3 15.4	$\begin{array}{c c} \frac{\lambda}{b} \ \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \end{array}$	17.6 17.7 17.8 17.9 18.0	75.416 74.701 73.991 73.282 72.581
2.0 20 2.1 21 2.2 22 2.3 23	.370 .387 .402 .422 .439	a 4.6 4.7 4.8 4.9 5.0	$\frac{\lambda}{b}$ g_{H} 46.635 47.628 48.619 49.609	a 7.2 7.3 7.4 7.5 7.6	(b) $\frac{\lambda}{b} g_{H}$ 71.291 72.164 73.031 73.889	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3	ane (l_{H}) $\frac{\lambda}{b}g_{H}$ 90.633 91.195 91.740 92.270 92.781 93.274	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5	$\begin{array}{c c} \frac{\lambda}{b} \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \end{array}$	17.6 17.7 17.8 17.9 18.0	75.416 74.701 73.991 73.282 72.581 71.886
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26	.370 .387 .402 .422 .439 .452	a 4.6 4.7 4.8 4.9 5.0 5.1	λ _b g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8	(b) $\frac{\lambda}{b} \mathbf{g_H}$ 71.291 72.164 73.031 73.889 74.739 75.580 76.413	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4	ane (l_{H}) $\frac{\lambda}{b}$ g_{H} 90.633 91.195 91.740 92.270 92.781 93.274 93.751	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6	$\begin{array}{c} \frac{\lambda}{b} \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1	75.416 74.701 73.991 73.282 72.581 71.886 71.199
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27	.370 .387 .402 .422 .439 .452 .471	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	(b) $\frac{\lambda}{b} \mathbf{g_H}$ 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5	ane (l_{H}) $\frac{\lambda}{b}$ g_{H} 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7	$\begin{array}{c c} \frac{\lambda}{b} \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28	.370 .387 .402 .422 .439 .452 .471 .488 .501	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0	(b) \[\frac{\lambda}{\bar{b}} \mathbf{g}_{\bar{H}} \] 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236 78.049	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6	ane (l_{H}) $\frac{\lambda}{b}$ g_{H} 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29	.370 .387 .402 .422 .439 .452 .471 .488 .501	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4	λ _b g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1	(b) \[\frac{\lambda}{\bar{b}} \mathbf{g}_{\bar{H}} \] 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236 78.049 78.854	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3	1	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30	.370 .387 .402 .422 .439 .452 .471 .488 .501	a 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4 5.5 5.6	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2	(b) \[\frac{\lambda}{\bar{b}} \mathbf{g}_{\bar{H}} \] 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236 78.049	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	ane (l_{H}) $\frac{\lambda}{b}$ g_{H} 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 16.0 16.1	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.891
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4	(b) $\frac{\lambda}{b}$ g_H 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.470 95.848 96.207	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 16.0 16.1	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.891 67.262
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5	(b) $\frac{\lambda}{b}$ g_H 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.470 95.848 96.207 96.547	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.1 16.2	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6	(b) $\frac{\lambda}{b}$ g_H 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 11.1	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.470 95.848 96.207 96.547	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.1 16.2 16.3	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.848 96.207 96.547 96.869 97.168	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.1 16.2 16.3 16.4	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.891 67.262 66.643 66.038 65.447
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579 .595	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 6.0 6.1 6.2	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	(b) $\frac{\lambda}{b}$ g_H 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703 83.440 84.164	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 11.0 11.1 11.2 11.3 11.4	hane (l _H han	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ 96.793 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.891 67.262 66.643 66.038 65.447 64.871
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579 .595 .605	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 6.0 6.1 6.2 6.3	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 69.334 60.286 61.232 62.176 63.115	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	(b) \[\frac{\lambda}{\bar{b}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 11.0 11.1 11.2 11.3 11.4	ane (l_H) $\frac{\lambda}{b}$ g_H 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.848 96.207 96.547 96.869 97.168	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1	$\begin{array}{c} \frac{\lambda}{b} \; g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4 16.5	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.891 67.262 66.643 66.038 65.447
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579 .595 .605	a 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.5 6.0 6.1 6.2 6.3 6.4	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.9 9.0	(b) $\frac{\lambda}{b}$ g_H 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703 83.440 84.164	H-P1 a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.4	hane (l _H han	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.052 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7	\(\frac{\lambda}{\bar{b}}\) \(\frac{\bar{g}}{\bar{h}}\) 92.591 92.066 91.528 90.972 90.400 89.822 89.214 88.601 87.337 86.688 86.026 85.355 84.677 83.319 82.594 81.888 81.179 80.461	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 65.447 64.871 64.305 63.758 63.222
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37 3.8 38 3.9 39 4.0 40	.370 .387 .402 .422 .439 .452 .471 .518 .532 .545 .560 .573 .579 .595 .605 .612 .622	a 4.64.7 4.89 55.12 55.5 55.5 56.0 66.12 66.3 66.5 66.5	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176 63.115 64.046 64.975 65.896	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1	(b) \[\frac{\lambda}{\bar{\bar{b}}} \geqsign{g}{\bar{\bar{H}}} \] 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703 83.440 84.164 84.875 85.567 86.250 86.923	H-P1. a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	ane (\$\begin{align*} \lambda \\ \frac{\lambda}{\lambda} \\ \ext{g}_{\text{H}} \end{align*} \] 90.633 91.195 91.740 92.270 92.781 93.274 93.751 94.208 94.646 95.067 95.470 95.848 96.207 96.547 96.869 97.168 97.702 97.938 98.149 98.342	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3 14.4	$\begin{array}{c} \frac{\lambda}{b} ^{\rm g}_{\rm H} \\ 99.019 \\ 99.052 \\ 99.062 \\ 99.051 \\ 99.012 \\ 98.953 \\ 98.871 \\ 98.763 \\ 98.888 \\ 486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.387 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ 95.348 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7	$\begin{array}{c} \frac{\lambda}{b} \; g_{\text{H}} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ 81.888 \\ 81.179 \\ 80.461 \\ 79.742 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3 19.4	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 65.447 64.871 64.305 63.758 63.222 62.703
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37 3.8 38 3.9 39 4.0 40 4.1 41	.370 .387 .402 .422 .439 .452 .471 .518 .532 .545 .560 .573 .579 .595 .605 .612 .622 .629	a 4.67 4.89 55.12 55.55 55.55 66.12 66.56 66.7	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176 63.115 64.046 64.975 65.896 66.810	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1 9.2 9.3	(b) \[\frac{\lambda}{\bar{\bar{b}}} \geq \frac{\bar{\bar{H}}}{\bar{1}} \] 71.291 72.164 73.031 73.889 74.739 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703 83.440 84.164 84.875 85.567 86.250 86.923 87.579	H-P1. a 9.8 9.9 10.0 10.1 10.2 10.3 10.6 10.7 10.8 10.9 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Ame (\$\begin{align*} \lambda \\ \frac{\lambda}{\lambda} \\ \frackappa \\ \frac{\lambda}{\lambda} \\ \frac{\lambda}{\lambda} \\	= 50\(\lambda\) 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3 14.4	$\begin{array}{c} \frac{\lambda}{b} g_{H} \\ 99.019 \\ 99.052 \\ 99.051 \\ 99.051 \\ 99.053 \\ 98.873 \\ 98.763 \\ 98.8638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.101 \\ 96.793 \\ 96.464 \\ 97.387 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ 95.348 \\ 94.936 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 17.0 17.1	$\begin{array}{c} \frac{\lambda}{b} \; \mathbf{g_H} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ 81.179 \\ 82.594 \\ 81.179 \\ 80.461 \\ 79.742 \\ 79.023 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3 19.4 19.5	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 66.038 65.447 64.871 64.305 63.758 63.222 62.703 62.201
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37 3.8 38 3.9 39 4.0 40 4.1 41 4.2 42	.370 .387 .402 .422 .439 .452 .471 .518 .532 .545 .560 .573 .575 .605 .612 .622 .629 .633 .637	a 4.67 4.89 5.5.1 5.55 5.55 5.66 6.66 6.66 6.78	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176 63.115 64.046 64.975 65.896 66.810 67.720	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.1 9.1 9.2 9.3	(b) \[\frac{\lambda}{\bar{\bar{b}}} \geqsign{gray}{\bar{\bar{b}}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} g	H-P1. a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0	Ame (\$\begin{align*} \lambda \frac{\lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\begin{align*} \lambda}{\b	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3 14.4 14.5 14.6	$\begin{array}{c} \frac{\lambda}{b} ^{\rm g}_{\rm H} \\ 99.019 \\ 99.052 \\ 99.051 \\ 99.051 \\ 99.051 \\ 99.053 \\ 98.871 \\ 98.763 \\ 98.874 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ 96.113 \\ 95.740 \\ 95.348 \\ 94.936 \\ 94.504 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 17.0 17.1	$\begin{array}{c} \frac{\lambda}{b} \; g_{\text{H}} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ 81.179 \\ 80.461 \\ 79.742 \\ 79.023 \\ 78.301 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3 19.4 19.5 19.7	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 65.447 64.871 64.871 64.871 64.871 64.7891 63.758 63.222 62.703 62.201 61.714
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37 3.8 38 3.9 39 4.0 40 4.1 41 4.2 42 4.3 43	.370 .387 .402 .422 .439 .452 .471 .518 .532 .545 .560 .573 .579 .605 .612 .622 .629 .633 .637	a 4.67 4.89 5.5.23 5.55 5.55 5.66 6.66 6.66 6.67 6.69	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176 63.115 64.046 64.975 65.896 66.810 67.720 68.623	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1 9.2 9.3 9.5	(b) \[\frac{\lambda}{\bar{\bar{b}}} \geqsigma_{\bar{H}} \] 71.291 72.164 73.031 73.889 75.580 76.413 77.236 78.049 78.854 79.644 80.427 81.196 81.956 82.703 83.440 84.164 84.875 85.567 86.250 86.923 87.579 88.221 88.844	H-P1. a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1	Ame (\$\begin{align*} \lambda \frac{\lambda}{\beta} \lambda	= 50λ a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7	$\begin{array}{c} \frac{\lambda}{b} ^{\rm g}_{\rm H} \\ 99.019 \\ 99.052 \\ 99.051 \\ 99.051 \\ 99.051 \\ 99.053 \\ 98.763 \\ 98.763 \\ 98.763 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ 96.113 \\ 95.740 \\ 95.348 \\ 94.936 \\ 94.504 \\ 94.054 \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 17.1 17.2 17.3	$\begin{array}{c} \frac{\lambda}{b} g_{\text{H}} \\ 92.591 \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ 81.888 \\ 81.179 \\ 80.461 \\ 79.742 \\ 79.023 \\ 78.301 \\ 77.578 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3 19.4 19.5 19.6	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 66.038 65.447 64.871 64.305 63.758 63.222 62.703 62.201
2.0 20 2.1 21 2.2 22 2.3 23 2.4 24 2.5 25 2.6 26 2.7 27 2.8 28 2.9 29 3.0 30 3.1 31 3.2 32 3.3 33 3.4 34 3.5 35 3.6 36 3.7 37 3.8 38 3.9 39 4.0 40 4.1 41 4.2 42	.370 .387 .402 .422 .439 .452 .471 .488 .501 .518 .532 .545 .560 .573 .579 .595 .605 .612 .622 .629 .633 .637	a 4.67 4.89 5.5.1 5.5.2 5.5.5 5.66 6.1 6.66 6.66 6.67 7.0	λ g _H 46.635 47.628 48.619 49.609 50.595 51.578 52.559 53.536 54.512 55.475 56.449 57.418 58.377 59.334 60.286 61.232 62.176 63.115 64.046 64.975 65.896 66.810 67.720	a 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1 9.2 9.3 9.4 9.6	(b) \[\frac{\lambda}{\bar{\bar{b}}} \geqsign{gray}{\bar{\bar{b}}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} \frac{\lambda}{\bar{c}} \geqsign{gray}{\bar{c}} g	H-P1. a 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 11.7 11.8 11.9 12.1 12.2	Ame (\$\begin{align*} \lambda \frac{\lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\beta} \text{ g}_{\begin{align*} \lambda}{\begin{align*} \lambda}{\b	= 50\(\lambda\) a 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8	$\begin{array}{c} \frac{\lambda}{b} ^{\rm g}_{\rm H} \\ 99.019 \\ 99.052 \\ 99.051 \\ 99.051 \\ 99.051 \\ 99.053 \\ 98.871 \\ 98.763 \\ 98.874 \\ 98.638 \\ 98.486 \\ 98.309 \\ 98.114 \\ 97.894 \\ 97.654 \\ 97.387 \\ 97.101 \\ 96.793 \\ 96.464 \\ 96.113 \\ 95.740 \\ 96.113 \\ 95.740 \\ 95.348 \\ 94.936 \\ 94.504 \\ \end{array}$	15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 17.0 17.0 17.0 17.1	$\begin{array}{c} \frac{\lambda}{b} \; g_{\text{H}} \\ 92.591 \\ 92.066 \\ 91.528 \\ 90.972 \\ 90.400 \\ 89.822 \\ 89.214 \\ 88.601 \\ 87.976 \\ 87.337 \\ 86.688 \\ 86.026 \\ 85.355 \\ 84.677 \\ 83.990 \\ 83.319 \\ 82.594 \\ 81.179 \\ 80.461 \\ 79.742 \\ 79.023 \\ 78.301 \\ \end{array}$	17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 19.0 19.1 19.2 19.3 19.4 19.5 19.6	75.416 74.701 73.991 73.282 72.581 71.886 71.199 70.516 69.847 69.183 68.534 67.262 66.643 66.038 65.447 64.871 64.305 63.758 63.222 62.703 62.201 61.714 61.243

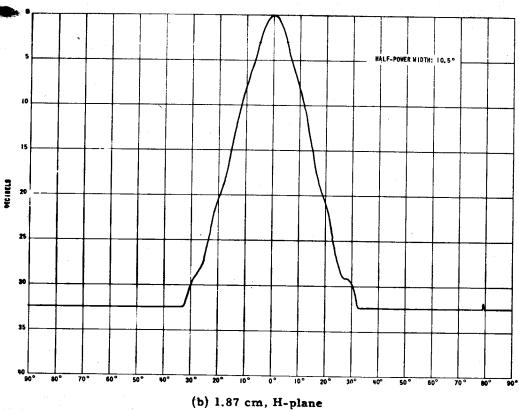


Fig. A-4. E- and H-plane field patterns

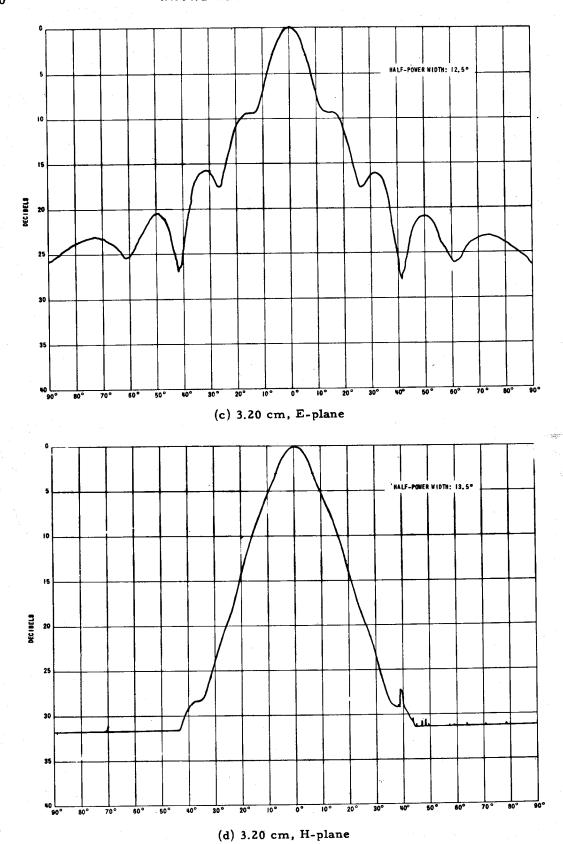
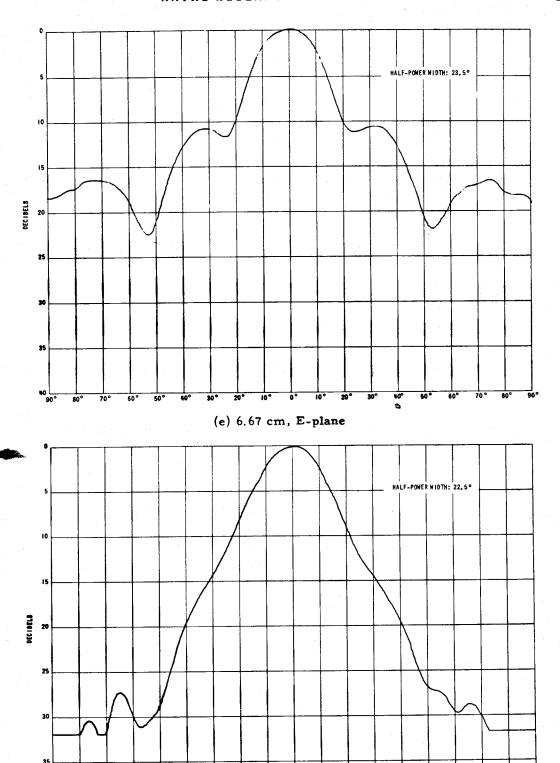



Fig. A-4. E- and H-plane field patterns

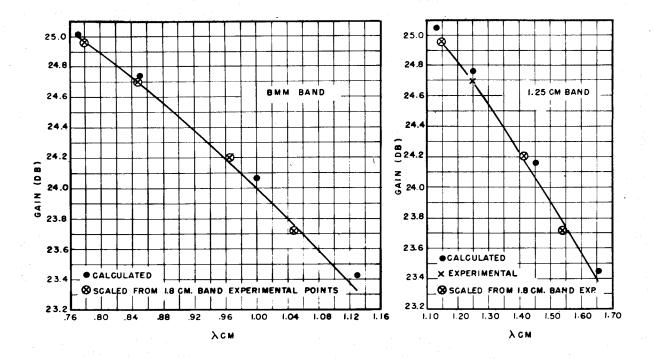

(f) 6.67 cm, H-plane

Fig. A-4. E- and H-plane field patterns

TABLE A-2
Summary of Gain-Standard Horn Data

	Band	Frequ	ien	cy Range		Dimension (in	ns (I.D.)	Design- Point Frequency	Gain at Design Point (db)
(8 mm	0.77			- 1	a = 2.720		0.85 cm	24.7
		26,550	-	38,960	MC	$\ell_{\rm H} = 6.513$	$L_{\rm E} = 6.197$	35,2 90 Mc	
Į	1.25 cm				- 1	a = 4.000		1.25 cm	24.7
	1125 6	18,070	-	26,550	Mc	$\ell_{\rm H} = 9.706$	$\ell_{\rm E}$ = 9.113	24,000 Mc	2.07
	1.8 cm	1.66	-	2.42	cm	a = 5.984	b = 4.908	1.87 cm	24.7
	1.8 Cm	12,400	-	18,070	Мс	$\ell_{\rm H} = 14.333$	$\ell_{\rm E}$ = 13.633	16,040 Mc	24.7
	7	2.42	_	3.70	cm	a = 7.654	b = 5.669	3.20 cm	
	3.2 cm	8100	-	12,400	Mc	$\ell_{\rm H} = 13.484$	$\ell_{\rm E}$ = 12.598	9375 Mc	22.1
		3.60	_	5.20	cm	a = 11.360	b = 8.415	4.75 cm	
1	4.75 cm	5770			- 1	$k_{\rm H} = 20.014$		6315 Mc	22.1
		3.00	_			a = 5.041	_	3.95 cm	المراجع المعتقب بالمراجع
1	3.95 cm	l				$\mathbf{\ell_{H}} = 7.447$		7595 Mc	18.0
$ \cdot $	6 cm	5.10				$\mathbf{a} = 8.507$		6.67 cm	18.0
		3950	-	5880	MC	$\mathbf{\ell_{H}} = 12.462$	$L_{\mathbf{E}} = 11.062$	4500 M c	
11.	0 cm	7.60	-	11.5	Cm	a = 12.760	b = 9.450	10.00 cm	18.0
	O CIII	2600	-	3950	Mc	$\boldsymbol{\ell_{\mathrm{H}}} = 18.682$	$\boldsymbol{l}_{\mathrm{E}} = 16.593$	3000 Mc	10.0
ر ا	_	11.5	_	17.6	Сm	a = 14.508	b = 10.747	15.22 cm	15.5
	5 cm	1700	-	26 00	Mc	$\ell_{\rm H} = 16.508$	$\ell_{\rm E}$ = 14.107	1970 Mc	13.3
	_	17.6		26.5	cm	a = 21.931	b = 16.245	23.00 cm	15 5
	3 cm	1130	-	1700	Мс	$l_{\rm H} = 24.955$	ℓ_{E} = 21.325	1300 Mc	15.5
-	·	26.0	_	31.5	cm	a = 21.931	b = 16.245	30.00 cm	
3	0 cm	950				$\ell_{\rm H} = 28.730$		1000 Mc	13.7

Horns in brackets are scaled versions of each other, except for the $\ell_{\rm H}$ dimensions, which are chosen to make a simple butt-joint at the waveguide

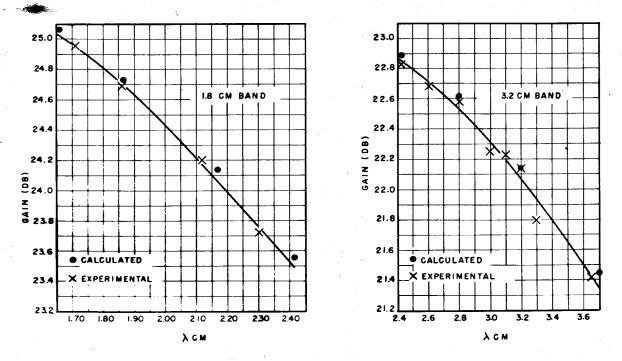
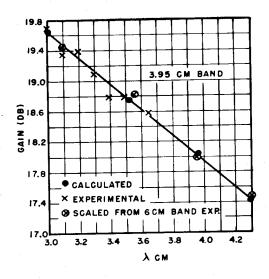
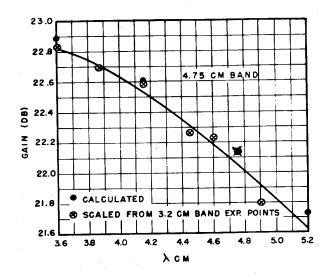




Fig. A-5 (a). Gain curves

The second second

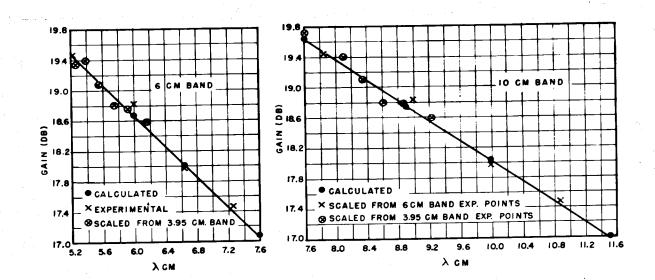
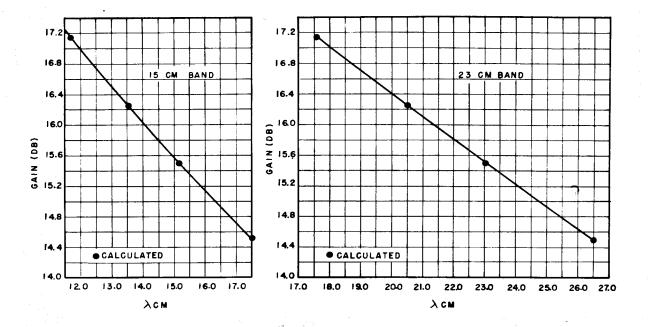



Fig. A-5 (b). Gain curves

CONVERSION CHART

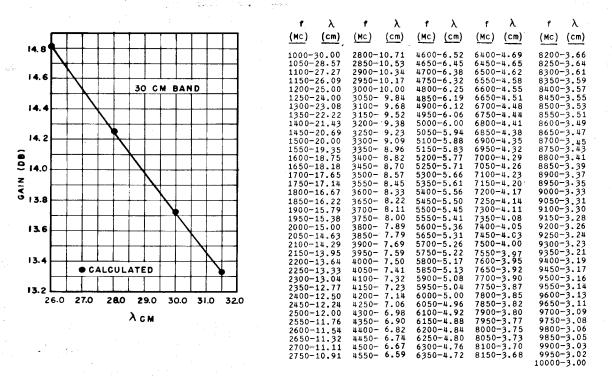


Fig. A-5(c). Gain curves and conversion chart

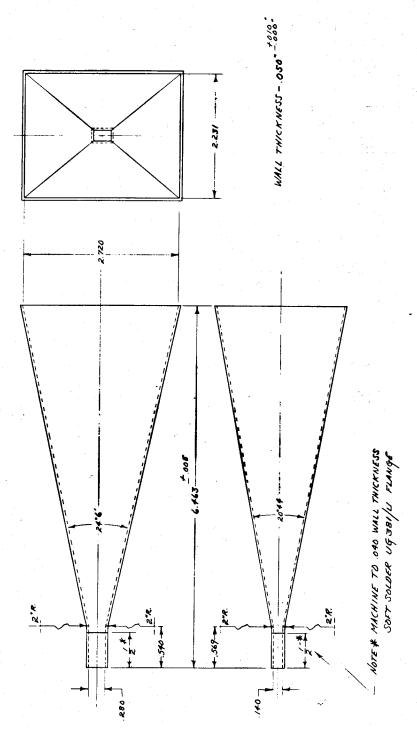


Fig. A-6. Electroformed horn, 8-mm-band gain-standard (0.77-1.13 cm)

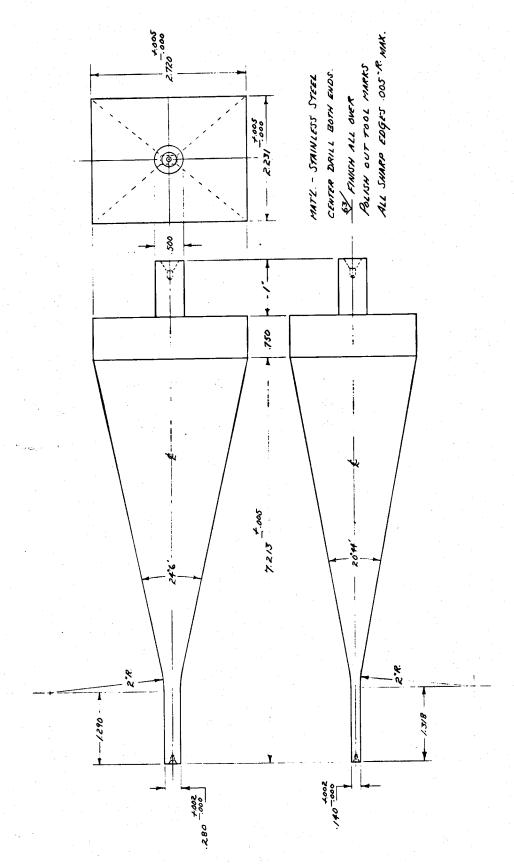


Fig. A-7. Mandril for electroforming 8-mm-band gain-standard horn

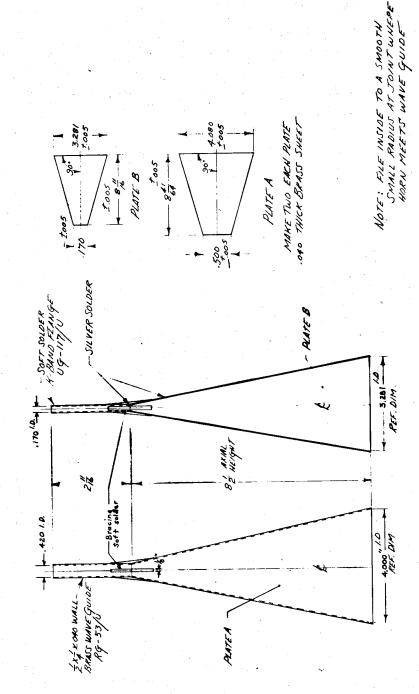


Fig. A-8. 1.25-cm-band gain-standard horn (1.13-1.66 cm)

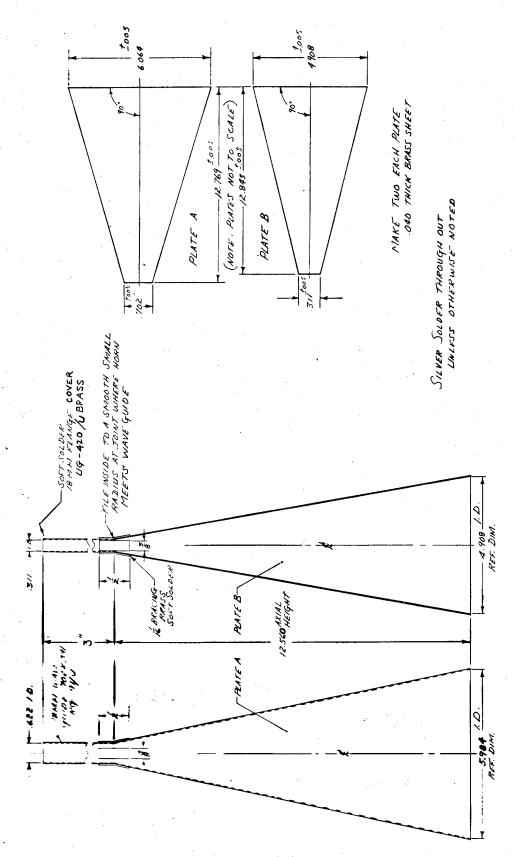


Fig. A-9. 18-mm-band gain-standard horn (1.66-2.42 cm)

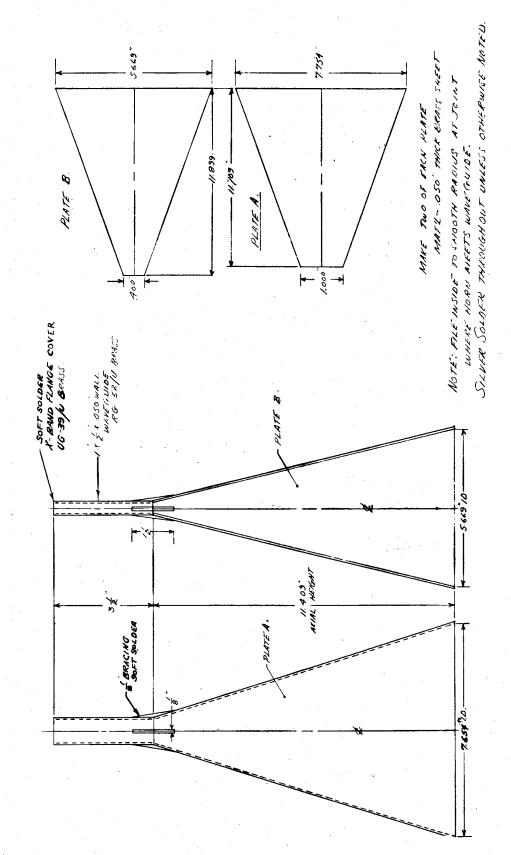


Fig. A-10, 3.2-cm-band gain-standard horn (2.42-3.70 cm)

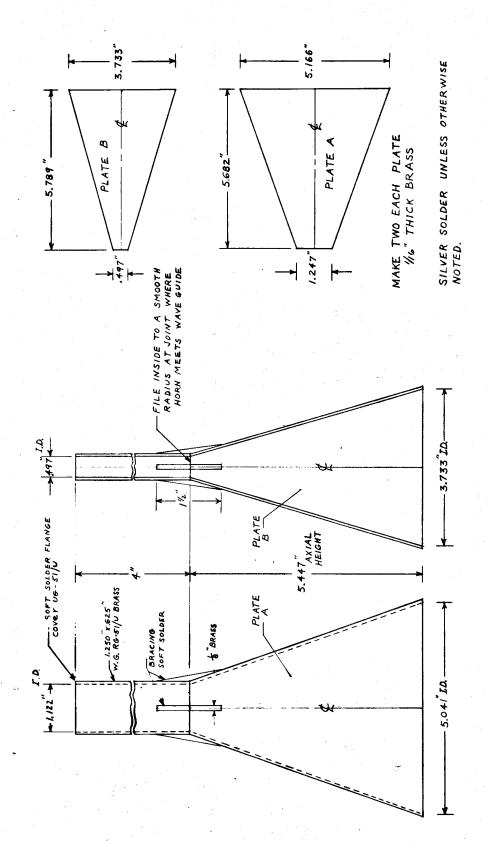


Fig. A-11. 3.95-cm-band gain-standard horn (3.0-4.30 cm)

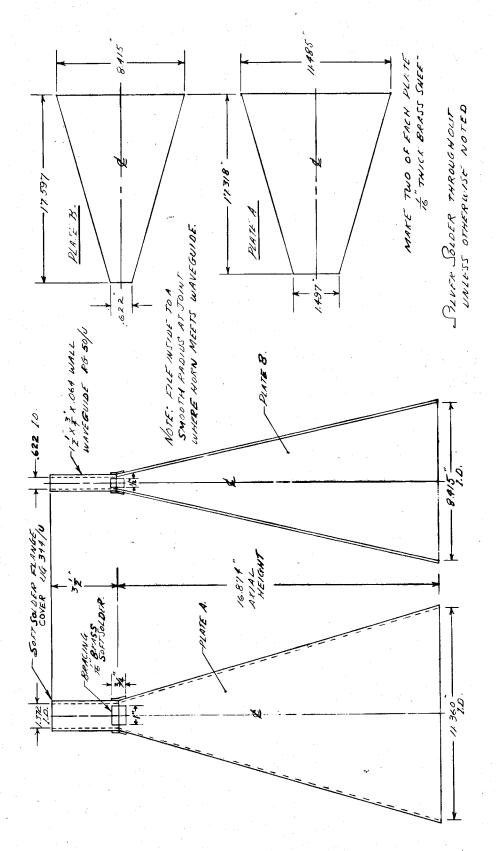


Fig. A-12. 4.75-cm-band gain-standard horn (3.60-5.20 cm)

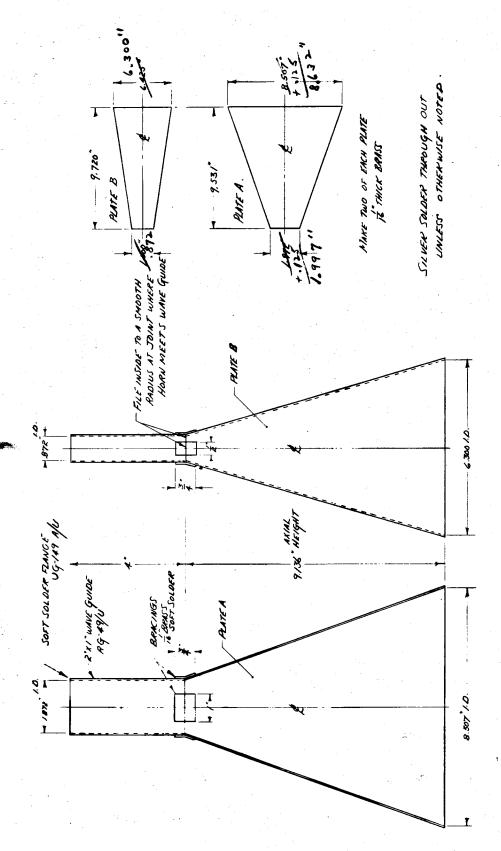


Fig. A-13, 6-cm-band gain-standard horn (5.10-7.60 cm)

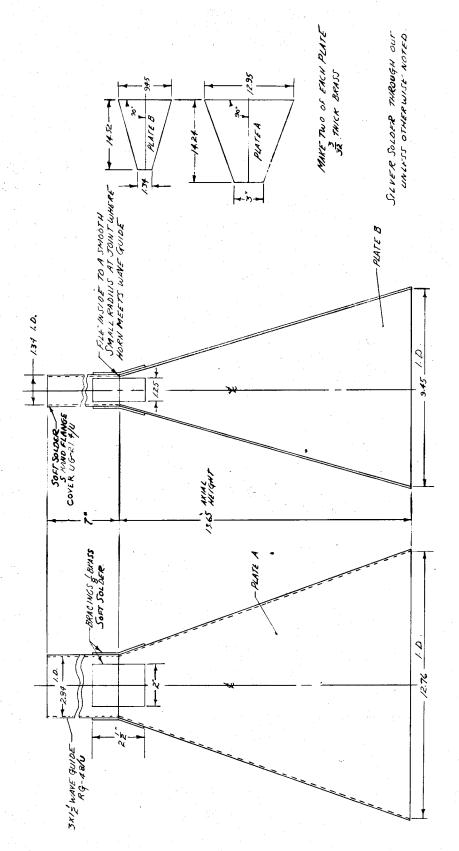
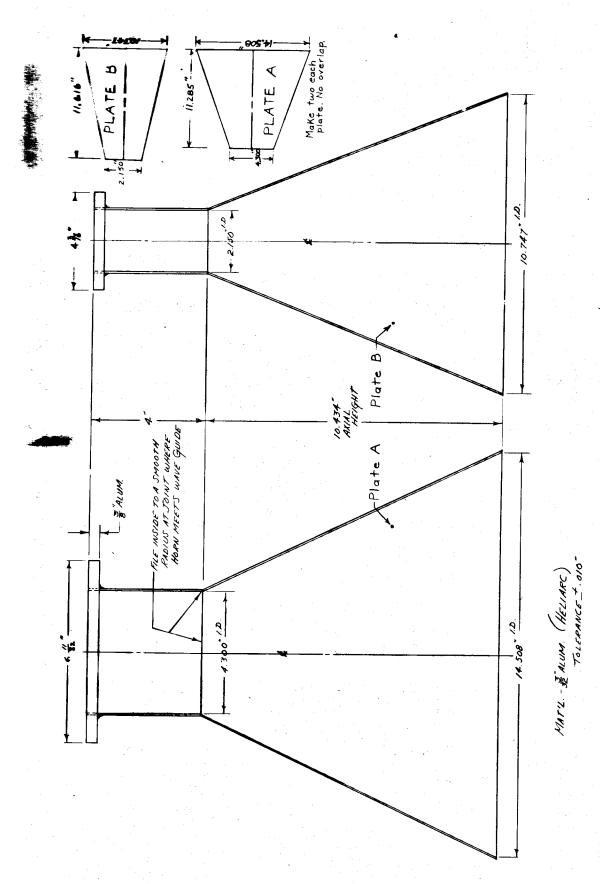
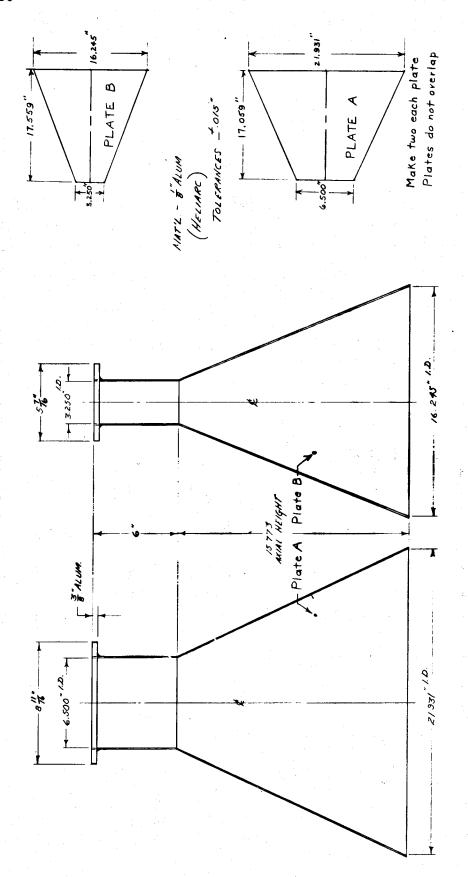
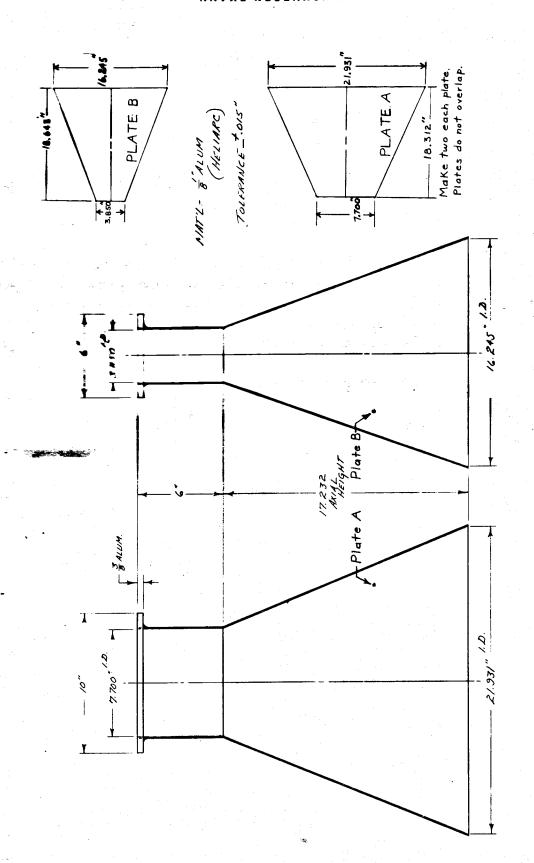


Fig. A-14, 10-cm-band gain-standard horn (7.60-11.5 cm)


Fig. A-15, 15-cm-band gain-standard horn (11.5-17.6 cm)

AT JUNT WHERE HORN MEETS WAVE GUIDS

NOTE: FILE MSIDE TO A SMOOTH RADIUS

Fig. A-16. 23-cm-band gain-standard horn (17.6-26.5 cm)

NOTE: FILE MSIDE TO A SMOOTH RADIUS AT JOINT WHERE HORN MEETS WAVE GUIDE

Fig. A-17, 30-cm-band gain-standard horn (26.0-31.5 cm)